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Abstract

Background: As an agriculturally important oomycete genus, Phytophthora contains a large number of destructive
plant pathogens that severely threaten agricultural production and natural ecosystems. Among them is the broad
host range pathogen P. palmivora, which infects many economically important plant species. An essential way to
dissect their pathogenesis mechanisms is genetic modification of candidate genes, which requires effective
transformation systems. Four methods were developed for transformation of Phytophthora spp., including
PEG(polyethylene glycol)/CaCl, mediated protoplast transformation, electroporation of zoospores, microprojectile
bombardment and Agrobacterium-mediated transformation (AMT). Among them, AMT has many advantages over
the other methods such as easy handling and mainly generating single-copy integration in the genome. An AMT
method previously reported for P. infestans and P. palmivora has barely been used in oomycete research due to

low success and low reproducibility.

Results: In this study, we report a simple and efficient AMT system for P. palmivora. Using this system, we were
able to reproducibly generate over 40 transformants using zoospores collected from culture grown in a single
100 mm-diameter petri dish. The generated GFP transformants constitutively expressed GFP readily detectable
using a fluorescence microscope. All of the transformants tested using Southern blot analysis contained a single-copy

T-DNA insertion.

Conclusions: This system is highly effective and reproducible for transformation of P. palmivora and expected
to be adaptable for transformation of additional Phytophthora spp. and other oomycetes. Its establishment will

greatly accelerate their functional genomic studies.
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Abbreviations: AMT, Agrobacterium-mediated transformation; GFP, Green fluorescent protein; IM, Induction
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Background

Oomycetes, belonging to phylum Oomycota within the
kingdom Straminipila, form a diverse group of fungus-
like eukaryotes that include many destructive pathogens
of plants and animals [1-3]. Among them, the genus
Phytophthora contains over 100 species with a large
number of them as devastating plant pathogens that
severely threaten agricultural production and natural
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ecosystems [4—6], such as the notorious potato famine
pathogen P. infestans which causes late blight of tomato
and potato [7], soybean root and stem rot pathogen P.
sojae [8], sudden oak death pathogen P. ramorum that is
endangering oak trees along the Pacific coast of US [9],
the vegetable blight pathogen P. capsici which attacks
various vegetable crops [10], and the wide-host-range
P. cinnamomi and P. palmivora [6, 11]. P. palmivora
infects numerous plant species, including many econom-
ically important hosts such as papaya, cacao, rubber tree,
citrus, coconut and black pepper [6].
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With the availability of the genome sequences of several
Phytophthora spp. and in silico identification of hundreds
of effectors in each genome [12-15], one of the major
tasks is to link gene sequences to their biological functions
using genetic approaches, which requires highly effective
transformation systems. Four methods were developed
for transformation of Phytophthora spp., including
PEG(polyethylene glycol)/CaCl, mediated protoplast
transformation, electroporation of zoospores, micro-
projectile bombardment and Agrobacterium-mediated
transformation (AMT). The PEG/CaCl, protoplast
transformation method was first established by Judelson
et al. [16] to transform P. infestans and now it has been
commonly used in transformation of several Phytophthora
pathogens including P. infestans, P. parasitica [17], P.
sojae [18-20], P. palmivora [21], P. cactorum [22], and
P. capsici [23]. This method is labor intensive and re-
quires large amounts of starting materials. Moreover, it
often encounters difficulties in generating protoplasts
and low rate of regeneration of protoplasts [24]. Micro-
projectile bombardment bypasses the need of proto-
plasting, and has been used for transformation of P.
infestans [25, 26]. However, as it requires specialized
equipment, thus far its application has been very lim-
ited. Electroporation of zoospores is gaining popularity
due to its ease to be performed and it has been used for
transformation of P. capsici [27], P. infestans [26, 28, 29]
and P. palmivora (Gumtow and Tian, unpublished data).
A common disadvantage associated with the above three
transformation approaches is that they often generate
multi-copy integration in the genome. Although a higher
copy number may be associated with higher level of gene
expression and gene silencing [26], multi-copy integration
randomly disrupts multiple genes varying among transfor-
mants and therefore complicates gene function analyses.
As a result, only very limited number of Phytophthora
genes has been functionally characterized through genetic
modification. In contrast, AMT circumvents this issue as
it usually generates the integration of one or two copies
[30]. In addition, it does not require protoplasting and
specialized equipment such as gene gun (biolistic particle
delivery system) or electroporator, and is easy in handling.
While the other methods requires large amount of
plasmid DNA (20 to 30 pg for PEG/CaCl, mediated
protoplast transformation and electroporation, 1 pg for
bombardment) to get a decent number of transformants
[16, 25, 27], AMT doesn’t need DNA preparation once
the plasmids are transformed into Agrobacteria. An AMT
method was previously reported for P. infestans and P.
palmivora [30], however, its further use in oomycete re-
search has never been reported likely due to low success
and low reproducibility of generating transformants.

