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Abstract

Background: Currently, bacterial 16S rRNA gene analyses are based on sequencing of individual variable regions of
the 16S rRNA gene (Kozich, et al Appl Environ Microbiol 79:5112-5120, 2013).This short read approach can introduce
biases. Thus, full-length bacterial 16S rRNA gene sequencing is needed to reduced biases. A new alternative for full-
length bacterial 16S rRNA gene sequencing is offered by PacBio single molecule, real-time (SMRT) technology. The
aim of our study was to validate PacBio P6 sequencing chemistry using three approaches: 1) sequencing the full-
length bacterial 165 rRNA gene from a single bacterial species Staphylococcus aureus to analyze error modes and to
optimize the bioinformatics pipeline; 2) sequencing the full-length bacterial 165 rRNA gene from a pool of 50
different bacterial colonies from human stool samples to compare with full-length bacterial 165 rRNA capillary
sequence; and 3) sequencing the full-length bacterial 16S rRNA genes from 11 vaginal microbiome samples and
compare with in silico selected bacterial 165 rRNA V1V2 gene region and with bacterial 16S rRNA V1V2 gene
regions sequenced using the lllumina MiSeq.

Results: Our optimized bioinformatics pipeline for PacBio sequence analysis was able to achieve an error rate of 0.
007% on the Staphylococcus aureus full-length 16S rRNA gene. Capillary sequencing of the full-length bacterial 16S
rRNA gene from the pool of 50 colonies from stool identified 40 bacterial species of which up to 80% could be
identified by PacBio full-length bacterial 16S rRNA gene sequencing. Analysis of the human vaginal microbiome
using the bacterial 165 rRNA V1V2 gene region on MiSeq generated 129 operational taxonomic units (OTUs) from
which 70 species could be identified. For the PacBio, 36,000 sequences from over 58,000 raw reads could be
assigned to a barcode, and the in silico selected bacterial 16S rRNA V1V2 gene region generated 154 OTUs grouped
into 63 species, of which 62% were shared with the MiSeq dataset. The PacBio full-length bacterial 165 rRNA gene
datasets generated 261 OTUs, which were grouped into 52 species, of which 54% were shared with the MiSeq
dataset. Alpha diversity index reported a higher diversity in the MiSeq dataset.

Conclusion: The PacBio sequencing error rate is now in the same range of the previously widely used Roche 454

sequencing platform and current MiSeq platform. Species-level microbiome analysis revealed some inconsistencies
between the full-length bacterial 16S rRNA gene capillary sequencing and PacBio sequencing.
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Background

Currently, large-scale bacterial 16S rRNA gene analyses
are based on sequencing of individual variable regions of
the bacterial 16S rRNA gene. Single variable regions and
combinations of variable regions including V2, V3, V4,
V1-2,V1-3, V2-3, V2-4, V3-4, V4-5, V3-6, and V7-9, have
been all sequenced with second generation sequencing
technology offered previously by Roche and more recently
by Illumina technologies [1-5]. However, depending on the
region sequenced, biases can be introduced [5-7].

[lumina MiSeq sequencing is currently the most widely
applied platform for bacterial 16S rRNA gene amplicon se-
quencing. Its latest chemistry allows the sequencing of
300 bp PCR fragments in both directions with full overlap
and makes it appropriate for the sequencing of single vari-
able regions and the bacterial 16S rRNA V1-2 gene region
where full sequence overlap is desired [1]. However, the
short read approach by second generation sequencing in-
troduces biases depending on which variable regions are
used and can not provide effective resolution below the
bacterial genus level, limiting microbial ecology studies [5,
8]. Further, a large proportion of the bacterial 16S rRNA
gene records in the GenBank database labeled as environ-
mental samples are unclassified, which is in part due to
low read accuracy, potential chimeric sequences produced
during PCR amplification and the low resolution of short
amplicons. High throughput full-length bacterial 16S rRNA
gene sequencing methodologies with reduced biases are
needed.

Historically, we were able to sequence full-length bacterial
16S rRNA gene by conventional cloning and Sanger sequen-
cing. However, this is laborious, costly, and is low through-
put. A new alternative for full-length bacterial 16S rRNA
gene sequencing is offered by the third generation Pacific
Biosciences single molecule, real-time (SMRT) sequen-
cing technology. The latest PacBio P6/C4 chemistry of-
fers very long reads, where half of the reads >14,000 base
pairs long and each SMRT cell yields an average of 50,000
reads from a 4 hour run (www.pacb.com/smrt-science/
smrt-sequencing/). Phylogenetic profiling based on full-
length bacterial 16S rRNA gene requires high read accur-
acy, and this should be achieved through the use of PacBio
circular consensus sequencing (CCS). In CCS, the
DNA polymerase reads a ligated circular DNA tem-
plate multiple times, depending on amplicon size,
read length and sequencing movie length [9], effect-
ively generating a consensus sequence from multiple
reads of a single molecule.

Few studies have investigated the efficacy of PacBio 3rd
generation sequencing for full-length bacterial 16S rRNA
genes using CCS. Mosher and colleagues reported the first
sequencing of full-length bacterial 16S rRNA gene ampli-
cons from environmental samples (sediment and rock bio-
film) using the PacBio RS SMRT sequencing platform
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with XL/C2 chemistry in comparison with the Roche 454
GS FLX chemistry [10]. The Roche 454 bacterial 16S rRNA
V1V3 gene sequences could be grouped into 57 clusters
(operational taxonomic units (OTUs)) at 97% sequence
identity, whereas the PacBio bacterial 16S rRNA V1V3
gene sequences were grouped into 594 clusters (OTUs) at
97% sequence identity. The PacBio full-length bacterial
16S rRNA gene sequences were grouped into 755 clusters
(OTUs) at 97% sequence identity. The >10-fold increase in
the number of OTU clusters obtained from the PacBio
platform reflected the large sequencing error rate in the
PacBio data at that time. One year later the same group
reanalyzed two of their libraries with the updated P4/C2
chemistry and a run time of 180 minutes [11]. The PacBio
RS 1II platform combined with P4/C2 chemistry improved
sequence accuracy and number of high quality reads, com-
pared to their initial assessment, from 80% to > 99% for the
full length bacterial 16S rRNA gene sequence. In addition
the number of reads obtained from the sediment sample
doubled from 4563-5955 sequences to 8260-12057 se-
quences when using the newer chemistry.

Singer and colleagues reported the comparison of Pac-
Bio full-length bacterial 16S rRNA gene sequencing with
[lumina HiSeq 2500 metagenomic shotgun sequencing
and MiSeq bacterial 16S rRNA V4 gene region sequencing
using a mock community as well as an environmental sam-
ple from Sakinaw Lake, British Columbia [12]. When they
compared the PacBio full-length bacterial 16S rRNA gene
taxonomic resolution with in silico generated PacBio bac-
terial 16S rRNA V4 gene region at various taxonomic levels,
they were able to classify a higher proportion of phylum,
class, family, genus and species level from the full-length
bacterial 16S rRNA gene dataset compared to the in silico
generated PacBio bacterial 16S rRNA V4 gene region.

The group reported minor differences between datasets
from Illumina MiSeq bacterial 16S rRNA V4 gene region
and PacBio full-length bacterial 16S rRNA gene in the clas-
sifiable OTUs. PacBio full-length bacterial 16S rRNA gene
sequencing resolved all 23 OTUs in the mock community,
whereas Illumina bacterial 16S rRNA V4 gene sequencing
could not resolve closely related species.

