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Abstract

Background: The interaction mechanism between microbial communities and environment is a key issue in
microbial ecology. Microbial communities usually change significantly under environmental stress, which has
been studied both phylogenetically and functionally, however which method is more effective in assessing
the relationship between microbial communities shift and environmental changes still remains controversial.

Results: By comparing the microbial taxonomic and functional shift pattern along heavy metal contamination
gradient, we found that both sedimentary composition and function shifted significantly along contamination
gradient. For example, the relative abundance of Geobacter and Fusibacter decreased along contamination gradient
(from high to low), while Janthinobacterium and Arthrobacter increased their abundances. Most genes involved in
heavy metal resistance (e.g., metc, aoxb and mer) showed higher intensity in sites with higher concentration of
heavy metals. Comparing the two shift patterns, there were correlations between them, because functional and
phylogenetic β-diversities were significantly correlated, and many heavy metal resistance genes were derived
from Geobacter, explaining their high abundance in heavily contaminated sites. However, there was a stronger
link between functional composition and environmental drivers, while stochasticity played an important role in
formation and succession of phylogenetic composition demonstrated by null model test.

Conclusions: Overall our research suggested that the responses of functional traits depended more on
environmental changes, while stochasticity played an important role in formation and succession of phylogenetic
composition for microbial communities. So profiling microbial functional composition seems more appropriate to
study the relationship between microbial communities and environment, as well as explore the adaptation and
remediation mechanism of microbial communities to heavy metal contamination.

Keywords: Heavy metal contamination, Microbial remediation, Taxonomic and functional composition, Null model
test

Background
Investigating microbial community composition, struc-
ture and function, as well as their response to environ-
mental changes are key issues in microbial ecology.
Nowadays, microbial communities have been studied
both phylogenetically and functionally. Of them, 16S

rRNA gene amplicons sequencing is the most effective
and popular method to profile microbial community
composition, and many uncultured species of nature
environments have been identified [1, 2], but it provides
little information about the metabolic potential of these
species. GeoChip is a comprehensive microarray for
investigating microbial community function, also pro-
vides direct linkages of microbial genes to ecosystem
processes and functions [3]. However, the relationship
between community composition and function still
remains controversial, which also makes it difficult to
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evaluate the interactions between microorganisms and
environment [4, 5]. For example, a study of soil micro-
bial communities in forest showed that microbial com-
munity structure and functional gene diversity were
significantly linked to soil and plant factors, but some
environmental factors correlated to community structure
were not related to its function, such as temperature and
tree diameter [6]. Exploring the relationship between
microbial community structure and function would help
explaining such inconsistency.
Basically, microbial phylogeny and function are

strongly correlated, and phylogenetic trees based on 16S
usually closely resemble clusters obtained on the basis of
shared gene content. Therefore, researchers often infer
properties of uncultured organisms from cultured rela-
tives [7]. For example, using 16S information, PICRUSt
recaptures key findings from the Human Microbiome
Project and accurately predicts the abundance of gene
families in host-associated and environmental commu-
nities [8]. However, widespread cases of horizontal gene
transfer impair the consistency between taxonomic and
functional composition. And it was recently suggested
that functional traits are more valuable to understand
bacterial community assembly and explain shifts in
microbial community composition across environmental
gradients [9, 10], probably because the adaptation and
ecological niche of microbial population was more dir-
ectly determined by their functional composition.
Microbial communities usually change extensively

under environmental stress, which provides us an oppor-
tunity to explore the correlation and difference between
microbial phylogenetic and functional shift pattern.
Recently, heavy metals such as mercury (Hg), chromium
(Cr), lead (Pb), manganese (Mn), and arsenic (As) have
induced serious diseases or even death of organisms
through contaminated waters or soils, although heavy
metals in trace amount are beneficial even significant to
organisms [11–13]. The investigation of microbial popu-
lations distribution along heavy metal contamination
gradients across spatial scales will help elucidate how
natural communities respond to environmental changes
[14]. Many studies on the issue have been focused on
functional and phylogenetical analyses. For example, in
highly heavy metal contaminated sites, an overall lower
gene diversity but higher abundance for specific func-
tional genes, such as heavy metal homeostasis genes and
sulfate-reducing genes were observed [11, 15, 16], and
the dominant microbial groups included α-Proteobac-
teria, β-Proteobacteria and Firmicutes [17, 18].
In this study, we attempted to address two core issues