In the present study, we largely modified the AMT
method developed by Vijn and Govers [30] and established
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a simple, efficient and highly reproducible system to trans-
form P. palmivora. This approach will greatly facilitate
dissection of P. palmivora pathogenesis mechanisms by
functional genomic studies, and is expected to be adaptable
for transforming other oomycetes.

Methods

Phytophthora palmivora strain and culture conditions
Phytophthora palmivora strain P1, isolated from an in-
fected papaya plant grown in Poamoho research station,
University of Hawaii at Manoa, was used throughout
this study and routinely cultured on 10 % unclarified V8
agar under 12 h light/12 h dark at room temperature
(around 22 °C).

Construction of plasmids

To generate a binary vector that can be used to transform
P. palmivora via Agrobacterium tumefaciens-mediated
transformation, the mini binary vector pCB302 previously
developed for plant transformation [31] was utilized.
Briefly, the bar gene expression cassette was removed with
restriction enzymes Kpnl and Sacl (described as SstI in
Xiang et al., 1999), and replaced with the fragment from
1011 bp to 4018 bp of the oomycete expression vector
pTOR (GenBank: EU257520.1) [32]. This fragment con-
tains two gene expression cassettes. The first cassette con-
tains Bremia lactucae Ham34 promoter (1011-1575 bp),
a multiple cloning site (1576—1688 bp) to clone genes
to be transformed, and Ham34 terminator (1689—
2209 bp). The second cassette contains Bremia lactucae
Hsp70 promoter, NPTII gene used to select transfor-
mants resistant to G418, and Hsp70 terminator. The
primers PHam34-FSacl (5’- gcggagctcTCTGATGGACA
AAGGGTCGCCT-3’) and THsp70-RKpnl (5’-gcgggtacc
AAGCACAATAGGCCCAGACTC-3") were used to
amplify this fragment using pTOR as template. The
template-specific sequence is shown in uppercase, and the
introduced Sacl and Kpnl restriction sites are underlined.
The generated plasmid was designated as pCB301TOR
(Fig. 1). The plasmid pCB301TOR-GFP was generated by
cloning PCR-amplified DNA fragment corresponding to
the GFP protein-encoding sequence into EcoRI and Spel
sites of pCB301TOR. Primers GFP-FEcoRI (5-gcggaatt
cATGGTGAGCAAGGGCGAG-3’) and GFP-RSpel (5-
gcgactagt TTACTTGTACAGCTCGTCCATGC-3’) were
used to amplify the GFP fragment from pIGPAPA [33].
The gene-specific sequence is shown in uppercase, and
the introduced restriction sites are underlined.

Preparation of P. palmivora zoospores for transformation

Seven-day-old P. palmivora culture grown on 10 %
unclarified V8 agar in a petri dish was flooded with
10 ml ice-cold sterile miliQ water and incubated at room
temperature for 30 min to release the motile zoospores.
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PCB301

[Pham34|MCS|Tham34[-|Phsp70| NPTIl |Thsp70 [

Clal  Hindlll EcoRI

ATCGATAAGCTTGATATCGAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGA

Fig. 1 Schematic representation of pCB301TOR. RB, T-DNA right border; LB, T-DNA left border. Pham34 and Phsp/0, promoters of ham34 and
hsp70. Tham34 and Thsp70, terminators of ham34 and hsp70. MCS, multiple cloning site. NPTIl, neomycin phosphotransferase |l

Spel Xbal

The zoospore suspension was gently recovered without
touching mycelia using a pipette. The concentrations of
the zoospores were usually 2—5 x 10°/ml.