The most comprehensive analysis of PacBio full-length
bacterial 16S rRNA gene sequencing was recently published
by Schloss et al. [13]. They sequenced different bacterial
16S rRNA gene regions (V4, V1V3, V3V5, V1V5, V1V6,
and V1V9) from a defined mock community and natural
samples from human feces, mouse feces and soil environ-
ment. Their sequence error rates reported ranged between
0.019% and 0.158% for the above bacterial 16S rRNA gene
regions.

The use of full-length sequencing for bacterial 16S rRNA
gene analysis would have significant advantages over
current approaches. However, only a few studies have in-
vestigated the use of PacBio technology for the sequencing
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of the full-length 16S gene [10-12, 14]. Thus, more infor-
mation is urgently needed to identify the advantages and
disadvantages of PacBio CCS for bacterial full-length 16S
rRNA gene sequencing.

Previous studies including the lasted study from Schloss
et al. [13] compared PacBio sequencing with Illumina se-
quencing, both are know to be error prone. In our study we
also included a pool of capillary sequenced stool colonies.
Thus, the aim of our study was to validate the latest PacBio
P6/C4 sequencing chemistry using three approaches: 1) se-
quencing the full-length bacterial 16S gene from a single
bacterial species Staphylococcus aureus to analyze error
modes and to optimize the bioinformatics pipeline for fur-
ther analyses 2) sequencing the full-length bacterial 16S
rRNA genes from a pool of 50 different bacterial colonies
from stool to compare with full-length bacterial 16S rRNA
genes capillary sequenced and 3) sequencing the full-length
bacterial 16S rRNA genes from 11 vaginal microbiome
samples and comparing the PacBio full-length bacterial 16S
rRNA genes and in silico selected bacterial 16S rRNA V1V2
gene region with bacterial 16S rRNA V1V2 gene regions se-
quenced using the Illumina MiSeq from the same samples.

Methods

PacBio sequencing of Staphylococcus aureus 16S DNA

All polymerase chain reactions (PCR) were performed in
triplicates using the New England Biolab (NEB) Q5 high-
fidelity polymerase kit. Twenty ng of Staphylococcus aureus
deoxyribonucleic acid (DNA) was PCR amplified in a total
reaction volume of 50 ul together with 200 pM dNTPs,
0.5 uM forward primers (7f 5 AGAGTTTGATYMTGGCT-
CAG 3), 05 pM reverse primer (1510r 5 ACGGY-
TACCTTGTTACGACCT 3), and 0.25 pl Q5 Taq enzyme.
Each PCR was done in triplicate with 20 cycles. Cycling
conditions were as follows: Denaturation at 98 °C for 2 mi-
nutes, followed by 30 cycles of amplification (denaturation
98 °C for 30 seconds, annealing 50 °C for 30 seconds, exten-
sion 72 °C for 90 seconds) and a final extension at 72 °C for
5 minutes. PCR product was purified with 50 ul AMPure
XP beads (Agencourt Bioscience) according to Illumina’s
16S metagenomic sequencing library preparation protocol
pages 8-9 (Part # 15044223 Rev. B, 11/27/2013) [15]. The
amplified DNA was sequenced using the PacBio SMRT se-
quencing technology according to the standard manufac-
turers conditions. SMRT bell library prep and sequencing
used the currently available reagent kits Template Prepar-
ation 3.0, Polymerase Binding P6, and Sequencing Chemis-
try C4. Data was captured using 3-hour movies.

PacBio sequencing of bacterial 16S rRNA gene from
intestinal microbiome species and human vaginal
microbiome

Faecal samples from six healthy human donors were
plated by the Host-microbiota Interactions Group at the
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Wellcome Trust Sanger Institute and from these single
colonies were picked and identified using full-length bac-
terial 16S rRNA gene capillary sequencing [16]. Whole
genome DNA was extracted from each unique species and
50 of these were pooled in equal volumes for subsequent
analysis.

For the human vaginal microbiome study, DNA from
11 cervico-vaginal lavage cell pellets from a microbicide
feasibility study in Tanzania [17] were extracted using
FastDNA® Spin Kit for Soil (Qbiogene, Carlsbad, CA,
USA) at the London School of Hygiene and Tropical
Medicine and were to the Wellcome Trust Sanger Insti-
tute. All PCR reactions were performed using the NEB
Q5 high-fidelity polymerase kit, as above. Each PCR was
done in triplicate with 20 cycles and using the same PCR
condition as above. The bacterial full-length 16S rRNA
PCR primers included the PacBio barcodes are described
here (Additional file 1: Table S1). PCR primers were pur-
chased from Integrated DNA Technology (IDT, Leuven,
Belgium). PCR products were purified with AMPure XP
beads, as above, and the amplified DNA was sequenced as
above. For the human vaginal microbiome study, the DNA
concentration was determined by Qubit quantification
using Qubit 2.0 flurometer and the high sensitivity DNA
reagents (Invitrogen). Samples were pooled in equimolar
concentration and gel purified using The Wizard® SV Gel
and PCR Clean-Up System (Promega). The library size
was confirmed on a Tape station (Agilent Technologies)
before PacBio SMRT sequencing as above.

lllumina MiSeq sequencing of human vaginal microbiome
DNA

All PCR reactions were performed using the New England
Biolab (NEB) Q5 high-fidelity polymerase kit, as above. The
DNA was amplified with Illumina adapter and indexed
PCR primers using a dual-index sequencing strategy to tar-
get the bacterial V1V2 16S rRNA gene [1]. Each PCR was
done in triplicate with 20 cycles with the same cycling con-
ditions as above. The PCR reaction mix contained 200 uM
dNTPs, 0.5 uM V1 forward primers (7f 5 AGMGTTYGA-
TYMTGGCTCAG 3’), 0.5 uM V2 reverse primer (r356 5’
GCTGCCTCCCGTAGGAGT 3’), and 0.25 pl Q5 Taq en-
zyme. All primers except the read 1 sequencing primer
were purchased from IDT (Leuven, Belgium). The read 1
sequencing primer was LNA modified at position 1, 3, and
6 (T+AT+GGT + AATTGTAGMGTTYGATYMTGGC
TCAG) and was purchased from Exiqon (Vedbaek,
Denmark). PCR product was purified with AMPure XP
beads (Agencourt Bioscience) the same as above. The
equimolar library mix was prepared the same way as
above. The library size was confirmed on a Tape stations
(Agilent Technologies) before submitting for MiSeq se-
quencing using the 600 cycle MiSeq reagent kit V3. The
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library was sequenced at the Wellcome Trust Sanger Insti-
tute (Cambridge, United Kingdom).

Bioinformatics for PacBio sequence analysis

Raw sequences were initially processed through the Pac-
Bio SMRT portal. Sequences were filtered for a minimum
of 1-, 2-, 4-, and 8 passes, and a minimum predicted ac-
curacy of 90%. Downstream bioinformatics analysis was
performed using the software package Mothur (version
1.34.4) [18], Uchime [19], and ARB — A Software Environ-
ment for Sequence Data (version 5.5-0rg-9167) [20].

