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Abstract

acetate (TPA) stimulation.

applications that include proteomic analysis.

Background: Highly purified nuclear protein is required when using an electrophoretic mobility shift assay (EMSA)
to study transcription factors, e.g. nuclear factor-kB (NF-kB), a major transcription factor that regulates both innate
and adaptive immune responses following infection. Although many protocols have been developed for nuclear
protein extraction, they are not necessarily optimized for use in EMSA, often require a large number of cells and
long processing times, and do not always result in complete separation of the nuclear and cytoplasmic fractions.

Results: We have developed a simple, rapid and cost-effective method to prepare highly purified nuclear proteins
from a small number of both suspended and adherent cultured cells that yields nuclear proteins comparable to

those prepared by a standard large-scale method. The efficiency of the method was demonstrated by using EMSA
to show the successful detection, in multilple concurrent samples, of NF-kB activation upon tetradecanoy! phorbol

Conclusions: This method requires only a small number of cells and no specialized equipment. The steps have
been simplified, resulting in a short processing time, which allows researchers to process multiple samples
simultaneously and quickly. This method is especially optimized for use in EMSA, and may be useful for other
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Background

Infection and subsequent initiation of the innate immune
response result in a rapid secretion of inflammatory cyto-
kines through activation of various transcription factors.
Among those transcription factors, nuclear factor-kB (NF-
kB), which usually exists as a heterodimer formed between
subunits p50 and RelA/p65, plays a central role in both
innate and adaptive immune responses [1-3]. In unstimu-
lated cells, NF-«kB exists in the cytoplasm as an inactive
form sequestered by the inhibitor protein IkB [4]. Upon
stimulation by a variety of stimuli, including bacterial lipo-
polysaccharide (LPS) [5], tumor necrosis factor o (TNF-a)
[6], interleukin-1p (IL-1P) [7] and reactive oxygen species
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(ROS) [8], IxkB is degraded by IkB kinase (IKK), thus
unmasking nuclear localization signals (NLS) that allow
NF-kB to enter the nucleus, where it orchestrates the
transcription of specific genes [9].

The electrophoretic mobility shift assay (EMSA), a
common affinity electrophoresis technique used to study
protein-nucleic acid interactions, is often employed to
demonstrate the binding of the active form of nuclear
NF-kB to its DNA recognition sequence at several time
points following a particular stimulation. The first and
possibly the most crucial step in ensuring accurate
detection of NF-kB binding and stoichiometry by EMSA
is purification of nuclear protein extracts that contain
DNA-binding proteins with no contamination by the
cytoplasmic fraction.

Many basic protocols for the extraction of whole nu-
clear protein, and modified protocols to further separate
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subnuclear proteins (e.g nucleoplasmic proteins, nucle-
olar proteins, and histone proteins), have been published
in the 70 years since subcellular fractionation was intro-
duced [10-22]. Today, a wide range of commercial prod-
ucts, although much more costly, are available for more
convenient application of subcellular fractionation, and a
number of procedures have been optimized for use in
proteomic studies [14,23-25]. Indeed, nuclear protein
extraction procedures should be optimized for starting
material (cultured cells or tissues), scale (numbers of cells
and samples), downstream applications and available time
and cost. However, we noted several drawbacks when
using previously reported procedures. They were laborious
and time-consuming, required large (15 ml) centrifuge
tubes, and necessitated a large number of cells. In re-
sponse, we developed a novel EMSA protocol that allows
examination of the binding and stoichiometry of nuclear
NF-kB in a small quantity of cultured cells (e.g. cells from
one well in a 6-well plate).

We describe here a new small-scale method that can
yield ready-to-use high-purity nuclear proteins optimized
for use in EMSA. It is rapid and cost-effective, allowing
the simultaneous and rapid processing of multiple samples
in the same batch experiment. The method is highly
efficient, as demonstrated by the simultaneous detection
of NF-kB activation and binding in multiple samples of
THP-1 human monocyte cells and FRTL-5 rat thyroid
epithelial cells upon stimulation of tetradecanoyl phorbol
acetate (TPA).