Preparation of Agrobacterium tumefaciens for
transformation

Agrobacterium tumefaciens EHA105 strains containing
pCB301TOR or pCB301TOR-GFP, which were stored at
-80 °C freezer for long-term storage, were streaked on a
LB agar plate supplemented with 15 pug/ml of rifampicin
and 50 pg/ml of kanamycin and grew at 28 °C for 2 days.
The culture can be stored at 4 °C up to one week until
the day before transformation. Then the culture was
spread on a new LB agar plate with antibiotics and grew
overnight. Before transformation, the bacterial cells were
scraped from the LB plate, suspended and further di-
luted to various concentrations in Agrobacterium induc-
tion medium (IM), which consisted of liquid minimal
medium (MM) [34] supplemented with 200 pM aceto-
syringone in 50 ml sterile conical centrifuge tubes. The
centrifuge tube with Agrobacterium suspension was
wrapped in foil and incubated at room temperature for
2 h on a platform shaker with gentle agitation to induce
vir gene expression.

Agrobacterium tumefaciens-mediated transformation of
P. palmivora zoospores

Equal volumes of Agrobacterium suspension and zoo-
spore suspension prepared as above were mixed gently
by swirling the tubes and incubated at room temperature
in dark for 2 h. Every 330 pl of the mixture was evenly
spread onto a 5x5 cm piece of sterilized Hybond N*
membrane (GE Healthcare) placed atop of solid IM con-
taining 200 uM acetosyringone and 1.5 % agar and dried
in the hood for about 10 min. The IM agar plates were
kept in dark at room temperature for 2 days. After that
the Hybond N* membranes were transferred upside
down to Plich medium [35] agar plates supplemented
with 30 pg/ml G418 and 200 pM cefotaxime (the side
with Agrobacteria and zoospores facing the medium).
Any air bubble between the membrane and medium was
squeezed out with a pair of forceps to make sure that

the membrane was in good contact with the medium.
The plates were incubated at room temperature under
12 h light/12 h dark condition. After three days, the
membranes were removed and the plates were kept
under the same condition to allow the G418-resistant
colonies to grow. The transformants usually appeared
1-3 days after the membranes were removed. The
G418-resistant colonies were transferred to 10 % V8 agar
plates with 30 pg/ml G418 and 200 uM cefotaxime. One
week later, single zoospores from each transformant
were isolated as described previously [36] and grown on
10 % V8 agar plates with 30 pug/ml G418 to obtain single
zoospore-derived transformants.

Visualization of GFP

Mycelia and sporangia of the transformants grown on
10 % V8 agar media were used to visualize the expres-
sion of GFP using a Zeiss Axio Scope.Al fluorescence
microscope. The wild type P. palmivora strain P1 was
used as a negative control.

DNA isolation and Southern blot

For isolation of DNA used for Southern blot, agar
plugs of P. palmivora transformants were inoculated in
100 x 15 mm petri-dishes containing 20 ml of liquid
Plich medium [35]. The cultures were incubated at
room temperature in dark for 7 days. The mycelia were
harvested by filtering through Whatman filter paper
under a vacuum and flash frozen in liquid nitrogen.
The frozen mycelia were ground into fine powder in li-
quid nitrogen with a mortar and pestle. Genomic DNA
was extracted from the mycelia using a standard phenol
and chloroform protocol [37]. Briefly, the ground mycelia
were lysed in Isolation buffer (150 mM EDTA, 50 mM
Tris-HCl pH 8.0, 1 % Sarkosyl, 300 mg/l Proteinase K)
and extracted once with Tris-saturated phenol, twice
with phenol:chloroform:isoamyl alcohol (25:24:1), once
with chloroform:isoamyl alcohol (24:1). Then DNA was
precipitated with ethanol and the contaminating RNA
removed by RNase A treatment. Another round of phe-
nol:chloroform:isoamyl alcohol and chloroform:isoamyl
alcohol extractions were performed to further purify the
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RNase-treated DNA followed by ethanol precipitation.
The final DNA pellets were resuspended in 1 x TE buffer
(10 mM Tris-HCl, 1 mM EDTA, pH 8.0).

