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Abstract

down-regulated these genes at higher concentrations.

may be targeted to treat P. geruginosa biofilm infections.

Background: Pseudomonas aeruginosa is an opportunistic pathogen that is the leading cause of iatrogenic
infections in critically ill patients, especially those undergoing mechanical ventilation. In this study, we investigated the
effects of the universal signaling molecule autoinducer-2 (Al-2) in biofilm formation of P. aeruginosa PAO1.

Results: The addition of 0.1 nM, 1 nM, and 10 nM exogenous Al-2 to P. aeruginosa PAO1 increased biofilm formation,
bacterial viability, and the production of virulence factors. However, compared to the 10 nM Al-2 group, higher
concentrations of Al-2 (100 nM and 1 uM) reduced biofilm formation, bacterial viability, and the production of virulence
factors. Consistent with the changes in morphology, gene expression analysis revealed that Al-2 up-regulated the
expression of quorum sensing-associated genes and genes encoding virulence factors at lower concentrations and

Conclusions: Our study demonstrated that exogenous Al-2 acted in a dose-dependent manner to regulate P. aeruginosa
biofilm formation and virulence factors secretion via modulating the expression of quorum sensing-associated genes and
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Background
Pseudomonas aeruginosa is a well-known opportunistic
pathogen associated with various acute and chronic infec-
tions in humans, especially in those who are immunocom-
promised. P. aeruginosa infections can be difficult to
eradicate because P. aeruginosa is capable of forming bio-
films, which are more resistant to physical or chemical
attacks than planktonic bacteria, leading to high morbidity
and mortality among infected patients [1, 2]. P. aeruginosa
could produce a number of virulence factors, such as pyo-
cyanin, rhamnolipids, elastase, exotoxin A, phospholipase
C, and exoenzyme S, which are thought to be involved in
acute or chronic infections [3].

Quorum sensing (QS) is a cell-to-cell signaling system
that refers to the ability of bacteria to respond to small
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signaling molecules secreted by various microbial spe-
cies. When the amount of QS signaling molecules accu-
mulates to a threshold, the QS system is activated upon
the identification of extracellular receptors. As typical
QS signaling molecules, oligopeptides are often pro-
duced by Gram-positive bacteria, while N-acyl homoser-
ine lactones are often produced by Gram-negative
bacteria [4]. P. aeruginosa employs three interconnected
QS systems, namely, las, rhl, and pgs, to control the ex-
pression of important virulence factors, and these factors
play a crucial role in the development of biofilms [5].
Therefore, the QS system can be a suitable target for anti-
microbial therapy. Numerous anti-infectious approaches
against P. aeruginosa biofilms have been investigated dur-
ing the past decade, such as antibiotic combinations [6]
and some metal chelators exerting bactericidal and anti-
biofilm activities [7, 8]. However, the use of large numbers
of antibiotics leads to a high prevalence of bacterial resist-
ance, and the stability of metal chelators remains to be
elucidated. Currently, chemical compounds that inhibit
QS systems are being gradually investigated [9, 10].
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Autoinducer-2 (AI-2) is a universal QS molecule that
mediates intra- and interspecies communication. This
molecule is formed from spontaneous rearrangement of 4,
5-dihydroxy-2, 3-pentanedione (DPD), which is produced
by the enzyme LuxS, and is the primary QS molecule
produced by many Gram-positive and Gram-negative bac-
teria. AI-2 has been shown to play a pivotal role in the life
cycle of biofilms, including the initial bacterial aggregation
and the production of virulence factors [11]. Previously,
Duan et al. [12] and Roy et al. [13] found that AI-2 and
AI-2 analogs had an impact on P. aeruginosa virulence,
but the mechanism is not clear. Because P. aeruginosa is
unable to produce AI-2 [12], the molecule might act as a
parainducer, which can be sensed by the bacteria and thus
affect its function. An example is reported in the study
conducted by Geier et al., where AI-2 increased biofilm
formation by Mycobacterium avium, which also cannot
produce AI-2 [14].