(i) the taxonomic and functional shift pattern of sedi-
mentary microbial communities to heavy metal contami-
nation; and (ii) correlation and difference among the two
shift patterns. To explore the taxonomic and functional

response of microbial communities to heavy metal con-
tamination, 12 sedimentary samples were taken from
three sites in the Xiangjiang River with a gradient of
contaminant levels (described before [19]), and analyzed
by GeoChip 5.0 and 16S rRNA gene amplicons sequen-
cing. The study provides us an insight into the shift
pattern of microbial communities to heavy metal conta-
mination, and demonstrates that functional profiling
microbial communities is more effective in examining the
interaction between microorganisms and environments.

Methods
Sample description
Samples were collected from sediment of Xiangjiang
River (Hunan, China), as previous described [19]. In this
study, we choose three groups of samples with different
distance from drain outlet, 500 m, 1000 m, and 1500 m,
separately. Geochemical properties of each sample were
measured. The composition of heavy metals including
Hg, As, Cr, Pb, Mn, cobalt (Co), cadmium (Cd), nickel
(Ni), copper (Cu) and zinc (Zn) in the sediments was
analyzed by ICP-AES [20]. Total sedimentary organic
nitrogen (N) was quantified by Kjeldahl distillation [21].
The amount of total sedimentary organic carbon (C)
was analyzed by potassium dichromate oxidation-ferrous
sulphate titrimetry [22].

Illumina sequencing, GeoChip analysis and data
processing
DNA was extracted using a TIANamp Bacterial DNA Kit
(MO BIO Laboratories, Inc., Carlsbad, CA). The V4
region of the 16S rRNA genes was amplified with the pri-
mer pair 515 F (5’-GTGCCAGCMGCCGCGGTAA-3’)
and 806R (5’- GGACTACHVGGGTWTCTAAT-3’). Sam-
ple libraries were generated from purified PCR products.
The MiSeq 500 cycles kit was used for 2x250 bp paired-
ends sequencing on MiSeq machine (Illumina, San Diego,
CA). Sequences with perfect matches to barcodes were
split to sample libraries, and trimmed. OTU clustering
was performed through UCLUST at 97 % similarity level
[23], and taxonomic assignment was through the RDP
classifier [24] with a minimal 50 % confidence estimate.
The above steps were conducted through the Galaxy
pipeline (http://zhoulab5.rccc.ou.edu/) developed by Qin
el al. Subsequent analyses were performed in R [25].
Finally, samples were rarefied at 13,000 sequences per
sample. All the 16S rRNA sequences were deposited in
GenBank database and the accession number were
KP784842 - KP788032.
For each sample, microbial community DNA was

extracted and purified as described previously [15, 26].
Amplified DNA was labeled and hybridized with GeoChip
5.0, which is a powerful tool to study the functional diver-
sity, composition, structure and metabolic potential of
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microbial communities [6]. All GeoChip 5.0 hybridization
data are available at the Institute for Environmental
Genomics, University of Oklahoma (http://ieg.ou.edu/).
The hybridized GeoChip 5.0 was analyzed as previously
described [27]. Software TMEV was used for hierarchical
cluster analysis of sequencing and GeoChip data. Statis-
tical differences between the functional microbial commu-
nities from the different sites were analyzed by analysis of
variance (ANOVA).

Statistical analyses
Partial least squares path modeling (PLSPM) is a power-
ful structural equation modeling technique, which is
used to elucidate the complex relationship among
microbial community composition, structure and func-
tion of three groups of samples. Before performed in R
v. 2.6.1 with the package plspm [25], principal compo-
nent analysis (PCA) was conducted for 16S rRNA gene
sequencing data, GeoChip hybridization data and envi-
ronmental data respectively. Then PC1 and PC2 values
were used for PLSPM. And α-diversity value could be
used for PLSPM directly. Taxonomic composition and
functional gene diversity was calculated using Shannon-
Weiner’s H′ and evenness. Difference among three groups
of microbial communities in composition and function
was evaluated using dissimilarity test respectively. Mantel
test was used to calculate correlations between microbial
community diversity and environmental attributes [28].
Null model analysis which assumes that a community is
not structured by species interactions, was performed
according to the method described by Zhou et al [29]. In
order to determine whether species/gene compositional
differences among sites were caused by the forces causing
communities to be different from the expectations by
random chance or not, the permutational analysis of
multivariate dispersions (PERMDISP) was used to test the
significance of the differences of the sedimentary micro-
bial communities of each group from null model expecta-
tions [30]. All the analyses were performed online (http://
ieg.ou.edu/).