For Southern blot analysis to determine the copy
number of T-DNA insertions in P. palmivora transfor-
mants, 15 ug of genomic DNA was digested with EcoRI
and run on 0.8 % agarose gel in 1xTBE buffer
(220 mM Tris; 180 mM Borate; 5 mM EDTA; pH 8.3).
The separated DNA was then transferred and fixed
onto Amersham Hybond-N+ membrane (GE Healthcare)
using capillary blotting per manufacturer’s manual. The
probe used was a DNA fragment encoding the open
reading frame (ORF) of NPTII amplified using Phusion
DNA polymerase (Thermo Scientific) with the plasmid
pCB301TOR-GFP as template. The PCR product was
purified using QiaQuick PCR Purification Kit (Qiagen)
and labeled with biotin using Biotin DecaLabel DNA
Labeling Kit (Thermo Scientific). After labeling, the probe
was purified with QiaQuick PCR Purification Kit again.
Hybridization and detection were performed using Biotin
Chromogenic Detection Kit (Thermo Scientific) following
the manufacturer’s instructions.

Results

Construction of a binary vector for Agrobacterium-mediated
transformation of oomycetes

We constructed a binary vector pCB301TOR (Fig. 1)
for Agrobacterium-mediated transformation (AMT) of
P. palmivora by utilizing the backbone of a mini bin-
ary vector series developed for plant transformation
[31]. The backbone sequence of pCB301TOR includ-
ing T-DNA left border (LB) and right border (RB) is
the same as pCB301 (GenBank: AF139061.1) [31].
Within the LB and RB, there are two gene expression
cassettes derived from the oomycete expression vector
pTOR (GenBank: EU257520.1). The Ham34 promoter-
multiple cloning site-Ham34 terminator cassette is
used to clone the gene to be transformed; the hsp70
promoter-NPTII-hsp70 terminator is used to express
NPTII gene for selecting transformants on G418-
containing media. The length of pCB301TOR is
6485 bp. The unique restriction sites can be used for
cloning are Clal, HindIII, EcoRI, Spel and Xbal in the
order from Ham34 promoter to Ham34 terminator
(Fig. 1). The selection maker in E. coli and Agrobacter-
ium tumefaciens is Kanamycin. Using this vector, P.
palmivora was successfully transformed with GFP via
AMT, suggesting that pCB301TOR is effective in
transforming P. palmivora. As this vector utilizes
Ham34 and Hsp70 promoters and terminators, which
have been widely used in transformation of various
oomycetes [16, 17, 19, 27, 38, 39], it is expected to be
suitable for transforming other oomycetes in addition
to P. palmivora.
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Establishment of a simple and efficient protocol for
Agrobacterium tumefaciens-mediated transformation of
P. palmivora
Using the EHA105 strain containing pCB301TOR, we
initially followed the method described by Vijn and
Govers [30] to transform P. palmivora. Repeated experi-
ments produced no real transformants except several
false positives. The G418 resistant colonies obtained
failed to sporulate and PCR using both HSP70 promoter
primers and NPTII primers yielded no products (data
not shown). Consistent with what was suggested by Vijn
and Govers [30], their method may still be far from
optimal to be used for transforming P. palmivora. To
this end, we drastically modified the method using the
EHAI105 strain containing pCB301TOR-GFP to make it
simple, efficient and highly reproducible. An outline of
the method is illustrated in Fig. 2 and the details are
described in Materials and Methods.