In addition, we found high constituent ratios of
Klebsiella spp. and Streptococcus spp. in the tracheal
aspirates of ventilator-associated pneumonia (VAP) ne-
onates [15], and P. aeruginosa is a common cause of
VAP. Thus, we speculated that these AI-2 producers
may facilitate biofilm formation by P. aeruginosa. In this
study, we added different concentrations of synthetic
AI-2 to P. aeruginosa PAO1 and evaluated biofilm for-
mation and the production of virulence factors, with an
emphasis on the underlying mechanisms of AI-2 using
transcriptional analysis.

Methods

Bacterial strains and culture conditions

P. aeruginosa wild-type PAO1 was kindly provided by
Professor Li Shen (Institute of Molecular Cell and
Biology, New Orleans, LA, USA). It was routinely grown
and maintained on Luria—Bertani (LB) plates or in LB
broth at 37 °C with agitation (200 rpm). Chemically
synthesized AI-2 precursor DPD [(S)-4, 5-dihydroxy-2,
3-pentanedione] was purchased from Omm Scientific
(Dallas, TX, USA).

Growth assays

Growth of PAOL1 in the presence of 0.1 nM, 1 nM, 10
nM, 100 nM, and 1 uM AI-2 was measured at 600 nm
at intervals of 2 h up to 24 h with a spectrophotometer
(UV-1800, Shimadzu, Tokyo, Japan) [16]. All experi-
ments were performed three times independently.

Biofilm formation assay

A static biofilm formation assay was performed in 96-well
polystyrene microtiter plates as previously described with
slight modifications [17]. In brief, cells from overnight cul-
tures were standardized to an optical density at 600 nm
(OD600) of 0.05. Two hundred microliters of the diluted
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cultures and various concentrations of AI-2 were added to
96-well microtiter plates (Costar, USA). After incubation
for 24 h at 37 °C without agitation, the medium was dis-
carded, and the plates were gently washed three times
with 200 pL phosphate-buffered saline (PBS). Then, the
plates were air dried and stained with 0.1 % crystal violet
for 5 min at room temperature. Unattached stain was re-
moved, and the plates were washed three times with PBS.
The bacteria-bound crystal violet was dissolved in 200 pL
95 % ethanol, and the absorbance was determined at
570 nm in the microplate reader.

Biofilm viability

P. aeruginosa PAOL1 cells were inoculated in LB broth at
an initial OD600 of 0.05 and added to a sterile 24-well
plate containing glass coverslips (Costar, USA) on which
various concentrations of AI-2 were applied. Cultures
were grown for 24 h without agitation at 37 °C. Cover-
slips were then rinsed three times with PBS and subse-
quently sonicated for 1 min (Tomy UD-201, Tokyo,
Japan) and vortexed for 1 min at room temperature.
Bacteria were harvested, enumerated by serial dilutions,
and plated on LB agar. Plates were incubated at 37 °C,
and bacterial counts were determined after 24 h.

Confocal laser scanning microscopy

P. aeruginosa PAO1 biofilms were established in 24-well
plates as mentioned earlier. Cultures were grown for
48 h without agitation at 37 °C. Coverslips were then
washed and stained with SYTO9/propidium iodide ac-
cording to the manufacturer’s instructions of the L.13152
LIVE/DEAD BacLight bacterial viability kit (Invitrogen
Molecular Probes, USA). After staining for 15 min in
the dark, biofilms were washed with sterile PBS to re-
move the planktonic dyes and bacteria, and then bio-
films were visualized by excitation with an argon laser at
488 nm (emission: 515 nm) and 543 nm (emission:
600 nm) under a Nikon AIR laser confocal microscope
(Nikon, Tokyo, Japan). Live bacteria were stained green
while dead bacteria were stained red.