Results and discussion

New homogenization method for small-scale preparation
of nuclear extracts

The basic principle underlying subcellular fractionation
procedures is that each cellular organelle or component
(e.g. cytoplasm and nucleus) has a distinct molecular
composition, size, shape, density, and solubility. The first
step in preparing nuclear proteins is to gently break
open, or homogenize, the cells, enabling separation of
the cytoplasm and nucleus. Homogenization can be
achieved by osmotic shock, mechanical force, sonication,
or combinations of these techniques. We modified previ-
ously reported methods [15,26] and developed a new
homogenization protocol that can be used with a small
quantity of cells (5x10° cells). In this modified proced-
ure, collected cells are resuspended in a hypo-osmotic
lysis buffer, while 2% Tween-40 (a non-denaturing non-
ionic detergent) solubilizes and disrupts cytoplasmic
membranes. However, hypo-osmotic lysis buffer alone is
often insufficient to ensure full release of nuclei from
cells, which, in our experience, is the most important
step for avoiding contamination by cytosolic proteins. As
shown in Figure 1A, human monocytic leukemia THP-1
cells suspended in the hypo-osmotic lysis buffer still
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Figure 1 Efficient release of nuclei from cells using hypo-osmotic
buffer and pipetting. Phase-contrast microscopic image of THP-1
cells in Lysis Buffer before (A) and after (B) pipetting through a 200-pl
pipette tip. Original magnification: x200. Arrowheads indicate membrane
components around the nuclei that were observed before (A), but not

after (B), pipetting.

have membrane components (arrowheads) around the
nuclei, indicating a need for mechanical force.

Mechanical force to rupture cells is most often achieved
using the glass Dounce homogenizer [15,22,24,27-30];
however, such specialized equipment is not suitable for a
small-scale method. During preliminary experiments, we
found that pipetting cells in hypo-osmotic lysis buffer
through a conventional 200-pl pipette tip 60—-200 times is
sufficient to completely release nuclei and yield high-
purity nuclear protein in cultured hematopoietic, fibro-
blasts and epithelial cell lines. Nuclear protein yields may
depend on the number of passes: drawing lysate through
the pipette tip 100 times gave satisfactory results in all cell
lines tested in our preliminary experiments. Microscopic
observation is used to determine whether nuclei are com-
pletely released from cells and ready for separation from
the cytoplasmic fraction (Figure 1B).

Optimizing separation of nuclear and cytoplasmic fractions
Two types of centrifugation are usually used for fraction-
ation: differential centrifugation and sucrose density gradi-
ent centrifugation. It is believed that differential centri
fugation yields crude fractions, while purer fractions are
obtained from density gradient centrifugation. A sucrose
density gradient solution is prepared by overlaying sucrose
solutions (at different concentrations) in order of their
densities (concentrations) in a centrifuge tube, with the
heaviest solution at the bottom. Samples placed on top of
the solution will travel down the gradient during centrifuga-
tion until reaching a sucrose solution of matching density.
Thus, density gradient centrifugation allows further separ-
ation of cellular components according to their densities
and minimizes cross-contamination. To minimize contam-
ination by the cytoplasmic fraction, we incorporated
sucrose density gradient centrifugation into this procedure
using an isotonic 0.3-1.5 M sucrose density gradient. The
intermediate phase between 0.3 M and 1.5 M sucrose
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solutions can be retained as cytoplasmic fractions, while
pure nuclei extracts are pelleted to the bottom of the tube.
Washing nuclei pellets in low-salt wash buffer after sucrose
density gradient centrifugation also minimizes contamin-
ation from the cytoplasmic fraction.

High salt extraction is an efficient method for small-scale
nuclear protein extraction

In large-scale methods, tip sonication is often applied to
extract the nuclear proteins after nuclei extracts are ob-
tained [22,27,30,31]. In a small-scale procedure, high-salt
extraction is more practical [23,25]. During this step,
nuclei incubated in a high-salt extraction buffer will shrink
and nucleic acid-binding proteins, including transcription
factors, will be extracted through the nuclear pores and
solubilized in the extraction buffer [15]. Following cen-
trifugation, the supernatant (less than 50 pl) contains
high-concentration high-purity nuclear proteins. Since
this procedure generates a high concentration of nuclear
proteins, a small volume of protein can be added directly
to the EMSA reaction mixture without a laborious dialysis
step to remove salts.