We modified the method to prepare A. tumefaciens
for transformation. Instead of growing A. tumefaciens in
liquid media, we grew them on the LB agar plates and

Grow A. tumefaciens from stock
on LB agar at 28°C for 2 days

Grow P. palmivora for
7 days at RT

Spread A. tumefaciens on a new

LB agar plate, grow overnight Release zoospores

in water
Suspend in induction media and
incubate at RT in dark for 2 h to

induce vir gene \ /

Mix A. tumefaciens and zoospores, incubate at RT in
dark for 2 h for zoospores to encyst and germinate

Spread on Hybond N+ membranes, co-cultivate at RT
in dark for 2 days

Transfer the membranes upside down
on selection media, grow for 3 days

Remove the membranes

Transformants appear on selection media 1-3 days later

Fig. 2 An outline of the method developed for Agrobacterium-
mediated transformation of P. palmivora. Three representative
transformants from two selection plates are shown in the picture
at the bottom
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then resuspended the collected cells in Agrobacterium
induction medium (IM), which were directly used for
co-incubation with zoospore suspension.

To prepare P. pamivora Zzoospore suspension, we cov-
ered the sporulating cultures on 10 % V8 agar plate with
10 ml ice-cold water to allow zoospores to be released
into the water. This zoospore suspension was directly
used for transformation. Compared with the method de-
scribed by Vijn and Govers [30], this method skipped
sporangium collection and purification steps. As P. pal-
mivora usually easily produces and releases high amount
of zoospores, we were able to routinely get zoospores at
concentrations 2—5 x 10°/ml without any concentration
procedures. This simple method reduced the handling
procedures and time, and therefore likely minimized any
adverse effect on zoospore survival and germination.

After co-incubating zoospores with A. tumefaciens cells
for 2 h, the mixtures were directly placed on a square
piece of Hybond N+ membrane of 5 x5 cm, which cov-
ered the major area of the petri dish. Any centrifugation
step that might cause the loss or damage of the germi-
nated cysts or A. tumefaciens cells was avoided.

After co-cultivation of zoospores with A. tumefaciens
cells on hybond N+ membrane placed on top of IM agar
plate containing 200 pM acetosyringone, initially we
followed the method by Vijn and Govers [30] by cutting
the membranes into 1 cm? pieces and transferred upside
down to Plich agar plates supplemented with G418 for
selection of the transformants and cefotaxime to kill the
A. tumefaciens. However, this method took hours of time
to cut the membranes and sterilize scissors and forceps
between membranes. In addition, redundant transfor-
mants might be recovered from multiple small mem-
brane pieces originated from the same big piece either
because they were next to each other or due to the
cross-contamination resulted from repeated use of the
scissors and forceps without sterilizing them. To save
time and avoid producing redundant transformants, we
transferred the whole 5 x5 cm piece of membrane up-
side down onto the selection media and removed the
membrane three days later to allow the transformants to
appear on the media (Fig. 2).
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To determine the optimal concentration of A. tumefa-
ciens used for P. palmivora transformation, varying con-
centrations of A. tumefaciens expressing pCB301TOR-
GFP with ODgq of 0.1, 0.2, 0.4 and 0.8 were mixed with
equal volume of zoospore suspension and tested for
transformation efficiency. G418-resistant GFP-expressing
transformants were obtained with all concentrations, with
ODggo at 0.4 produced the highest number of transfor-
mants (Table 1). Increasing ODgyy above 0.4 reduced
numbers of transformants likely due to overgrowth of
Agrobacteria inhibited growth of P. palmivora. When the
Agrobacterium concentration at ODggo = 0.4 was used for
transformation, an average of 27 G418-resistant transfor-
mants per 107 zoospores were obtained from three inde-
pendent transformation experiments (Table 1). As we
were able to routinely get 8 ml of zoospores at concentra-
tions 2—5 x 10°/ml from P. palmivora culture grown in a
100 mm-diameter petri dish, a range of 43-128 transfor-
mants could be generated when using culture from a sin-
gle 100 mm-diameter petri dish for the transformation
experiment.

Few false positives were produced. 16 G418-resistant
P. palmivora clones were randomly selected and tested
for the presence of transgenes using primers based on
Hsp70 promoter sequence. All transformants tested
were shown to be real transformants (data not shown).
A high percentage of G418-resistant transformants
expressed GFP (Table 1, Fig. 3). The GFP signals were
detected in mycelia (Fig. 3a), zoospore-containing spor-
angia (Fig. 3b), and zoospores (Fig. 3c).