Results
Geochemical parameters
Geochemical properties of samples were significantly
(p < 0.05) different among three groups (Additional file 1:
Table S1). The sample group nearest (500 m) to drain
outlet had the highest concentration of heavy metals and
organic C (1.51 ppm) and N (16.68 ppm), so we defined
the group as Group H. Almost all the heavy metals
detected in this study were most abundant in Group H,
except for Pb and Zn. On the contrary, the sampling site
farthest (1500 m) from drain outlet had the lowest con-
centration of heavy metals, thus was defined as Group L.
The concentrations of Hg (0.18 ppm), Cd (3.0 ppm), Cu

(34 ppm) and Zn (158 ppm) were the lowest in Group L.
And the sample group with a sampling site between
Group H and Group L was defined as Group M, which
was about 1000 m away from the drain outlet. Group M
had a moderate content of heavy metals, with similar Pb
(103 and 124 ppm) and Zn (346 and 496 ppm) content to
Group H, but similar As (70 and 73 ppm), Co (12.1 and
12.8 ppm), Cr (57 and 62 ppm), Ni (30.2 and 32.7 ppm)
and Mn (788 and 1476 ppm) content to Group L.

Shift patterns of taxonomic and functional community
composition
All three groups of communities were mainly composed
of Fusibacter (1.42 to 35.21 %) and Janthinobacterium
(0.07 to 18.35 %), followed by Proteiniclasticum (0.02 to
12.96 %), Acinetobacter (3.15 to 4.44 %) and Massilia
(0.14 to 4.93 %). In addition, 14.62–17.81 % OTUs could
not be classified into any known genus. Both Shannon
diversity and Pielou evenness indices (3.80 and 0.56
respectively) were significantly (p < 0.05) lower in Group
H than other two groups (Additional file 1: Table S2).
Dissimilarity test showed that three groups of micro-
bial communities were significantly (p < 0.1) different
from each other in composition and structure (Table 1).
Hierarchical cluster analysis of sequencing data at the
genus level (relative abundance > 1 %) showed that sedi-
mental microbial community composition and structure
shifted substantially along river (Fig. 1). For example,
Fusibacter, Geobacter, Gp6 and Proteiniclasticum were
significantly (p < 0.05) more abundant in heavily contami-
nated samples, while Group L had more Janthinobac-
terium, Arthrobacter, Sphingomonas and Flavobacterium.
Especially, the relative abundance of Fusibacter decreased
along the heavy metal contamination gradient (from high
to low), while Janthinobacterium increased its relative
abundance along the gradient.
A total of 29,439 gene variants were detected in Geo-

Chip. They included gene groups of C, N, phosphorus
(P), and sulfur (S) cycling, metal homeostasis, organic
remediation and secondary metabolism. Shannon diver-
sity was the highest in Group L (10.20) and lowest in
Group M (9.93), and Pielou evenness was lower in
Group L than the other two groups (Additional file 1:
Table S2). More specifically, 355 genes could be assigned
into 39 subcategories. Dissimilarity test showed that

Table 1 Dissimilarity test of three groups of microbial
communities in phylogenetic composition

Group H Group M

Group M Distance 0.459

Significance 0.028

Group L Distance 0.41 0.56

Significance 0.039 0.0919
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three groups of microbial communities were significantly
(p < 0.05) different from each other in function (Table 2).
Hierarchical cluster analysis at the subcategory level
showed that 14 gene subcategories showed significantly
(p < 0.05) stronger intensity in Group H and Group M,
such as gene subcategories related to herbicides related
compound, pesticides related compound and chlorinated
solvents. And 13 gene subcategories had higher abun-
dance in Group L (e.g., nitrogen fixation, carbon fixation
and degradation) (Fig. 2). Most genes involved in heavy
metal resistance showed higher abundance in Group H
and Group M, including aoxb, metc, mer and merb. Of
them, aoxb is related to As resistance, and metc, mer
and merb are related to Hg resistance. Besides, gene cueo
(Cu resistance) and tehb (Tellurium resistance) showed
no significant difference between Group H and Group
M in abundance, but higher relative abundance in
Group L than Group M.