The following steps were done in Mothur: The PacBio
obtained “fastq.txt” file was first processed with the “fas-
tq.info” command, which generated a fasta and quality
file. Both files were then used for amplicon size trim-
ming to remove sequences outside the expected ampli-
con size (<1400 bp and >1600 bp) using the “trim.seqs”
command. A second “trim.seqs” step was performed to
remove any ambiguous sequences, sequences with ho-
mopolymers longer than 6 bp, and sequences with a
quality window average below 35 over a rolling quality
window size of 50 bp. Unique sequences were generated
and aligned with sequences of the Silva reference data-
base release 119, which is available from the Mothur
homepage [21] using the default kmer searching method
with the flip parameter set to true. The aligned se-
quences were screened using the “screen.seqs” command
to remove alignment outside the expected alignment co-
ordinates (start=1046, end =43116). In order to de-
crease the sequencing error rate, we also implemented
an additional screening step using the align report from
the “align.seqs” step and screened the aligned sequences,
setting the minscore to 80 or 90 (minimum alignment
score) and the minsim to 80 or 90 (minimum similarity
score). Then the “filter.seqs” command was used to re-
move empty columns. The filtered sequences were pre
clustered allowing 1% mismatch. The pre clustering im-
plements a pseudo-single linkage algorithm with the goal
of removing sequences that are likely due to sequencing
errors. As a general rule we allow 1% difference (1 bp/
100 bp of the 16S gene) for the bacterial 16S gene. Se-
quences were checked for chimeras using Chimera
Uchime and the template option set to self. High quality
filtered sequences were used for matrix generation (dis-
t.seqs command with output =1t) and the phylip gener-
ated distance matrix was clustered into operational
taxonomic units (OTU) using a cutoff of 0.10. Sequen-
cing error was determined with Mothur using Staphylo-
coccus aureus M1 as a reference sequence. High quality
sequences and OTUs were classified using Silva.nr v119.tax
database, which is available from the Mothur homepage.
All figures were generated in Graph Pad Prism 6 for Mac
version 6.0e (GraphPad Software, La Jolla California USA,
www.graphpad.com).

Page 4 of 17

Bioinformatics for MiSeq sequence analysis

A total dataset of over 300 human vaginal microbiome
samples were processed. The forward and reverse fastq
files were processed according to the MiSeq SOP [22] with
additional adjustments: For the “make.contigs” command
we set “trimoverlap = T”. No ambiguous sequences were
allowed and the maximum number of homopolymers was
set to six. Using the Silva bacterial database “silva.nr_-
v119.align” with the flip parameter set to true aligned
the sequences. The “screen.seqs” command was used to
remove sequences outside the expected alignment co-
ordinates (start = 1148, end = 5716). The subsequent fil-
tered sequences were de-noised by allowing three mis-
matches in the “pre.clustering” step. Chimeras were
removed using Uchime with the dereplicate option set
to “true”. Sequences were further classified using the
Silva reference database “silva.nr_v119.align” and the
Silva taxonomy database “silva.nr_v119.tax” and a cut
off value of 80% and the un-classified sequences were
removed. The original datasets were screened for any
contaminations identified either in the DNA extraction
controls or in negative PCR controls. Those contami-
nants were removed using the “remove.lineage” from
the final high quality fasta file, name file and group file.
The same 11 samples which were used for the PacBio
sequencing were then extracted from the total sample
cohort using the “get.group” command and used for
the generation of a square distance matrix. The matrix
was clustered with the automatic set “cluster.classic” com-
mand with following parameters: precision = 100, method =
average, hard =T, sim=F. A shared file (OTU table) was
generated to identify the number of OTUs at each distance
for further analysis.

We also generated a subsampled datasets comparable
with PacBio sequencing using the “sub.sample” com-
mand. For this we subsampled the final high quality
fasta, group and name file to 27596 sequences (number
of reads of the PacBio in silico selected V1V2 dataset
from the low stringency post alignment screening). The
subsampled datasets was again used for matrix gener-
ation and clustering as outlined above. OTUs with only
one sequence (Singletons OTUs) were considered to ori-
ginate from PCR errors and sequencing errors and
therefore were removed from all PacBio and the MiSeq
datasets using the “remove.rare” command in Mothur.
The remove.rare command only takes a list and a group
file, thus we used the “list.seqs” command to generate an
“accnos” file from the singletons free group file. The
accnos file was then used to get the singletons free fasta
sequences from the fasta and name file using the “get.-
seqs” command. Both, the total number of OTUs and
singletons free OTUs are outlined in Table 1. The single-
tons free OTUs were used for bacterial taxonomic pro-
file analysis using the ARB software.
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Table 1 Vaginal human microbiome analysis

HQR OTUs 97% OTUs 98% OTUs 99% OTUs unique
PacBio V1V9 Minscore = 90 minsim =90 20959 60 (48) 63 (49) 90 (62) 209 (148)
PacBio V1V9 Minscore = 80 minsim = 80 23701 181 (83) 453 (136) 1109 (158) 1316 (261)
PacBio in silico V1V2 Minscore =90 Minsim =90 26765 82 (60) 131 (65) 426 (113) 486 (131)
PacBio in silico V1V2 Minscore = 80 Minsim =80 27596 160 (81) 328 (103) 729 (137) 802 (154)
MiSeq V1V2 508016 419 (213) 536 (269) 691 (316) 829 (382)
MiSeq V1V2 Subsampled to 27596 27596 130 (79) 152 (89) 168 (94) 219 (129)

HQR high quality reads, V1V9 full-length bacterial 16S gene, V1V2 bacterial 16S V1V2 gene region, minscore = minimum alignment score during post alignment
screening, minsim = minimum similarity score during post alignment screening, OTU operational taxonomic units, value in round brackets number of singleton-free

OTUs (OTUs with 1 sequence across all groups were removed)

Bioinformatics for alpha diversity analysis of the human
vaginal microbiome samples

A shared file (OTU table) was generated for the unique
and 97% (0.03) OTU distance level from the singletons
OTU free list file and group file using the “make.shared”
command. For MiSeq analysis we used the subsampled
datasets. The “summary.single” command was used to
calculate the number of observed OTUs; “sobs”, the esti-
mated richness index; “Chao”, the sample “coverage”
index; and three different diversity indexes, namely “in-
verse Simpson, Shannon and Q statistic (Qstat)”.

We used these three different diversity indexes be-
cause they all differ in the mathematical method for the
emphasis of taxon (OTU) richness and abundance.

The Simpsons index squares the relative abundance and
the weight of rare species will thus be reduced relatively
more than that of more abundant species. Thus, the Simp-
son index gives more weight to common or dominant spe-
cies and the total species richness is down weighted relative
to evenness. The Shannon index includes a log of the relative
abundance of species and the weight of abundant species will
thus be reduced slightly relative to more rare species in com-
parison to the Simpsons index. The Q statistic is a bridge be-
tween the abundance models and diversity indices and is not
weighted towards very abundant or rare species [23]. The Q
statistic analysis is based on measuring the “inter-quartile
slope” on the cumulative species abundance curve.

Results

In this study we: 1) evaluate the accuracy for the latest
PacBio chemistry P6 using DNA from a single bacterial

Table 2 PacBio raw sequence reads across different sample sets

species (Staphylococcus aureus); 2) compared PacBio se-
quencing with capillary sequencing using a pool of 50
species isolated from human stool samples; and 3) com-
pared PacBio sequencing and Illumina Miseq sequencing
using human vaginal microbiome samples. We also eval-
uated the resolution power of full-length bacterial 16S
rRNA gene analysis in identifying candidate species in
stool colonies and vaginal microbiome samples. Table 2
shows the number of PacBio filtered CCS reads using 90%
minimum predictive accuracy across the different sample
sets tested. As expected we observed a steady decrease in
the number of reads obtained as filtering progressed from
the >1 pass filtering to the >2 pass, >4 pass, and finally >8
pass filtering (i.e. the full-length bacterial 16S rRNA gene
was sequenced with at least 1x coverage, 2x coverage, 4x
coverage, and finally 8X coverage). The largest numbers of
sequences were lost between the >4 pass and >8 pass filter-
ing. Using the 28 pass filtered datasets would reduce the
number of raw reads by 35.2% (for the Staphylococcus aur-
eus dataset), by 36.5% (for stool colonies dataset), and by
43.4% (for the human vaginal samples dataset) compared to
the 1 pass dataset (Table 2).