Virulence factor assays

For the pyocyanin assay, overnight cultures were stan-
dardized to an OD600 of 0.5 and diluted 1:10 in pyocya-
nin production broth (PPB; 2 % proteose peptone
[Oxoid, UK], 1 % K;SO4 0.3 % MgCl,-6H,0) after
growth in LB medium. A 5-mL sample of diluted culture
with various concentrations of AI-2 was grown in PPB
for 24 h and then extracted with 3 mL chloroform. The
blue layer was re-extracted into 1 mL 0.2 M HC], yield-
ing a red solution. The absorbance was measured at
520 nm, and the pyocyanin concentration was deter-
mined by multiplying this measurement by 17.07 [18].
Elastase activity was measured using the elastin-Congo
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red (ECR) assay as previously described with moderate
modifications [16]. Briefly, overnight cultures were stan-
dardized to an OD600 of 0.5 and diluted 1:10 in peptone
tryptic soy broth (PTSB; 5 % peptone, 0.1 % tryptic soy
broth) after growth in LB medium. A 5-mL sample of di-
luted cultures with and without various concentrations
of AI-2 was grown in PTSB for 6 h, and 100 pL filtered
supernatant was added to 5-mL tubes containing 10 mg
of ECR (Sigma, USA), 900 pL 10 mM Tris HCI (pH 7.5),
and 1 mM CaCl,. The tubes were incubated for 4 h at
37 °C with shaking (250 rpm), followed by centrifugation
to remove unreacted substrate. The absorbance at
495 nm was measured.

RNA extraction and quantitative real-time PCR (qRT-PCR)

Overnight cultures of PAOL at an initial OD600 of 0.05
were washed and then inoculated into fresh LB medium
supplemented with various concentrations of AI-2 (0.1
nM to 1 pM) at an initial OD600 of 0.05. Cultures were
grown at 37 °C with agitation for 24 h. Total RNA was ex-
tracted and purified using the TaKaRa Minibest Universal
RNA Extraction Kit (TaKaRa, Japan) according to the
manufacturer’s instructions. The concentration and purity
of extracted total RNA was determined by ultraviolet ab-
sorption (260/280 nm) using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop Technologies, Wilmington,
DE, USA). The first-strand cDNA was generated from a
purified mRNA sample using a PrimeScript RT reagent
Kit with gDNA Eraser (TaKaRa). Real-time PCR was

Table 1 PCR primers for real-time RT-PCR
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carried out using the SsoFast Evagreen Supermix Kit (Bio-
Rad, CA, USA) with a Bio-Rad Real-Time PCR instru-
ment. The reaction procedure was performed as follows:
95 °C for 30 s, 40 cycles of 95 °C for 5 s, and 60 °C for 5 s,
and a final melting curve analysis from 65 °C to 95 °C,
with increments of 0.5 °C every 5 s. Real-time PCR ampli-
fications were conducted in triplicate.

Primer sequences for P. aeruginosa QS genes and
virulence genes were used as described previously
(Table 1). The ribosomal gene rpsL was chosen as a
housekeeping gene to normalize the qRT-PCR data and
to calculate the relative fold changes in gene expression.
Amplification profiles were analyzed using Bio-Rad
Manager Software, and cycle threshold (Ct) values for
each target gene were normalized to the geometric
mean of the Ct of rpsL amplified from the correspond-
ing sample. The fold change of target genes for each
group with respect to the control group was calculated
using the AACt method.

Statistical analysis

Continuous data from this study were expressed as
means * standard deviation. Independent unpaired data
were analyzed using the Student’s t-test. One-way ana-
lysis of variance was used for multi-group comparisons.
Statistical analyses were performed using SPSS version
17.0 (SPSS, Inc., Chicago, IL, USA). P < 0.05 was consid-
ered to be statistically significant.