Comparison of taxonomic and functional shift pattern
Two PLSPMs were performed to profile the relationship
among sediment properties, microbial community taxo-
nomic and functional composition. Goodness of fit
(Gof ) value was 0.5885 and 0.6231 for each model,
bigger than 0.35, indicating that the two PLSPMs were
reliable. Results showed that environmental factors were
significantly correlated to microbial function, but not
community composition (Fig. 3a). PLSPM also indicated
the correlation between community composition and
function, especially in communities of Group M and
Group L (Fig. 3b).
Generally, a significant correlation (r = 0.711, p =

0.001) between phylogenetic β-diversity and functional
β-diversity was observed. Although not all the microbial
populations detected by 16S rRNA gene sequencing had
their genes detected in GeoChip, there were still 10
microbial genera (relative abundance > 1 %) whose genes
were detected by GeoChip. For example, 71 gene vari-
ants of Geobacter, 24 gene variants of Janthinobacterium
and 211 gene variants of Arthrobacter were detected.
More importantly, of all gene variants belonging to
Geobacter 36.62 % of them were involved in heavy metal
resistance, but only 4.17 % of Janthinobacterium genes
were related to heavy metal resistance, indicating their
different potential in adapting heavy metal contami-
nation (Additional file 1: Table S3).
The two shift patterns showed difference in their rela-

tionship with environment. Mantel test revealed that

Fig. 1 Hierarchical cluster analysis of sequencing data of 12 samples at the genus level. Relative abundances of microbial genera were
standardized before hierarchical clustering. Significant differences (P < 0.05) among three groups are indicated by alphabetic letters

Table 2 Dissimilarity test of three groups of microbial
communities in functional composition

Group H Group M

Group M Distance 0.093

Significance 0.028

Group L Distance 0.086 0.069

Significance 0.026 0.034
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only a small proportion (17.50 %) of microbial genera
were significantly (p < 0.05) correlated with environ-
mental factors, while most of (66.04 %) the functional
gene groups were correlated to sedimentary properties
(Additional file 1: Table S4). For example, Hg had impact
on eight microbial genera (e.g., Fusibacter, Geobacter,
Gp6 and Janthinobacterium) but up to 30 functional
gene groups, such as nitrification, nitrogen fixation, car-
bon fixation and carbon degradation. Furthermore, null
model analysis was performed to investigate the effect of
stochastic process on assembly and succession of micro-
bial communities, based on sequencing data and Geo-
Chip hybridization data respectively. PERMDISP test
revealed that the observed β-diversity was indistingui-
shable from the null expectation for all three groups of
communities at phylogenetic level, whereas the observed
β-diversity was significantly (p < 0.05) different from the
null random expectations for the sedimentary com-
munities in Group H and Group M at functional level

(Table 3). It indicated that stochasticity played an impor-
tant role in assembly and succession of phylogenetic com-
position while functional composition was controlled
more by deterministic process (e.g., environmental stress).

Discussion
The interaction mechanism between microbial commu-
nities and environment is a key issue in microbial ecology.
Microbial communities usually change significantly under
environmental stress, which provides us an opportunity to
study the microorganism-environment interaction mech-
anism. Here, by investigating how sedimentary microbial
communities shifted along heavy metal contamination
gradient both phylogenetically and functionally, we aimed
to identify an effective method to profile the relationship
between microbial communities and environment, and
reveal the adaptation mechanism of sedimentary microbial
communities to heavy metal contamination.