Staphylococcus aureus analysis

The PacBio consensus circular reads (CCS) were filtered
for a minimum of 1 pass, 2 passes, 4 passes, and 8 passes
using the PacBio SMRT portal. The number of raw reads,
trimmed sequences (high quality reads (HQR)), OTU
clusters at unique, 0.01, 0.02, 0.03, 0.04, and 0.05 distance
level, and overall sequence error rates were calculated for
the standard quality filtered datasets and for datasets with

Filtered raw sequence reads

Samples used for sequencing 21 Pass 22 Passes 24 Passes 28 Passes
Staphylococcus aureus 43268 41756 (13.5%) 37136 (14.2%) 28042 (35.2%)
50 pooled stool colonies 43133 41628 (13.5%) 36839 (14.6%) 27369 (36.5%)
11 bar-coded human 68206 66674 (12.2%) 58951 (13.6%) 38620
(43.4%)

Vaginal samples

Percent in brackets represent the proportion of sequence decrease compare to the 1 pass dataset
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extra post alignment screening using a minimum alignment
score of 80% or 90% and a minimum similarity score of 80%
or 90% (Fig. 1 and Additional file 2: Table S2). The high
number of OTUs obtained from the standard quality filter-
ing across the different passes prompted us to implement
post alignment screening in order to decrease the number
of spurious OTUs and hence improve the sequence error
rates. Theoretically, a single bacterial mock community
should only generate one OTU at 97% sequence similarity.
A 97% identity to partial-length bacterial 16S rRNA se-
quence is commonly accepted for species definition.
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As expected, implementing the post alignment screen-
ing effectively reduces the sequence error rate (Fig. 1a).
The low stringency post alignment screening (minsim =
80, minscore = 80) did not much improve the sequence
error rate compared to the non-post alignment screening
for either of the passes (1, 2, 4, or 8 passes) or different
allowed pre-clustering mismatches (5, 10, or 15 bases). A
dramatic improvement in sequence error rate was ob-
served by increasing the allowed mismatches in the
pre-clustering step. This was true for all three different
post alignment screened datasets (no, minsim = 80,

no post alignment
screening
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Fig. 1 Change in sequence error rate a and the proportion of high quality reads that were retained when using different sequencing curation
methods b. a The overall sequence error rates are plotted on the y-axis. The x-axis show the different allowed mismatches in the pre-clustering
steps (5, 10, and 15 base pair for the full-length bacterial 165 rRNA gene) across the different screened datasets: no post alignment screening, post
alignment screening using minimum sequence similarity (minsim) and minimum alignment score of (minscore) of 80%, post alignment screening
using minsim and minscore of 90%. The round, square, top facing triangle and bottom facing triangle symbols denotes the 1 pass, 2 pass, 4 pass,
and 8 pass datasets, respectively. b Top panel - Bold symbols, number of filtered raw reads across the different 1 pass, 2 pass, 4 pass, and 8 pass
datasets. Top panel — Open symbols, number of high quality reads (HQRs) across the different post aligned screened datasets, i.e. no post alignment
screening, post alignment screening using minimum sequence similarity and minimum alignment score of 80% (80/80), post alignment screening
using minimum sequence similarity and minimum alignment score of 90% (90/90). b Bottom panel, + symbol = number of HQRs in the pre-clustered
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minscore = 80, and minsim =90, minscore = 90). The
lowest sequence error rate was 0.007% which was ob-
tained from the high stringency post aligned screened
dataset with 15 allowed mismatches in the pre-
clustering step, followed by 0.035% for the same data-
sets but allowing for 10 mismatches in the pre-
clustering step (Fig. 1a and Additional file 2: Table S2).

The improvement in sequence error rate was strongly
associated with a reduction of high quality pre-clustered
sequences. This was particularly pronounced in the high
stringency (minsim = 90, minscore = 90) screened data-
sets (Fig. 1b, bottom panel).

As expected, an increase in passes (from >1 pass, >2
pass, >4 pass, and =8 pass) did decrease the number of
raw reads obtained from the PacBio platform, from
43,265, to 41,756, to 37,136 and 28,042 reads, respect-
ively (Fig. 1b top panel, bold symbols, Additional file 2:
Table S2). However, the number of high quality se-
quences did not decrease accordingly. They were very
similar across the 1 pass, 2 pass, and 4 pass datasets
(open symbols in Figure B, top panel, Additional file 2:
Table S2 in good aligned rows). The 8 pass dataset had
the lowest number of high quality sequences which was
between 24,612 and 23,653 compared to the 1 pass data-
set which was between 27,903 and 26,834.

We plotted the different sequence error types from
the 4-pass dataset with 15 allowed mismatches in the
pre-clustering step, obtained from the “seq.error” step
in Mothur in Graph Pad. Figure 2 shows that the lar-
gest proportion of sequence errors were deletions.
The high stringency post alignment screening, using a
minimum of 90% search score and a minimum of
90% similarity score to template sequences reduced
the sequence error rate from 0.0702% to 0.0073%
compared to the no post aligned screened dataset,
which also resulted in a substantial reduction of all
sequence error types, mostly deletion and insertion
errors (Fig. 2a, c).

The low stringency post alignment screening using a
minimum of 80% search score and a minimum of 80%
similarity score had little effect in the overall reduction
of the sequence error (Fig. 2b) compared to the standard
quality filtered datasets with no post alignment screen-
ing (Fig. 2a). The slightly observed increase of the se-
quence error rate in the 8 pass dataset is a result of the
lower total number sequences in this datasets. We also
identified that substitution errors were not evenly dis-
tributed across the full-length bacterial 16S rRNA gene
but were detected at hotspots across the full-length bac-
terial 16 s rRNA gene (Fig. 2). All 27,901 high quality se-
quences of the no-post aligned screened 4 pass datasets
with 15 allowed mismatches had a total of 25,323 se-
quence errors. Of these, 1,383 (5.46%) were insertions,
22,350 (88.26%) were deletions, and 1,590 (6.28%) were
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substitutions. The proportions of error types were very
similar for the high stringency post aligned screened 4
pass datasets. The 26,832 high quality sequences had
1,554 sequence errors of which 89 (5.73%) were inser-
tions, 1,312 (84.43%) were deletions, and 153 (9.85%)
were substitutions.

The result of this “test of principle” using DNA from a
single bacterial species was used to validate and optimize
the bioinformatics pipeline for PacBio sequences.

Our quality filtering steps including (1) trimming by
length (<1400 bp and >1600 bp), (2) removing homo poly-
mers longer than 6 bp, (3) removing all sequences with
ambiguous base pairs, (4) using a quality average score of
35 over a rolling quality window of 50 bp, all of which
produces a very consistent number of high quality reads
across the >1 pass, >2 pass, and >4 pass datasets. The >8
pass filtering did not decrease the sequence error rate any
further, but further reduced the number of high quality
reads. Therefore, we used the >4 pass filtering for the stool
sample analysis and human vaginal microbiome sample
analysis.