The protocol we developed was shown to be efficient
and highly reproducible. Using this method, we also
transformed P. palmivora with two P. palmivora genes
under characterization, including a cystatin-like extra-
cellular protease inhibitor and a putative effector with
an RxLR (Arg-x-Leu-Arg) translocation motif [40].
Both genes were cloned to pCB301TOR and trans-
ferred to A. tumefaciens EHA105 and AGL1, respect-
ively. Over 40 transformants were obtained for each
construct using zoospores collected from culture
grown on 10 % V8 agar in a single 100 mm-diameter
petri dish.

Table 1 Transformation of P. palmivora using various concentrations of A. tumefaciens EHA105 expressing pCB301TOR-GFP

ODggo of Data from 1 representative experiment Data from 3 experiments

Agrobacteria Zoospore Zoospore  Number of G418-  Number of transformants Number of G418-resistant  Average number of G418-
concentration  volume resistant with detectable GFP transformants/10” resistant transformants/10
(/ml) (ml) transformants signal zoospores zoospores

0 33%x10° 25 0 0 0 0

0.1 33%10° 2.5 13 10 16 22+£5

02 33%10° 2.5 16 15 19 21+2

04 33%x10° 25 25 23 30 27+5

08 33%10° 2.5 13 13 16 18+4
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Bright Field

100 um

Fig. 3 Expression of GFP in a representative transformant
transformed with pCB301TOR-GFP. Photographs of mycelia (a),
sporangia (b), sporangia and immobile zoospores (c) of the wild
type strain (WT) and a representative GFP transformant (Tfm) under
bright field and GFP fluorescence channel (GFP). Note that empty
sporangia (indicated by arrows) did not show GFP fluorescence;
Sporangia of the wild type strain showed some auto-fluorescence
under GFP channel when 20x objective was used. Scale bars are
shown at the bottom of each panel

T-DNA copy number of P. palmivora transformants

To determine the copy number of T-DNA insertions in
P. palmivora transformants generated using different
concentrations of A. tumefaciens EHA105 containing
pCB301TOR-GFP. We selected 5 transformants for each
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concentration to isolate DNA for Southern blot analyses.
Due to low DNA yield of 1 transformant at ODggg = 0.1
and 1 transformant at ODgyy = 0.4, we did not include
these two transformants for further analysis. For the
remaining 18 transformants, the Southern blot analyses
were performed with NPTII as the probe and genomic
DNA digested with EcoRI. As expected, no hybridization
signal was observed for the wild-type strain (Fig. 4). For
all 18 transformants, a single hybridized band appeared
suggesting that all transformants tested contained a single
copy of T-DNA insertion (Fig. 4).

Discussion

In the present study, we established a simple and efficient
system to transform P. palmivora using Agrobacterium-
mediated transformation. We constructed a binary vector
pCB301TOR (Fig. 1) by utilizing the backbone of a mini
binary vector series developed for plant transformation
[31], and two gene expression cassettes derived from
the oomycete expression vector pTOR (GenBank:
EU257520.1). Using this binary vector and the protocol

OD600=0.1 OD600=0'2
1 2 3 4 1 2 3 4 5 WT P
1§: -—
28—
4—
3_
2—
0D600=°'4 0D600=0.8
1 2 3 4 1 2 3 4 5 WTP
\
|
(= - |
ST — \
4— —
3_
2—
Fig. 4 Southern blot analyses of P. palmivora transformants. Total
DNA was digested using EcoRI and the blots were probed with a
biotin-labeled DNA fragment encoding the open reading frame of
NPTII. WT, wild-type P. palmivora strain. P, EcoRI-digested plasmid
pCB301TOR-GFP. The numbers on the left of the blots represent the
sizes (Kb) of DNA bands from NEB 1Kb DNA ladder
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we developed, we have reproducibly obtained transfor-
mants expressing GFP. All 18 transformants tested for
copy numbers were shown to contain a single copy of
T-DNA integration. We have also successfully gener-
ated transformants ectopically expressing a cystatin-like
extracellular protease inhibitor and an RxLR effector of
P. palmivora. Using Agrobacteria at a concentration of
ODggo = 0.4 and zoospores harvested from a single cul-
ture plate in a 100 mm-diameter petri dish, we could
obtain 40 to over 100 transformants. This system is
highly reproducible. With this system, we haven't failed
in getting transformants in any P. palmivora transform-
ation experiment we have performed so far. The establish-
ment of this system will be instrumental in dissecting the
pathogenesis mechanism of P. palmivora using genetic
approaches.