Validation of the new small-scale nuclear protein extraction
method

Nuclear proteins prepared using this method were used
to evaluate the activated form of nuclear NF-«kB in THP-
1 cells treated with increasing concentrations of TPA, a
drug that can induce cell activation, proliferation and
cytokine production via stimulation of the NF-«B tran-
scription factor [1,32-36]. THP-1 cells were stimulated
with TPA for 30 minutes before nuclear protein was iso-
lated and used in EMSA. As shown in Figure 2, levels of
the active form of NF-«B increased with increasing con-
centrations of TPA (Figure 2 lanes 1-3). When an ex-
cess amount of unlabeled probe was added, the band
representing the protein-DNA complex was eliminated
(Figure 2, lane 4), indicating that the visualized band
was indeed formed by NF-«kB, not by non-specific
protein-DNA binding.

We then tested this method using adherent epithelial
cells, from which nuclei release appeared to be more
difficult than in hematopoietic THP-1 cells. FRTL-5
cells stimulated by 5 nM TPA for 30 minutes were
scraped from a 6-well cell culture plate and pelleted in
1.5-ml microcentrifuge tubes. Nuclear proteins were
then purified using our newly developed small-scale
method. For comparison, nuclear proteins were also
prepared using a standard large-scale method for highly
purified nuclear protein extraction that requires at least
1x10° cells and homogenization using a Dounce glass
homogenizer [15]. Whole cell proteins containing both
active and inactive forms of NF-kB were also prepared
using a method described previously [37]. EMSA
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Figure 2 Nuclear protein extracts contain active NF-kB
heterodimers. Non-adherent monocytic THP-1 cells were
stimulated by TPA at the indicated concentrations for 30 minutes.
Nuclear proteins were subsequently purified from THP-1 cells and
EMSA was performed using an NF-kB-specific DNA probe (lanes
1-3). For specific competition experiments, unlabeled excess
(125-fold molar) probe was pre-added to the proteins (lane 4).

detection of NF-kB clearly illustrated that the quality of
nuclear proteins purified using the present method
(Figure 3, lanes 1 and 2) is comparable to that of pro-
teins prepared by the previous large-scale method [15]
(Figure 3, lanes 3 and 4) with no contaminating cyto-
plasmic fractions, which is clearly visible in EMSA
using whole cell proteins (Figure 3, lane 5).
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Figure 3 Nuclear protein extracts are comparable to those
prepared by a standard large-scale method. Adherent rat thyroid
FRTL-5 cells were stimulated by 50 nM TPA for 30 minutes. Nuclear
proteins were subsequently purified using the new small-scale
method (lanes 1 and 2) or an established large-scale method [15]
(lanes 3 and 4). Whole cellular protein was also isolated [37] from
TPA-treated cells to illustrate the presence of the cytoplasmic form
of NF-kB (lane 5). EMSA was performed using an NF-kB-specific

DNA probe.
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Thus, EMSA results clearly demonstrated NF-kB activa-
tion after TPA stimulation in two cell types, showing that
this simplified small-scale extraction of nuclear proteins is
highly effective for downstream EMSA applications.

Conclusions

We have developed a simplified method of obtaining
high-purity nuclear protein for use in EMSA. The method
uses significantly fewer cultured cells than current con-
ventional methods (up to 4 logs less). Key procedures are
disruption of the plasma membrane by pipetting cells
through a conventional 200-pl pipette tip in a hypo-osmic
solution containing detergent, separation of nuclei by
sucrose density gradient centrifugation, and high-salt
extraction of nuclear proteins. Multiple samples can be
processed simultaneously as all the procedures are per-
formed in a conventional 1.5-ml microcentrifuge tube.
Using this method, nuclear proteins can be prepared in a
short time from both suspended and adherent cultured
cells, which may be compatible with use in proteomic
assays as well.

Methods

Cell culture and TPA stimulation

THP-1, a human monocytic leukemia cell line, was ob-
tained from the American Type Culture Collection (ATCGC;
Manassas, VA) and cultured in RPMI medium supple-
mented with 10% charcoal-treated fetal bovine serum, 2%
nonessential amino acids, and 50 mg/ml penicillin/strepto-
mycin as described [38,39]. Rat thyroid FRTL-5 cells pro-
vided by Interthyr Research Foundation (Athens, OH) were
maintained in Coon’s modified Ham’s F-12 medium supple-
mented with 5% bovine serum (Invitrogen, Carlsbad, CA)
and a six-hormone mixture as previously described [40,41].
For TPA stimulation, culture medium was replaced, 30 mi-
nutes before nuclear protein was extracted, with the same
medium containing 5 nM or 50 nM of TPA.