Pooled stool microbiome analysis

The PacBio consensus circular reads were filtered for a
minimum of 4 passes using the PacBio SMRT portal. A
total of 20,118 high quality reads (54.6% of raw reads)
were obtained using standard quality filtering. Using the
low stringency post alignment screening (minscore = 80,
minsim = 80) and high stringency post alignment screen-
ing (minscore = 90, minsim = 90) decreased the number of
high quality reads by another 888, and 4863 reads, re-
spectively. As expected we observed a higher number of
OTUs in the low stringency post alignment screened data-
sets across the 97% (129 OTUs versus 33 OTUs), 98%
(545 OTUs versus 36 OTUs) and unique OTU clusters
(1513 OTUs versus 81 OTUs) (Table 3). The higher num-
ber of OTUs seen in the low stringency screened datasets
compared to the high stringency screened datasets is most
likely a result of the high number of deletion errors
present in these datasets, as seen in Fig. 2b and c.

Next, we profiled the predicted species using full-length
bacterial 16S rRNA capillary sequence data from the pooled
50 stool colonies using the software package ARB and a
customized version of the SILVA SSURef database (release
119) that was generated by removing environmental and
uncultured taxa. This was compared with the species pro-
file of the PacBio post alignment screened datasets from
the 97%, 98% and unique OTUs cluster (Table 3). Note that
the number of species identified is lower than the number
of OTUs as ARB will often assign the same species identi-
fier to more than one OTU.

Forty species were identified from the pool of 50 capil-
lary sequenced stool colonies. These were four
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Fig. 2 Comparing sequence error types across different alignment filtering. The different types of sequencing errors, obtained from the MOTHUR error
report file, were plotted in Graph Pad Prism 6. The x-axis shows the base pair position in the full-length bacterial 165 rRNA gene and the y-axis shows
the sequence error rate on a log 2 scale. The abundance of substitution errors, insertion errors, and deletion errors using standard quality filtering a,
with low stringency post alignment filtering b, and high stringency post alignment filtering ¢ are shown. The standard quality filtering parameters
were: maximum ambiguous sequences = 0, maximum number of homo-polymers 6, sequence quality average of 35 over a sequence quality window
of 50 bp. The extra post alignment screening parameters were: post alignment screening using minimum sequence similarity and minimum alignment
score of 80% b and post alignment screening using minimum sequence similarity and minimum alignment score of 90% ¢

Actinobacteria species, five Bacteroidetes species, three
Bacterium (unclassified), and 28 Firmicutes species
(Table 3). 27 species (67.5%) were shared between capillary
sequences and all six different PacBio filtered datasets, i.e.
low and high stringency post alignment screening at 97%,
98% and unique OTU distance level (Table 3). Four add-
itional species were shared with the capillary sequences
and the PacBio low stringency post aligned screened data-
set for all three OTU distance levels. One Firmicutes spe-
cies (Ruminococcus bromii) was only shared between

capillary sequences and the unique distance level from the
low stringency post aligned screened datasets. This brings
to a total of 80% shared species between the low post
alignment screened datasets (unique distance level) and
capillary sequences.

However, if we accept the higher number of shared
species from the low stringency dataset, we would also
have to accept a higher rate of false positive identified
species. Between eight to 16 additional false positive spe-
cies were identified from the low stringency post aligned
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Table 3 Stool sample analysis
Capillary PacBio PacBio PacBio PacBio PacBio PacBio
sequendng - gog, 98% uniqgue  97% 98% unique
o1y OoTu o1y oTu o1y o1y
90/90 90/90 90/90 80/80 80/80 80/80
No of OTUs NA 33 36 81 129 545 1513
No of species 40 32 33 33 39 46 48
Shared with Capillary NA 27 28 28 31 31 32
Shared in % 67.50% 70% 70% 77.50% 77.50% 80%
Phyla Genera Species
Actinobacteria Bifidobacterium adolscent yes yes yes yes yes yes yes
Actinobacteria Bifidobacterium bifidum yes yes yes yes yes yes yes
Actinobacteria Bifidobacterium pseudoca yes yes yes yes yes yes yes
Actinobacteria Collinsella aerofaciens yes yes yes yes yes yes yes
Bacterium Bacterium R2 yes yes yes yes yes yes yes
Bacteroidetes Bacteroides uniformis yes yes yes yes yes yes yes
Firmicutes Clostridium baratti yes yes yes yes yes yes yes
Firmicutes Clostridium bartlettii yes yes yes yes yes yes yes
Firmicutes Clostridium clostridiofo yes yes yes yes yes yes yes
Firmicutes Clostridium disporicum yes yes yes yes yes yes yes
Firmicutes Clostridium hathewayi yes yes yes yes yes yes yes
Firmicutes Clostridium leptum yes yes yes yes yes yes yes
Firmicutes Clostridium ramosum yes yes yes yes yes yes yes
Firmicutes Clostridium aff. innocuum CM970 yes yes yes yes yes yes yes
Firmicutes Coprococcus comes yes yes yes yes yes yes yes
Firmicutes Butyricicoccus pullicaecorum yes yes yes yes yes yes yes
Firmicutes Dorea formicigenerans yes yes yes yes yes yes yes
Firmicutes Eubacterium cylindroides yes yes yes yes yes yes yes
Firmicutes Eubacterium eligens yes yes yes yes yes yes yes
Firmicutes Flavonifractor plautii yes yes yes yes yes yes yes
Firmicutes Megasphaera elsdenii yes yes yes yes yes yes yes
Firmicutes Mitsuokella jalaludinii yes yes yes yes yes yes yes
Firmicutes Roseburia faecis yes yes yes yes yes yes yes
Firmicutes Ruminococcus gnavus yes yes yes yes yes yes yes
Bacteroidetes Parabacteroides distasoni yes yes yes yes yes yes yes
Firmicutes Clostridium symbiosum yes yes yes yes yes yes yes
Firmicutes Catenibacterium mitsuokai yes yes yes yes yes yes yes
Firmicutes Roseburia hominis yes yes yes yes yes yes
Bacterium Bacterium ic1340 yes yes yes yes
Bacterium Bacterium New Zealand 4 yes yes yes yes
Bacteroidetes Alistipes onderdonkii yes yes yes yes
Firmicutes Ruminococcus bromii yes yes
Bacteroidetes Bacteroides coprocola yes
Bacteroidetes Prevotella copri yes
Firmicutes Clostridium lituseburense yes
Firmicutes Clostridium xylanolyticus yes
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Table 3 Stool sample analysis (Continued)
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Firmicutes Coprococcus eutactus yes
Firmicutes Ruminococcus albus yes
Firmicutes Ruminococcus flavefacien yes
Firmicutes Turicibacter sanguinis yes
Bacteroidetes Alistipes indistinctus

Firmicutes Clostridium stramisolven

Firmicutes Eubacterium Tenue

Firmicutes Faecalibacterium prausnitz

Bacteroidetes Bacteriodes vulgatus

Bacteroidetes Bacteroides plebeius

Firmicutes Mitsuokella multacida

Firmicutes Ruminococcus torques

Firmicutes Christensenella minuta

Firmicutes Clostridium aminovalericum

Firmicutes Clostridium bolteae

Firmicutes Clostridium disporicum

Firmicutes Clostridium spiroforme

Firmicutes Blautia coccoides

Firmicutes Coprobacillus cateniformis

Firmicutes Lactobacillus salivarius

Firmicutes Catabacter hongkongensis

yes yes yes yes yes yes

yes yes yes yes yes yes

yes yes yes yes yes yes

yes yes yes yes yes yes
yes yes yes yes yes

yes yes yes

yes yes yes

yes yes yes

yes yes yes

yes yes yes

yes yes

yes yes

yes yes

yes yes

yes yes

yes

yes

Abbreviations: 90/90 minimum alignment and similarity score of 90% during post alignment screening, 80/80 minimum alignment and similarity score of 80%

during post alignment screening, No number, OTU operational taxonomic units

screened dataset compared to three to four for the high
stringency post aligned screened dataset. The higher num-
ber of OTUs from the standard quality filtering without
post alignment screening, 2009 OTUs for the unique
OTU distance level, 1001 OTUs for 98% OTU distance
level, and 533 OTUs for the 97% OTU distance level, did
not identify additional false positive species (data not
shown). Eight species (two Bacteroidetes, and six Fir-
micutes) were only classified by capillary sequencing.
This highlights that 20% of species (8/40) from the
pooled stool colonies could not be classified by Pac-
Bio sequencing.