Gene Primer direction Sequence(5-3') Amplicon size (bp)

lasl Forward GGCTGGGACGTTAGTGTCAT 104
Reverse AAAACCTGGGCTTCAGGAGT

lasR Forward ACGCTCAAGTGGAAAATTGG m
Reverse TCGTAGTCCTGGCTGTCCTT

rhil Forward AAGGACGTCTTCGCCTACCT 130
Reverse GCAGGCTGGACCAGAATATC

rhiR Forward CATCCGATGCTGATGTCCAACC 101
Reverse ATGATGGCGATTTCCCCGGAAC

lasA Forward GCGCGACAAGAGCGAATAC 94
Reverse CGGCCCGGATTGCAT

lasB Forward AGACCGAGAATGACAAAGTGGAA 81
Reverse GGTAGGAGACGTTGTAGACCAGTTG

phzH Forward TGCGCGAGT TCAGCCACCTG 214
Reverse TCCGGGACATAGTCGGCGCA

rhiA Forward TGGCCGAACATTTCAACGT 107
Reverse GATTTCCACCTCGTCGTCCTT

rpsL Forward GCAACTATCAACCAGCTGGTG 231
Reverse GCTGTGCTCTTGCAGGTTGTG
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Results

Effects of Al-2 on P. aeruginosa growth

To test the impact of AI-2 on P. aeruginosa biofilm for-
mation and virulence, we first investigated its effect on
planktonic bacterial growth. The 1-uM concentration of
AI-2 did not influence the growth of the planktonic cul-
tures (Fig. 1).

Effects of Al-2 on biofilm formation

A dose-dependent effect of AI-2 on the biofilm forma-
tion of P. aeruginosa PAO1 was observed as demon-
strated in Fig. 2. Biofilm formation increased in the
presence of 0.1 nM, 1 nM, and 10 nM AI-2 with a 1.1-,
1.3-, and 1.4-fold increase in biofilm biomass compared
to the negative control. It should be noted that 10 nM
AI-2 had the greatest impact on P. aeruginosa PAO1
biofilm formation (P <0.05). However, higher concen-
trations (100 nM and 1 pM AI-2) resulted in a lower
biofilm biomass increase than 10 nM AI-2.

Consistent findings were also demonstrated by con-
focal laser scanning microscopy. Increased Al-2 concen-
trations led to increased biofilm formation and the
promotion of the three-dimensional structure of the bio-
film (Fig. 3). A dense and compact biofilm was observed
in the 10 nM AI-2 group, and the number of viable bac-
teria in the control was less than that in the 1 nM and
10 nM AI-2 groups. Furthermore, the biofilm thickness
in the 1 nM and 10 nM AI-2 groups was significantly in-
creased compared with that in the control group (Fig. 4).

Biofilm viability

The mean number of bacteria recovered from the biofilms
(Fig. 5) in the 1 nM AI-2 group (2.16 x 10® cfu/cm?), 10
nM AI-2 group (2.64x10°® cfu/cm?), and 100 nM AI-2
group (2.05x 10° cfu/cm?) was significantly greater than
that in the control group (1.62 x 10% cfu/ecm?) (P<0.05).
However, the mean number of bacteria in the 0.1 nM AI-2

9.5+
Control

0.1nM
1nM
10nM
100nM
1uM

Logqo CFU
IR R RSN

7.5 T T
0 10 20 3

Time(h)

o

Fig. 1 Effects of Al-2 on planktonic growth of P. aeruginosa PAO1. Cells
were grown in LB medium, in the presence of different concentrations
of Al-2 (0.1nM, TnM, 10nM, 100nM and 1 uM). The data represent mean
values of three independent experiments. Error bars represent the
standard errors of the means
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Fig. 2 Effects of Al-2 on P. geruginosa PAO1 biofilm formation. Biofilm
formation was assessed by crystal violet after static incubation at 37 °C
for 24 h. Error bars represent SEM and all experiments were performed
in triplicate with three independent assays; Triangles denote a
statistically significant difference from the control (P < 0.05).
Squares denote a statistically significant difference from the
10nM Al-2 group (P < 0.05)

group (1.8 x 10°® cfu/cm®) and the 1 uM AI-2 group
(1.66 x 10° cfu/cm®) was slightly greater than that in
the control group, but the increase was not significant
(P> 0.05). These results were consistent with biofilm
morphology changes and suggest that AI-2 increases
the viability of P. aeruginosa PAO1 biofilms.