Nuclear protein extraction
Reagents

Dithiothreitol (DTT) (Sigma cat. No. D0632)
Dulbecco’s modified phosphate buffered saline (DPBS)
(Sigma cat. No. D1283)

Ethylenediaminetetraacetic acid (EDTA) (Sigma cat.
No. EDS)

Glycerol (Sigma cat. No. G5516)

HEPES (Sigma cat. No. H3375)

Leupeptin (Sigma cat. No. L2884)

Magnesium chloride (MgCl,) (Sigma cat. No. M8266)
Potassium chloride (KCI) (Sigma cat. No. P9333)
Potassium hydroxide (KOH) (Sigma cat. No. P5958)
Phenylmethanesulfonyl fluoride (PMSF)

(Sigma cat. No. P7626)
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Pepstatin A (Sigma cat. No. P5318)

Protease inhibitor cocktail tablets (Roche cat.
No. 11697498001)

Sodium chloride (NaCl) (Sigma cat. No. S7653)
Sucrose (Sigma cat. No. S7903)

Tween-40 (Sigma cat. No. P1504)

Solutions
Low-salt wash buffer: 10 mM HEPES-KOH pH 7.9,
10 mM KCl, 1.5 mM MgCl,, 0.1 mM EDTA, 0.5 mM
DTT, 0.5 mM PMSE 2 ng/ml pepstatin A, and 2 ng/ml
leupeptin.

Hypo-osmotic lysis buffer: 0.3 M sucrose, 2% (v/v)
Tween 40, 10 mM HEPES-KOH pH 7.9, 10 mM KC],
1.5 mM MgCl,, 0.1 mM EDTA, 0.5 mM DTT, 0.5 mM
PMSE, 2 ng/ml pepstatin A, and 2 ng/ml leupeptin.

1.5 M sucrose buffer: 1.5 M sucrose, 10 mM HEPES-
KOH pH 7.9, 10 mM KCl, 1.5 mM MgCl,, 0.1 mM EDTA,
0.5 mM DTT, 0.5 mM PMSE, 2 ng/ml pepstatin A, and
2 ng/ml leupeptin.

High-salt extraction buffer: 20 mM HEPES-KOH
pH 7.9, 420 mM NaCl, 1.5 mM MgCl,, 0.2 mM EDTA,
25% glycerol, 0.5 mM DTT, 0.5 mM PMSE, 2 ng/ml pep-
statin A, and 2 ng/ml leupeptin.

Protease inhibitors including DTT, PMSF, pepstatin A,
and leupeptin were added immediately prior to use. On
occasion, a protease inhibitor cocktail tablet (Roche) was
used instead. Hypo-osmotic lysis buffer and 1.5 M sucrose
buffer were prepared by adding sucrose and Tween-40 or
sucrose to low-salt wash buffer at the indicated
concentrations.

Equipment

Table-top Microcentrifuge (Eppendrof 5415D)
Inverted routine microscope (Nikon Eclipse TS100)
with high-definition digital camera (Nikon DS-Fil)
Micropipettes

Pipette tips

1.5-ml microcentrifuge tubes

Protocol

In the following procedure, all samples, reagents and tubes
were pre-chilled and kept on ice. All centrifugations were
performed in a table-top microcentrifuge at 12,000 rpm
and 4°C. Typically, 5x10° cells were collected and pelleted
by centrifugation for 30 seconds in a 1.5-ml microcentri-
fuge tube. The supernatants were removed and the cell
pellets were resuspended and washed in 1 ml of ice-cold
Dulbecco’s modified phosphate buffered saline (DPBS).
After another centrifugation, pellet, packed cell volume
(pcv) was estimated, and the pellets were resuspended in a
volume of hypo-osmotic lysis buffer 5 times the pcv. At
this point, samples can be stored at —80°C until needed
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(thaw in a 37°C water bath prior to use). Cells were ho-
mogenized by pipetting 100 times using a micropipette
with a 200-ul pipette tip. Enucleated samples were over-
laid on 1 ml of 1.5 M sucrose buffer and centrifuged for
10 minutes. Purity of the nuclei and distribution of other
cellular components before and after sucrose density gradi-
ent centrifugation were checked by examinating a small ali-
quot of sample under a phase contrast microscope.
Supernatants were removed after centrifugation and the
nuclear pellets were resuspended in 1 ml of low-salt wash
buffer and pelleted again by centrifugation for 30 seconds.
After the supernatants were removed, the washed nuclear
pellets (retained as cleaner nuclei) were resuspended in
50 pl of high-salt extraction buffer and placed on ice for
20 minutes with occasional vortexing. Following 20 minutes
of extraction, the samples were centrifuged for 20 minutes
and the supernatants were retained as high-purity nuclear
proteins.