Human vaginal microbiome analysis

Eleven human vaginal microbiome samples were se-
quenced with PacBio P6 chemistry and with Illumina
MiSeq sequencing using the 600-cycle kit, which enabled
the full-overlap paired-end sequencing of the bacterial
16S rRNA V1V2 gene region. The PacBio samples were
barcoded with standard PacBio barcodes as outlined in
Additional file 1: Table S1. For further analysis we used
the 4 pass filtered datasets. The PacBio SMRT portal
barcode filtering was able to assign 29,074 sequences to
the eleven barcodes. We were able to increase the number
of barcoded sequences by using MOTHUR software and

the “fastq.info” function, which allows a user-defined bar-
code list and adjustable mismatches in the barcode se-
quence. Allowing four mismatches in the barcode sequence
generated the same number of barcoded sequences as the
PacBio SMRT portal (n=29,074/58,951 raw sequences).
The number of barcoded sequences could be increased to
34791, 35552, and 36098 reads by allowing one, two,
and three mismatches in the barcode, respectively (this
is because allowing 4 mismatches meant that some bar-
codes could not be uniquely assigned). For further analysis
we used the filtered datasets with 2 allowed mismatches in
the barcode. The MiSeq samples were part of a larger bac-
terial vaginosis study and were indexed with standard
MiSeq indexing as outlined in the materials and methods
section. The overall sequence error rate in the MiSeq data
set was 0.00902%.

The total number of high quality reads and OTUs at the
unique, 99%, 98% and 97% distance levels are shown in
Table 1. The numbers of high quality reads in individual
samples are shown in Additional file 3: Table S4. For Pac-
Bio we analyzed the full-length bacterial 16S rRNA gene
and the in silico selected bacterial 16S rRNA V1V2 gene
region, using the low stringency and high stringency post
aligned screened datasets. This was compared with the
MiSeq full-overlap paired-end sequenced bacterial 16S
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rRNA V1V2 gene region of the same sample cohort
(Table 1). For PacBio, we observed a very large number of
OTUs in the low stringency post aligned screened datasets.
This was most obvious for the full-length Bacterial 16S
rRNA gene at unique (1316 OTUs), 99% (1109 OTUs), and
98% (453 OTUs) distance level, compared to 209 OTUs, 90
OTUs, and 63 OTUs for the same distance level, respect-
ively, using the high stringency post aligned screened data-
sets. The largest proportions of the additional OTUs in the
low stringency datasets were singleton OTUs. The differ-
ences between the PacBio in silico selected bacterial 16S
rRNA V1V2 gene region in regards to the observed num-
ber of OTUs between the two different post alignment
screened datasets was much smaller. The difference was
even smaller after removing the singleton OTUs (Table 1).
We analyzed the MiSeq dataset with all sequences (n =
508,016; non-subsampled) and with a subsampled datasets
of 27,596 sequences which was equivalent to the number
of PacBio in silico selected bacterial 16S rRNA V1V2 gene
region dataset from the low stringency post alignment
screening. As expected the number of OTUs was higher
by analyzing the non-subsampled MiSeq bacterial 16S
rRNA V1V2 gene sequences. The number of singletons
free OTUs in the subsampled MiSeq datasets was similar
to the number of singletons free OTUs in the PacBio in
silico selected bacterial 16S rRNA V1V2 gene datasets
(Table 1).

Alpha diversity analysis of the human vaginal

microbiome samples

Alpha diversity analysis was performed using One-Way
ANOVA. The alpha diversity analysis of the unique OTU
distance level is shown in Fig. 3 and the 97% OTU distance
level is shown in Fig. 4. Dashed lines in Figs. 3 and 4 repre-
sent significant differences between the different datasets
at 95% confidence interval (p < 0.05).

To test whether the datasets used for alpha diversity
analysis followed a Gaussian distribution, we tested each
dataset using the D’Agostino-Person omnibus normality
test and the Shapiro-Wilk normality test. All datasets ex-
cept the dataset used for the inverse Simpson diversity
index at 97% (0.03) OTU distance level passed the nor-
mality test (data not shown).

The number of observed 97% OTUs was significantly
higher in the MiSeq bacterial 16S rRNA V1V2 gene region
dataset compared to PacBio full-length bacterial 16S rRNA
gene dataset and PacBio in-silico bacterial 16S rRNA
V1V2 gene region, high stringency post aligned screened
dataset (Fig. 4a). For both distance levels (unique OTUs
and 97% OTUs), we observed a significantly larger number
of OTUs in the low stringency aligned screened PacBio
datasets compare to the high stringency post aligned
screened PacBio datasets (Figs. 3a and 4a). The Chao com-
munity richness estimation resulted in a similar number of
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OTUs compared to the observed OTUs (Fig. 3a and b for
unique OTU distance and Fig. 4a and b for 97% OTU dis-
tance). We also observed similar significant differences for
the Chao richness estimators and observed OTU between
the different datasets. The Shannon diversity index was
significantly different between all group comparisons ex-
cept for the comparison of the low and high stringency
screened PacBio full-length bacteria 16S rRNA gene data-
sets at 97% OTU level (Figs. 3¢ and 4c). This was in con-
trast to the Qstat diversity index which revealed significant
differences between the MiSeq bacterial 16S rRNA V1V2
gene region dataset and PacBio full-length bacterial 16S
rRNA gene dataset for the unique OTUs (Fig. 3d) and no
significant differences between groups using the 97%
OTUs (Fig. 4d). The inverse Simpson diversity index was
significantly higher in the MiSeq bacterial 16S rRNA V1V2
gene region data set compared to any of the PacBio data-
sets at the unique and 97% OTU distance level (Figs. 3e
and 4e). Three out of five datasets used for the inverse
Simpson diversity analysis at 97% distanced level (marked
with “§” in Fig. 4e) did not pass the normality test. The
same dataset was tested by the non-parametric Kruskal-
Wallis test, which was not significant. The sampling cover-
age index was above 99.5% for all unique OTU datasets
(Fig. 3f) and slightly less (min 98.8%) for all 97% OTU
datasets (Fig. 4f).