Induction of virulence factor production

To study the impact of AI-2 on P. aeruginosa virulence,
two important factors, namely pyocyanin and elastase,
which are controlled by QS were measured [19]. The
activity of both pyocyanin and elastase in PAO1 were
increased by AI-2 in a dose-dependent manner (Fig. 6a
and b). A significant increase (P < 0.05) in pyocyanin and
elastase production was observed in the presence of 1
nM and 10 nM AI-2.

Gene expression analysis with gRT-PCR

QS is the most important regulator of biofilm formation
by P. aeruginosa. To investigate whether the effect of
AI-2 on the virulence of P. aeruginosa was the result of
interference with QS, qRT-PCR was used to monitor the
expression of QS-associated genes. The mRNA level of
QS genes and virulence genes of P. aeruginosa biofilms,
including rhll, rhiIR, lasl, lasR (QS-associated genes),
lasA (encoding protease), lasB (encoding elastase), phzH
(encoding pyocyanin), and rhlA (encoding rhamnosyl-
transferase), increased with increasing AI-2 concentra-
tions (from 0 to 10 nM) and decreased with 100 nM and
1 pM AI-2 (Table 2), which was consistent with the
morphology changes. Especially, with 10 nM AI-2, the
expression of lasl, lasR, rhll, rhiR, lasA, lasB, phzH, and
rhlA was increased by 2.3-, 1.1-, 1.3-, 2.5-, 10-, 11-, 9.5-,
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Fig. 3 Confocal laser scanning micrographs of 2-day P. aeruginosa PAO1 biofilms treated under different concentrations of Al-2 (x400). Bacterial
viability was determined using L13152 LIVE/DEAD BacLight bacterial viability kit. a No exposure to Al-2; b Exposure to 1nM Al-2; ¢ Exposure to
10nM Al-2. Cells staining red are considered dead while cells staining green are viable cells. The scale bar represents 20 um

J

and 3.7-fold, respectively; these increases were statisti- Discussion

cally significant when normalized to a control gene (P<  P. aeruginosa is a prevalent environmental bacterium
0.05). These results indicated that exogenous AI-2 could that is responsible for various recalcitrant infections in
up-regulate the expression of QS-associated genes of P.  humans. It is also one of the most prevalent isolates in
aeruginosa PAOL. sputum samples of neonates with VAP [20]. In this
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Fig. 5 Enumeration of viable bacteria under different concentrations
of Al-2. Data represent the means and standard deviations of three
independent experiments. Triangles denote a statistically significant
difference from the control (P < 0.05). Squares denote a statistically
significant difference from the 10nM Al-2 group (P < 0.05)

Control0.i1nM 1nM 10nM 100nM 1uM

Fig. 4 Comparison of biofilm thickness under different concentrations
of Al-2. Data represent the average of three image stacks collected
from randomly selected areas. Triangles denote a statistically significant
difference from the control (P < 0.05). Squares denote a statistically
significant difference from the 10nM Al-2 group (P < 0.05)
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Fig. 6 Effects of Al-2 on the production of virulence factors of Pnn
aeruginosa PAO1. a Relative productions of virulence factors of
pyocyanin. b Elastase activity. Triangles denote a statistically significant
difference from the control (P < 0.05). Squares denote a statistically
significant difference from the 10nM Al-2 group (P < 0.05)

study, we demonstrated that AI-2 induced virulence fac-
tor production, biofilm biomass, and bacterial viability of
P. aeruginosa PAOL in a dose-dependent manner, and
AI-2 did not impact its planktonic growth. Furthermore,
AI-2 influenced the expression of QS-associated genes

Table 2 QS and virulence genes regulated by Al-2 of P.
aeruginosa biofilm

Gene Fold change in expression

0 01nM 1 nM 10 nM 100 nM 1 uM
las! 1 19+01 27+02%  33+02*% 22+018% 2+02*
lasR 1 13x01 194016 21+023* 13+016 13+02
rhil 1 15+£017 21+£01* 23+£013* 174016 1.2+0.1
rhiR T 21+02% 34+03*% 35+024* 22+013* 18+03
lasA T 43+016% 51+£027% 11+£021* 4+021* 3+0.18*
lasB 1 4+£014* 58+045% 127+17% 5+0.15% 28+0.13*%
phzH 1 36+£034* 58+067* 106+£07* 38+0.16% 33+022*
rhiA 1 22+016% 37+033*% 48+056* 23+014* 21+40.14%

Values marked with an asterisk (¥) indicate that the fold change of relative
gene expression level of P. aeruginosa PAO1 in the presence of different
concentrations of Al-2 was significantly different from negative control

at P<0.05
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(e.g., lasl, lasR, rhll, and rhIR). This indicated that AI-2
affected the virulence of P. aeruginosa by inducing the
activity of the QS systems.