Determination of protein concentration

Protein concentration was determined using DC protein
assay reagents (BIO-RAD, CA) according to the manu-
facturer’s instructions [40,41]. Specific absorbance at
750 nm was measured using a VMax Kinetic Microplate
Reader (Molecular Devices, Sunnyvale, CA).

EMSA
EMSA was performed with the DIG Gel Shift Kit, 2nd
Generation (Roche, Basel, Switzerland) according to the
manufacturer’s instructions. Briefly, a double-stranded
DNA probe specific for NF-kB responsive element (5'-
AGTTGAGGGGACTTTCCCAGGC-3") was labeled with
digoxigenin-11-ddUTP. Nuclear protein samples (0.2 pg)
were mixed with 0.4 ng of labeled DNA probe. For the
competition assay, 125-fold molar excess unlabeled DNA
probe was premixed with the protein for 20 minutes before
labeled DNA probe was added. The mixture was electro-
phoresed on a 6% (v/v) non-denaturing polyacrylamide gel
in 0.5x Tris-boric acid-electrophoresis (TBE) buffer at 4°C.
Following electrophoresis, protein was transferred from the
gel to a positively charged nylon membrane by electroblot-
ting. Digoxigenin-labeled complexes on the membrane
were detected using an alkaline phosphatase-conjugated
anti-digoxigenin antibody (1:10,000) and its chemilumines-
cent substrate disodium 3-(4-methoxyspiro {1,2-dioxetane-
3,2"-(5"-chloro) tricyclo [3.3.1.13,7]decanj-4-yl)phenyl phos-
phate (CSPD), both provided in the kit. Chemiluminescent
signals were visualized by exposing the membranes to X-ray
film.

All reagents were purchased from Sigma-Aldrich
(St. Louis, MO) unless otherwise indicated.

Competing interests
The authors declare that they have no competing interests.

Page 5 of 6

Authors’ contributions

YL and TH performed cell culturing, nuclear protein extraction and EMSA. YI,
AY and KO participated in the experimental design and data analysis. MM
and NI conceptualized the study and helped with experimental design. NH
and KS assisted with experimental design and drafted the manuscirpt. All
authors read and approved the final manuscript.

Acknowledgements

The authors wish to thank Drs. Akira Kawashima, Takeshi Akama and
Kazunari Tanigawa for evaluating this method. This work was supported by a
Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology of Japan (KS. and N.I), and Grant-in-Aid for
Research on Emerging and Reemerging Infectious Diseases from the Ministry
of Health, Labor, and Welfare of Japan (KS. and N..).

Author details

'Laboratory of Molecular Diagnostics, Department of Mycobacteriology,
Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1
Aoba-cho, Higashimurayama-shi 189-0002, Tokyo, Japan. “Department of
Mycobacteriology, Leprosy Research Center, National Institute of Infectious
Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi 189-0002, Tokyo, Japan.
3Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1
Aoba-cho, Higashimurayama-shi 189-0002, Tokyo, Japan. “Department of
Education Planning and Development, Faculty of Medicine, Toho University,
Tokyo 143-8540, Japan.

Received: 13 August 2014 Accepted: 12 December 2014
Published online: 20 December 2014

References

1. Nabel G, Baltimore D: An inducible transcription factor activates
expression of human immunodeficiency virus in T cells. Nature 1987,
326:711-713.

2. Hayden MS, West AP, Ghosh S: NF-kappaB and the immune response.
Oncogene 2006, 25:6758-6780.

3. Gerondakis S, Fulford TS, Messina NL, Grumont RJ: NF-kappaB control of T
cell development. Nat Immunol 2014, 15:15-25.

4. Malek S, Chen Y, Huxford T, Ghosh G: IkappaBbeta, but not IkappaBalpha,
functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by
masking both NF-kappaB nuclear localization sequences in resting cells.
J Biol Chem 2001, 276:45225-45235.