The AMT system described in this study was estab-
lished based on the method developed by Vijn and
Govers [30] with drastic modifications. There are sev-
eral major differences between the protocol by Vijn and
Govers [30] and ours that likely determine whether the
transformation would be successful. In Vijn and Gover’s
method, Agrobacteria were grown in induction medium
containing 100 uM acetosyringone for 5 h to induce vir
gene expression, followed by washing twice with sterile
water before mixing with zoospores for co-incubation.
As acetosyringone was washed away, it was absent
during co-incubation of zoospores and Agrobacteria. In
contrast, in our modified method, Agrobacteria grown
on solid LB medium was resuspended in liquid induction
medium containing 200 uM acetosyringone to induce vir
gene expression for 2 h, which was then directly used for
co-incubation with zoospores. Acetosyringone was present
during the whole co-cultivation process. Moreover, higher
concentration of acetosyringone was used in our method
than Vijn and Govers’s method. The presence of higher
concentrations of acetosyringone during the whole co-
cultivation process may have contributed to the effective-
ness of our method. In addition, Vijn and Govers [30]
mixed large volume (50 ml) of zoospores (10° zoospores/
ml) with a small volume (1 ml) of Agrobacteria (OD600 =
0.25) for transformation, which likely diluted the Agrobac-
teria too much leading to less chance to infect zoospores
and reduced virulence. In our method, we routinely mixed
equal volumes of zoospores (25 x 10° zoospores/ml) and
Agrobacteria  (OD600 = 0.4), which provided higher
chance for Agrobacteria to contact and infect zoospores.

There are other modifications that could contribute to
the success of the modified method. In Vijn and Govers’s
method [30], zoospores were induced to encyst by man-
ual shaking for 2 min after 30 min of co-incubation with
Agrobacteria. On the contrary, our methods allowed
zoospores to encyst and germinate without disturbance.
We noticed that the zoospores encysted by themselves
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during the co-incubation period without the shaking step,
which might dislodge the Agrobacteria from zoospores or
affect the viability of zoospores. In addition, in Vijin and
Govers's method [30], the zoospore-Agrobacterium mix-
ture was centrifuged before being placed on the Hybond
N+ membrane on the co-cultivation media. The centrifu-
gation step might have detrimental effect to the germi-
nated zoospores. In our protocol, the mixture was directly
spread on the membrane.

Other modifications we made were to simplify the
protocol as much as possible to save time, minimize ad-
verse effects on zoospores and Agrobacteria, and reduce
redundant transformants. For the zoospore preparation,
instead of collecting and concentrating sporangia followed
by zoospore release, we added ice-cold water directly on
the culture plate to release zoospores, which were directly
used to mix with Agrobacterium suspension. For the
Agrobacteria preparation, we grew and collected the cells
on solid medium without the need to wash the antibi-
otics away after initial growth. After co-cultivation of
Agrobacteria and P. palmivora on induction medium
agar plates, we simply place the hybond N+ membrane
pieces upside down on top of the selection plates with-
out cutting the membranes into small pieces to save
handling time and reduce redundant transformants.

The AMT system we developed for P. palmivora is ex-
pected to be applicable for other oomycetes with neces-
sary modifications. For species with lower sporangium
production, sporangia can be harvested from several
plates of culture. After filtering through nylon mesh
(40-50 pm), the sporangia can be concentrated by cen-
trifugation followed by releasing of zoospores with a
smaller volume. We also used this procedure for P.
palmivora transformation and the transformation effi-
ciency was similar as when the zoospores were directly
released from the culture.

Conclusions

We developed a simple, efficient and highly reproducible
Agrobacterium-mediated transformation system for P.
palmivora, which has the potential to be used to trans-
form other oomycetes. The establishment of this system
will serve as an invaluable tool to accelerate functional
genomics studies of P. palmivora and other oomycetes.
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