Although the role of AI-2 as a general bacterial signaling
molecule is yet to be completely unraveled, AI-2 is known
to be involved in biofilm formation. AI-2 inhibits biofilm
formation in Bacillus cereus [21], Candida albicans [22],
and Eikenella corrodens [23], and it promotes biofilm for-
mation in Escherichia coli [24], Streptococcus mutans [25],
and multispecies biofilms between the two oral bacteria
Streptococcus gordonii and Porphyromonas gingivalis [26].
The addition of exogenous AI-2 to P. aeruginosa biofilms
increased biofilm formation, indicating that P. aeruginosa
responds to the molecule. This study revealed that AI-2
can be a parainducer as a QS molecule regulating P. aeru-
ginosa biofilms.

A similar concentration-dependent effect of AI-2 on
biofilm formation has been reported for Streptococcus
suis [27], Bacillus cereus [21], Streptococcus oralis [28],
and Mycobacterium avium [14]. A previous study by
Duan et al. [12] demonstrated that AI-2 was detected in
sputum samples from patients with cystic fibrosis, and
AI-2 regulated gene expression patterns and pathogen-
esis of P. aeruginosa. However, the mechanism is not
known. In addition, Duan et al. found that the important
virulence genes lasA and exotoxin genes exoS and exoY
were not regulated by AI-2. This phenomenon may be at-
tributed to the too high or too low concentration of AI-2
because our results showed that the lasA gene was affected
by AI-2. Furthermore, we found that in vitro co-culture of
the AI-2 producer Streptococcus mitis and P. aeruginosa
PAO1 promoted P. aeruginosa PAO1 biofilm formation at
certain concentrations (data not shown). It also has been
suggested that the LuxS enzyme regulates metabolic pro-
cesses in a large range of bacteria [29, 30]. In the present
study, we found that AI-2 regulated the metabolic rate of
cells in P. aeruginosa PAO1 biofilms. First, more viable
cells were observed in the AI-2 group by confocal laser
scanning microscopy, and plating experiments revealed
that the bacterial reproduction of the AI-2 group is faster
than that of the control group. Second, the i/ QS system
is a metabolic regulator for P. aeruginosa [31]. In this
study, the increased expression levels of the rhll and rhiR
genes, which are related to bacterial metabolism, may lead
to increased biofilm formation and metabolic rate as the
concentration of AI-2 increased.

AI-2 is a cell-signaling regulator of P. aeruginosa. It
contributes substantially to the biofilm formation of
P. aeruginosa and plays an important role in the
pathogenesis of P. aeruginosa infections. This phenomenon
may be due to the up-regulation of QS genes and virulence
factor genes such as lasB, lasA, and phzH, which mediate
the production of virulence factors. In fact, up-regulated
transcription of autoinducer synthase (las/ and rhll) and
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their cognate receptor (lasR and rhlR) genes may be re-
sponsible for the induction of PAO1 biofilm formation and
secretion of elastase and pyocyanin because QS genes also
mediate virulence factor genes.

Conclusions

Taken together, this study demonstrated that AI-2 in-
creased P. aeruginosa PAO1 biofilm formation, bacterial
viability, and virulence production in a dose-dependent
manner. Possible mechanisms responsible for the effect
of AI-2 may involve the up-regulation of QS systems.
Our results support the significance of intercellular sig-
naling in bacterial survival strategies and emerging views
on interference with bacterial signaling as a novel means
of combating P. aeruginosa infections.
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