Fig. 2 Hierarchical cluster analysis of GeoChip hybridization data of 12 samples (a) and hierarchical cluster analysis of seven genes involved
in heavy metal resistance (b). Relative intensities of genes were standardized before hierarchical clustering. Significant differences (P < 0.05)
among three groups are indicated by alphabetic letters
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Fig. 3 Partial least squares path modeling (PLSPM) about correlations among sediment properties (C&N and heavy metals), microbial community
composition (abundance and diversity) and function (intensity and diversity) (a), as well as between microbial community composition and
function of Group H, Group M and Group L respectively (b). Only significant (p < 0.01) correlations are indicated with solid line

Table 3 Significance test of the differences of centroids between the sedimentary microbial communities and null model
simulations across different contamination gradient

Group Centroid of actual communities Centroid of the null model F P

Taxonomic composition H 0.2509904 0.3284943 3.359766 0.116508

M 0.3659146 0.2926673 2.052963 0.201888

L 0.3185871 0.3498911 0.61719 0.46198

Functional composition H 0.08969783 0.17308444 6.669926 0.041623

M 0.06876982 0.23208962 106.9815 4.78E–05

L 0.05090288 0.06295226 0.303056 0.601851

Permutational analysis of multivariate dispersions (PERMDISP) was used. P values < 0.05 in bold
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Taxonomic and functional shift pattern along
contamination gradient
Generally, both phylogenetic and functional composition
of microbial communities shifted significantly along
contamination gradient. Previous studies showed that
heavy metals would decrease the diversity of microbial
community [15, 31], and we observed the same tendency
as microbial communities had the lowest Shannon diver-
sity index in H Group. All kinds of microbial populations
were clustered into three major categories, according to
their abundance pattern in three sites. They included
microbial genera positively related to heavy metal conta-
mination, negatively related to heavy metal contamination
and showed no obvious change along contamination
gradient. For example, Fusibacter and Geobacter were
positively correlated to contamination, while Janthinobac-
terium showed a negative correlation. A larger percent of
Fusibacter (35.21 %) were detected in Group H, probably
because many Fusibacter species could reduce sulfur or
thiosulfate [32, 33], which usually are of high metal resis-
tance and play important roles in heavy metal bioremedi-
ation. Geobacter were more abundant in Group H and
Group L, mainly resulting from their metal ion reduction
ability and potential for use in bioremediation of radio-
active metals [34, 35]. On the contrary, Janthinobacterium
is an important genus of Betaproteobacteria [36], and it is
found to be susceptible to heavy metals, such as Ag, Cu,
Hg, Pb and Ni [37]. In this study, the relative abundance
of Janthinobacterium decreased significantly in highly
contaminated samples, consistent with previous studies.
Meanwhile, functional composition of microbial com-

munities also shifted along contamination gradient. It
has been reported that prolonged exposure to high
concentrations of heavy metals resulted in a significant
loss of metabolic diversity [38]. Although a decrease in
metabolic diversity hasn’t been detected in heavily con-
taminated sites in this study, which might resulted from
their long-term adaptation to contaminated environment
[39], lots of genes involved in carbon and nitrogen
metabolism showed a decrease in intensity, such as nifh
and amyA, involved in nitrogen fixation and carbon
degradation respectively. The results were supported
by previous studies in which heavy metal pollution
produced a dramatic reduce in nutrient metabolism
[40, 41]. However, microorganisms have several mecha-
nisms to survive heavy metal contamination, such as dis-
charging toxic metals and enzymatic conversion [42, 43].
In this way, high intensity of heavy metal resistance genes
was usually observed in heavy contaminated sites. Here,
we detected higher abundance of heavy metal resistance
genes (e.g., metc, aoxb, mer, merb and silaffin) in Group H
while lower abundance in Group L, which was a vital part
in the functional shift process of sedimentary microbial
communities.