Bacterial species profiling

We also compared the bacterial taxonomic profile between
the PacBio full-length bacterial 16S rRNA gene, PacBio in
silico selected bacterial 16S rRNA V1V2 gene region and
the MiSeq bacterial 16S rRNA V1V2 1gene region. For this
we profiled the representative sequences of the singleton-
free unique OTUs from the vaginal sequence dataset using
the software package ARB and the customized version of
the SILVA SSURef database (release 119). Seventy species
from 129 OTUs were identified using the MiSeq bacterial
16S rRNA V1V2 gene region protocol (Table 4). When
compared with low stringency post aligned screened PacBio
in silico selected bacterial 16S rRNA V1V2 gene region
dataset and PacBio full-length bacterial 16S rRNA gene
dataset, we detected 39 shared species (58%) and 28 shared
species (54%), respectively. The number of shared species
decreased to 26 (37%) using the PacBio high stringency
post aligned screened dataset.

Discussion
This study aimed to validate the value of full-length bacter-
ial 16S rRNA gene sequencing using PacBio RS II platform
and to compare with capillary sequencing and short-
read Illumina MiSeq sequencing for bacterial species
classification.

We used the PacBio full-length bacterial 16S rRNA gene
sequence data of a Staphylococcus aureus lab strain for



Wagner et al. BMC Microbiology (2016) 16:274 Page 12 of 17

A Observed OTU B Chao community richness
7097 F | 70
12}
E 604 :‘ g 60
o c
9 50+ £ 50
=
£ 40 2 40
17 c
3 304 g
5 g 304
& 20 8 204
E 2
3 104 & 104
0 T T T T T 0 T T T T T
K, o N & VIR 3 S
SO L O S Q& e R
&> N & N Q .%QQ o & N R
¥oge e P o0 & o 8
Q'Z’o qu Q,bc QQ, Q(b Q‘b sz Q’b
c Shannon diversity index D Qstat diversity index
“ All group comparisons were significant 201 t 1 |
' 1 L a
x F 1 18 F 9
[}
2 31 5 19
%. E 144
S 2 % o]
© 5 104
15 5 84
E 4 T 64
© 7]
(./C) T 44
—_ o & e 24
0 T T T T T O
o o) N QD
S e §
O N AN N D &
& X O @
S &° L &° N N\
S & o
Q® < Q® <
E Inverse Simpson diversity index E Sample coverage index
J
[l [ 3 1 ! 1.0007 o
3141 F——--- ] . 0-9981
2 124 3 0.996-
= £ 0.9944
® 104 )
o g 0.9924
T 87 2 0.9904
S 6 8 0.988-
(0]
g 3o 0.986-
E 4 £
e G 0.984-
c 2 (2]
= 0.9824
0 T T T T T 0.980 T T T T T
Qv O N o QS Y O N o N
EO MR T A ) & e ©®
& N & N {D & N & R 2N
F e g o N S -
ro° (bo & ,bo ,bo Q{b ,bo QQ,
] £ Q? < < <
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richness b; Shannon diversity index ¢; Q statistic — Qstat diversity index d; inverse Simpson diversity index e; and sample coverage index f calculated in
Mothur are shown for five different datasets analyzed. Lines connect the same samples in each dataset. Statistical analysis was performed in Graph Pad
using the One-way ANOVA for between group comparisons. Abbreviations: OTU = operational taxonomy unit, MiSeq = lllumina MiSeq sequencing
platform, V1V2 = bacterial 165 rRNA gene region V1 to V2, V1V9 = bacterial full-length 165 rRNA gene, LO = PacBio datasets with low stringency
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Dashed line = significant difference at 95% confidence interval (P < 0.05)
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bioinformatics pipeline validation and for pipeline
optimization. For our PacBio sequence quality filtering we
introduced two different post alignments screening with an
80% minimum alignment and similarity score (low strin-
gency screening) or 90% minimum alignment and similarity
score (high stringency screening). The implementation of
a post alignment screening did effectively decrease the
number of pre-clustered sequences. This was particular

dominant for high stringency screening for all three dif-
ferent pre-clustering parameters (i.e. allowing 5, 10, or
15 bases mismatches) (Fig. 1b, bottom panel).

This resulted in a dramatic decrease in the number of
OTUs, particularly at 98% (0.02) and 97% (0.03) distance
level (Additional file 2).

This large decrease in OTUs, was most likely a conse-
quence of removing large numbers of singleton OTUs
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Table 4 Vaginal microbiome species profiling

Singleton-free unique OTU
and no. of species

129 OTUs = 70 species

MiSeq V1V2

Subsampled to 27596
PacBio in silico V1V2
Minscore =80 Minsim =80

154 OTUs = 63 species

(39 species (58%) shared with
MiSeq V1V2)

131 OTUs = 48 species

(26 species (37%) shared with
MiSeq V1V2)

261 OTUs =52 species

(28 species (40%) shared with
MiSeq V1V2)

(32 species (62%) shared with
PacBio in silico V1V2, minscore =
80, minsim = 80)

148 OTUs = 48 species

(26 species (37%) shared with
MiSeq V1V2)

(48 species (100%) shared with
PacBio in silico V1V2, minscore =
90, minsim = 90)

PacBio in silico V1V2
Minscore =90 Minsim = 90

PacBio V1V9

Minscore = 80 minsim =80

PacBio V1V9

Minscore =90 minsim =90

Abbreviations: minscore minimum alignment score during post alignment
screening, minsim minimum similarity score during post alignment screening,
OTU operational taxonomic units, MiSeq lllumina MiSeq sequencing, V1V2
bacterial 16S rRNA V1V2 gene region, V1V9 full-length bacterial 16S rRNA gene

originating from PacBio sequencing errors. Our imple-
mented quality filtering steps removed low quality reads
very consistently from the four different PacBio filtered
>1 pass, 22 pass, 24 pass and =8 pass datasets. Interest-
ingly, the sequence quality filtering resulted in very simi-
lar numbers of high quality reads from all four different
filtered datasets despite large variations in the number
of raw reads between the >1 pass (43268) and >8 pass
(28042) datasets (Fig. 1b, top panel). This emphasizes
that a good quality filtering step is of great importance
and that an increase in the minimum number of passes
for PacBio CCS reads did not generate a larger number of
high quality reads after using our applied quality filtering
parameters. We further analyzed the effect of different post
alignment screening and different allowed mismatches
during the pre-clustering step on overall sequence error
rates and sequence error types. As expected the sequence
error rate decreased depending on the allowed mismatches
during the pre-cluster step. In the no post aligned screened
dataset, the overall sequence error rate decreased from
0.15%, to 0.10%, and to 0.07% allowing 5, 10, or 15 bases
mismatches during the pre-clustering (Fig. 1a). Schloss et
al reported an overall sequence error rate of 0.027% allow-
ing 15 bases mismatches during the pre-clustering [13].
The use of a different mock community and different la-
boratory/sequencing facility might have contributed to the
different outcomes. Low stringency post alignment
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screening did not much improve the sequence error rate,
but the high stringency post alignment screening has a
dramatic improvement in the overall sequence error rate.
We achieved a sequence error rate of 0.0365% and
0.00732% by allowing 10 and 15 mismatches, respectively,
in the pre-clustering step. This was achieved for the 1 pass,
2 pass, and 4 pass dataset. The 0.0073% sequence error
rate was smaller compared to the 0.00902% MiSeq error in
this study. Within a given dataset and the same allowed
pre-clustered mismatches, the number of passes did not
improve the sequence error rate: i.e. the sequence error
rate was very similar for the >1 pass, >2 pass, >4 pass, and
>8 pass datasets (Fig. 1a and Additional file 2: Table S2).
This was in contrast to the Schloss study, which reported a
reduced error rate by 8.48 to 37.08% with at least 10-fold
coverage (10 passes) compared to those with less coverage.

We have identified different proportions of sequence
error types compared to the Schloss study. Our highest
error types were deletions, which accounted for over 80%
of all errors. The most abundant error types in the Schloss
study were substitutions, which accounted for 50.9% of all
errors, followed by 31.2% for insertions and 17.9% for de-
letions. Other groups have reported insertions and dele-
tions as the most abundance error types in PacBio
sequence data [12, 24, 25]. Singer et al [12] also reported
that substitutions errors are more difficult to correct than
insertion and deletion errors. We could confirm the diffi-
culty of removal of substitution errors, which were still
present at the different hotspots after applying the high
stringency post alignment screening which otherwise re-
duced the overall sequence error rate to an excellent range
of 0.0073%.

We used the pooled stool clone sequence dataset to in-
vestigate the effect of low and high stringency post align-
ment screening on species classification by comparing 97%
(0.03), 98% (0.02), and unique OTU distance level from the
4 pass PacBio dataset. If we still consider the Sanger capil-
lary sequencing of the full-length bacterial 16S as the gold
standard for species identification, then the discrepancy in
species detection between PacBio sequence data and capil-
lary sequencing indicates that the sequencing error rates in
PacBio consensus circular reads can lead to additional clas-
sification of false positive species. The larger number of
shared species between capillary sequence data and the
low stringent screened sequence data comes at the expense
of identifying a larger proportion of false positive species.
The larger number of false positive species in the low
stringency post alignment screened dataset is a reflec-
tion of the higher number of OTUs obtained using the
low stringency screening parameters (Table 3). We
could not identify a bias regarding different phyla and
genera classification between capillary and PacBio full-
length bacterial 16S rRNA gene in the pooled stool
community. Different species of the same genus were
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identified by capillary sequencing only, which were not
detected by PacBio sequencing and vice versa (Table 3).
This highlights that species identification using bacter-
ial 16S rRNA gene is a difficult process and should be
conducted and concluded with great care.

In our human vaginal microbiome analysis we pooled
11 barcoded samples in one PacBio run and the coverage
index showed good sampling coverage across all 11 sam-
ples. The similarity between species detected by MiSeq se-
quence data and PacBio sequence data was less consistent,
despite a similar number of singletons free OTUs detected
by the two platforms (not considering the non subsampled
MiSeq dataset) (Table 1). Interestingly, the largest num-
bers of species were identified from the MiSeq bacterial
16S rRNA V1V2 gene region datasets, despite containing
the lowest number of OTUs compared to any of the Pac-
Bio datasets (Table 4). From the PacBio low stringency
screened in silico bacterial 16S rRNA V1V2 gene region
dataset, 39/63 species (58%) were shared with the 70
MiSeq species, whereas from the high stringent screened
in silico bacterial 16S rRNA V1V2 gene region dataset 26/
48 species (37%) were shared with the 70 MiSeq species.
The smaller number of OTUs and consequently smaller
proportion of MiSeq shared species from the PacBio high
stringency post aligned screened datasets (37% shared spe-
cies) suggests that high stringency screening removed add-
itional true positive OTUs and hence species from the
dataset. On the other hand, low stringency post alignment
screening resulted in an additional detection of 24 spe-
cies compared to 22 species from the high stringency
post alignment screening, which were not detected in
the MiSeq dataset. The same pattern of additional false
positive species using low stringency screening was ob-
served in the stool colony study.

The increased species diversity from the PacBio in silico
selected bacterial 16S rRNA V1V2 gene region and MiSeq
bacterial 16S rRNA V1V2 gene region datasets reflects that
analysis of partial bacterial 16S rRNA gene regions may
overestimate bacterial diversity compare to the full-length
bacterial 16S rRNA gene. A previous study reported a simi-
lar discrepancy in the number of OTUs between partial
bacterial 16S rRNA gene regions and full length bacterial
16S rRNA gene [26].

Our observed discrepancy between PacBio full-length
bacterial 16S rRNA gene dataset and shorter in silico Pac-
Bio bacterial 16S rRNA V1V2 gene region dataset is in
similar accordance with a study conducted by Singer et al.
[12]. In their Sakinaw Lake community dataset they could
classify 74.5% species from the full-length bacterial 16S
rRNA gene dataset and 49.4% of species from the in silico
bacterial 16S rRNA V4 gene region dataset.

The fact that the forward PCR primer for the full-length
bacterial 16S rRNA gene differed by two nucleotides from
the PCR primer for the bacterial 165 rRNA V1V2 gene
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region (see sections 2.1 and 2.3) and the obvious different
reverse PCR primers may also contributed to different
taxonomic profiling. It has been recently reported that
PCR primer choice influences bacterial 16S rRNA gene-
based profiling, and that this was particularly dominant in
the detection of Bifidobacterium in the human infant gut
microbiome with slightly different 27f forward primer
composition [27].

Koren et al. [28] demonstrated that the clustering of
enterotypes across different body habitats is difficult to es-
tablish and to interpret. The same group also compared
the efficiency of enterotype clustering using different bac-
terial 16S rRNA gene regions on fecal samples from the
human microbiome project. Depending on the clustering
method used they detected different outcomes for bacter-
ial 16S rRNA V1V3 gene region and V3V5 gene region.
No studies are available yet, which have investigated the
enterotype clustering across different body habitats using
full-length bacterial 16S rRNA gene data. However, using
full-length bacterial 16S rRNA gene data might provide a
good method for consistent enterotype clustering for
multimodal distributions of sample abundances in the
case of vaginal sequence data.

Conclusions
In this study we compared (1) capillary full-length bacter-
ial 16S rRNA gene sequencing with PacBio full-length
bacterial 16S rRNA gene sequencing using a pool of stool
colonies, and (2) PacBio full-length bacterial 16S rRNA
gene sequencing and PacBio in silico generate bacterial
16S rRNA V1V2 gene region with MiSeq bacterial 16S
rRNA V1V2 gene region using human vaginal samples.
Our implemented post alignment screening dramatically
improved the sequence error rate. However, high stringency
post alignment screening can remove true positive species,
whereas low stringency quality filtering can result in a
higher number of false positive species. Thus, a fine balance
in sequence quality filtering is necessary to achieve the best
outcome in using PacBio technology for full-length bacterial
16S rRNA gene sequencing. The taxonomic profiling effect-
iveness between different bacterial 16S rRNA gene regions
and full-length bacterial 16S rRNA gene needs further valid-
ation, to determine whether the full-length bacterial 16S
rRNA gene will provide better bacterial classification across
different sample types. A true advantage of sequencing the
full-length bacterial 16S rRNA gene would be the possible
global comparison of microbiome studies, which currently
can only be done with great difficulty due to different bac-
terial 16S rRNA gene regions used in different studies.
Current bacterial 16S rRNA gene studies can include sev-
eral hundreds to thousands of samples, which can be readily
analyzed by high throughput MiSeq indexing using up to
several hundreds of samples per library. Depending on bi-
modal (e.g., gut) or multimodal (e.g., vagina) distribution of
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sample abundances, we would not recommend to pool
more than 10 samples for good data differentiation on the
current PacBio platform. However, the latest model of the
PacBio machine “the Sequel System” should be able to
deliver about seven times more reads then the current avail-
able PacBio instrument (http://www.pacb.com/products-
and-services/pacbio-systems/sequel/). This would make the
use of PacBio for full-length bacterial 16S rRNA sequencing
more attractive for larger datasets.
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