Taxonomic and functional compositions were correlated
Furthermore, we compared the phylogenetic and func-
tional shift pattern in order to identify an effective
method to study the interactions between microbial
communities and environments as well as the adaptation
mechanism of microorganisms to heavy metal contami-
nation. Comparing the two shift patterns, correlation be-
tween them is one important point, because microbial
populations respond to environment through their func-
tional genes. For example, most of microorganisms in
AMD are capable of oxidizing Fe or S, so we could
approximately predict the Fe or S oxidation potential of
a community based on 16S rRNA gene sequencing data
[44]. Here, genes related to heavy metal resistance were
derived mainly from Actinobacteria, Gammaproteobac-
teria, Alphaproteobacteria and Betaproteobacteria, which
were also the main classes in sedimentary microbial
communities. However, not all the gene variants detected
in GeoChip could be assigned to the specific microbial
populations identified by sequencing, because probes in
microarray are usually designed before knowing the
microbial community composition [3]. Nevertheless, the
different potential in heavy metal resistance of Geobacter
and Janthinobacterium detected by Geochip, was consis-
tent with their abundance pattern in three contamination
sites, demonstrating the correlation between taxonomic
and functional shift pattern of microbial populations.
Because of the limitation of GeoChip, a metagenomic
insight into the microbial communities is needed to
profile the relationship between microbial community
composition and function in future study. Moreover, we
found that functional and phylogenetic β-diversities were
significantly (r = 0.711, p = 0.001) correlated, which was
also reported in a previous study [45]. We have acknowl-
edged that microbial species closely related in phyloge-
netic trees based on 16S usually have similar functional
composition, and researchers could almost accurately
predict the abundance of gene families in environmental
communities based on 16S information [7, 8]. In this way,
evidences supported that phylogenetic and functional
composition are correlated to a certain extent.

Functional composition was more environmentally
dependent
However, since a broad range of functional variation
may occur among closely related organisms, taxonomic
distributions are assumed to be ambiguous in assessing
the response of microbial communities to environmental
changes [46]. And horizontal gene transfer might be the
other key factor resulting in the divergence between
phylogenetic trees based on 16S information and func-
tional composition [47]. A recent study has documented
that specific functions could be widely detected across a
variety of taxa or phylogenetic groups [48]. For example,
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sulphate-reducing bacterial species are widely distrib-
uted in various phyla, such as Deltaproteobacteria,
Nitrospirae, Clostridia and Euryarchaeota [49]. Such
differences lead to their different relationship with
environment. Researchers reported that functional traits
were more reliable in assessing the relationship between
microbial communities and ecological processes, as
microbial assemblages were better predicted at the func-
tional genes level rather than at taxonomic level [45]. In
this study, both mantel test and PLSPM analysis
indicated that the responses of functional traits might
depend more on environmental changes.
Historically contingent in taxonomic composition

indicated that environmental conditions would deter-
mine the types of ecological niches available for spe-
cific functional groups, while species compositions
with similar physiological fitness are stochastically
influenced by the history [4]. Particularly, a previous
study showed that stochastic processes played impor-
tant roles in controlling the assembly and succession
of the groundwater microbial community [29]. There-
fore, we speculated that selection strength, mainly
heavy metal contamination stress in this study, shaped
and directed the functional shift pattern of sedimen-
tary microbial communities, but their phylogenetic com-
position had various shift patterns to achieve the same
function shift, because similar function genes are widely
distributed. For example, heavy metal resistance related
genes in this study were derived from 29 microbial phyla,
including 57 classes, 107 orders and 502 genera. So each
microbial population capable of heavy metal resistance
had a chance to become more abundant in heavily con-
taminated sites in theory. Supporting the hypothesis, we
demonstrated that stochasticity played a more significant
role in phylogenetic composition than in functional
composition of sedimentary microbial communities using
null model test.

Conclusions
Collectively, by comparing the microbial taxonomic
and functional shift pattern along heavy metal conta-
mination gradient, the study demonstrated that: (i) the
responses of functional traits depended more on en-
vironmental changes, and stochasticity played an impor-
tant role in formation and succession of phylogenetic
composition; (ii) taxonomic composition and func-
tional composition were closely correlated, although
taxonomically related populations neither sufficiently
nor necessarily meant functional similarity. The study
is of high significance in future metagenomic research,
and also provides us an insight into the adaptation
pattern of microbial communities to heavy metal
contamination.

Additional file

Additional file 1: Table S1. Sediment properties and ANOVA analysis
among three groups. Table S2. Shannon diversity and Pielou evenness
of samples based on sequencing data and Geochip hybridization data
respectively. Table S3. Correlation between microbial composition and
function. Table S4. (a) Mantel test of sequencing data with
environmental attributes at the genus level; (b) Mantel test of GeoChip
hybridization data with environmental attributes. (DOCX 41 kb)
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