5. Qin H, Wilson CA, Lee SJ, Zhao X, Benveniste EN: LPS induces CD40 gene
expression through the activation of NF-kappaB and STAT-1alpha in
macrophages and microglia. Blood 2005, 106:3114-3122.

6. Shea LM, Beehler C, Schwartz M, Shenkar R, Tuder R, Abraham E: Hyperoxia
activates NF-kappaB and increases TNF-alpha and IFN-gamma gene
expression in mouse pulmonary lymphocytes. J Immunol 1996, 157:3902-3908.

7. Brigelius-Flohe R, Friedrichs B, Maurer S, Schultz M, Streicher R: Interleukin-
1-induced nuclear factor kappa B activation is inhibited by
overexpression of phospholipid hydroperoxide glutathione peroxidase
in a human endothelial cell line. Biochem J 1997, 328(Pt 1):199-203.

8. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT: Role of oxidants in
NF-kappa B activation and TNF-alpha gene transcription induced by
hypoxia and endotoxin. J Immunol 2000, 165:1013-1021.

9. Hinz M, Scheidereit C: The lkappaB kinase complex in NF-kappaB
regulation and beyond. EMBO Rep 2014, 15:46-61.

10.  Claude A: Fractionation of mammalian liver cells by differential
centrifugation; problems, methods, and preparation of extract.

J Exp Med 1946, 84:51-59.

11. Claude A: Fractionation of mammalian liver cells by differential
centrifugation; experimental procedures and results. J Exp Med 1946,
84:61-89.

12. Berthet J, De Duve C: Tissue fractionation studies. I. The existence of a
mitochondria-linked, enzymically inactive form of acid phosphatase in
rat-liver tissue. Biochem J 1951, 50:174-181.

13.  Fleischer B, Smigel M: Solubilization and properties of galactosyltransferase
and sulfotransferase activities of Golgi membranes in Triton X-100. J Bio/
Chem 1978, 253:1632-1638.

14. Dignam JD, Martin PL, Shastry BS, Roeder RG: Eukaryotic gene
transcription with purified components. Methods Enzymol 1983,
101:582-598.



Luo et al. BMC Immunology (2014) 15:586

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

Hennighausen L, Lubon H: Interaction of protein with DNA in vitro.
Methods Enzymol 1987, 152:721-735.

Carraway KL, Carraway CAC: The Cytoskeleton: A Practical Approach. Oxford
University Press; Oxford, UK: 1992.

Celis JE: Cell Biology. Elsevier Science & Technology Books; Amsterdam,
Netherland: 2005.

Dutta A: Experimental Biology: A Laboratory Manual. Alpha Science
International, Limited; Oxford, UK: 2009.

Latchman DS: Transcription Factors: A Practical Approach. Oxford University
Press; Oxford, UK: 1999.

Muramatus M, Onishi T: Chromatin and chromosomal protein research. In
Methods in Cell Biology. XVIith edition. Edited by Stein G, Stein J, Kleinsmith
LJ. Acedemic Press; New York: 1978:141-161.

Spector DL, Goldman RD, Leinwand LA: Culture and Biochemical Analysis
of Cells. In Cells: A Laboratory Manual. Volume 1. Edited by Spector DL,
Goldman RD, Leinwand LA: Cold Spring Harbor Laboratory Press; New York,
USA: 1998.

Abmayr SM, Yao T, Parmely T, Workman JL: Preparation of nuclear and
cytoplasmic extracts from mammalian cells. Curr Protoc Mol Biol 2006,
Chapter 12:Unit 12 11.

Andrews NC, Faller DV: A rapid micropreparation technique for extraction
of DNA-binding proteins from limiting numbers of mammalian cells.
Nucleic Acids Res 1991, 19:2499.

Dignam JD, Lebovitz RM, Roeder RG: Accurate transcription initiation by
RNA polymerase Il in a soluble extract from isolated mammalian nuclei.
Nucleic Acids Res 1983, 11:1475-1489.

Schreiber E, Matthias P, Muller MM, Schaffner W: Rapid detection of
octamer binding proteins with’mini-extracts; prepared from a small
number of cells. Nucleic Acids Res 1989, 17:6419.

Bronfman M, Loyola G, Koenig CS: Isolation of intact organelles by
differential centrifugation of digitonin-treated hepatocytes using a table
Eppendorf centrifuge. Anal Biochem 1998, 255:252-256.

Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M,
Lamond Al: Directed proteomic analysis of the human nucleolus. Curr Biol
2002, 12:1-11.

Corsetti MT, Levi G, Lancia F, Sanseverino L, Ferrini S, Boncinelli E, Corte G:
Nucleolar localisation of three Hox homeoproteins. J Cell Sci 1995,

108(Pt 1):187-193.

Scherl A, Coute Y, Deon C, Calle A, Kindbeiter K, Sanchez JC, Greco A,
Hochstrasser D, Diaz JJ: Functional proteomic analysis of human
nucleolus. Mol Biol Cell 2002, 13:4100-4109.

Wang C, Query CC, Meier UT: Immunopurified small nucleolar
ribonucleoprotein particles pseudouridylate rRNA independently of their
association with phosphorylated Nopp140. Mol Cell Biol 2002, 22:8457-8466.
Trinkle-Mulcahy L, Boulon S, Lam YW, Urcia R, Boisvert FM, Vandermoere F,
Morrice NA, Swift S, Rothbauer U, Leonhardt H, Lamond A: Identifying
specific protein interaction partners using quantitative mass
spectrometry and bead proteomes. J Cell Biol 2008, 183:223-239.

Fong Y, Shen KH, Chiang TA, Shih YW: Acacetin inhibits TPA-induced
MMP-2 and u-PA expressions of human lung cancer cells through
inactivating JNK signaling pathway and reducing binding activities of
NF-kappaB and AP-1. J Food Sci 2010, 75:H30-H38.

Khan AQ, Khan R, Qamar W, Lateef A, Rehman MU, Tahir M, Ali F, Hamiza
00, Hasan SK, Sultana S: Geraniol attenuates 12-O-tetradecanoylphorbol-
13-acetate (TPA)-induced oxidative stress and inflammation in mouse
skin: possible role of p38 MAP Kinase and NF-kappaB. Exp Mol Pathol
2013, 94:419-429.

Kim JM, Noh EM, Kwon KB, Kim JS, You YO, Hwang JK, Hwang BM, Kim MS,
Lee SJ, Jung SH, Youn HJ, Chung EY, Lee YR: Suppression of TPA-induced
tumor cell invasion by sulfuretin via inhibition of NF-kappaB-dependent
MMP-9 expression. Oncol Rep 2013, 29:1231-1237.

Lee YR, Noh EM, Han JH, Kim JM, Hwang BM, Kim BS, Lee SH, Jung SH,
Youn HJ, Chung EY, Kim JS: Sulforaphane controls TPA-induced MMP-9
expression through the NF-kappaB signaling pathway, but not AP-1, in
MCF-7 breast cancer cells. BMB Rep 2013, 46:201-206.

Shieh JM, Chiang TA, Chang WT, Chao CH, Lee YC, Huang GY, Shih YX, Shih
YW: Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by
reducing binding activities of NF-kappaB and AP-1 via ERK signaling
pathway in A549 human lung cancer cells. Mol Cell Biochem 2010,
335:181-193.

37.

38.

39.

40.

41.

Page 6 of 6

Suzuki K, Yanagi M, Mori-Aoki A, Moriyama E, Ishii KJ, Kohn LD: Transfection
of single-stranded hepatitis A virus RNA activates MHC class | pathway.
Clin Exp Immunol 2002, 127:234-242.

Degang Y, Akama T, Hara T, Tanigawa K, Ishido Y, Gidoh M, Makino M, Ishii
N, Suzuki K: Clofazimine modulates the expression of lipid metabolism
proteins in Mycobacterium leprae-infected macrophages. PLoS Negl Trop
Dis 2012, 6:21936.

Tanigawa K, Degang Y, Kawashima A, Akama T, Yoshihara A, Ishido Y,
Makino M, Ishii N, Suzuki K: Essential role of hormone-sensitive lipase
(HSL) in the maintenance of lipid storage in Mycobacterium leprae-infected
macrophages. Microb Pathog 2012, 52:285-291.

Kawashima A, Tanigawa K, Akama T, Wu H, Sue M, Yoshihara A, Ishido Y,
Kobiyama K, Takeshita F, Ishii KJ, Hirano H, Kimura H, Sakai T, Ishii N, Suzuki
K: Fragments of genomic DNA released by injured cells activate innate
immunity and suppress endocrine function in the thyroid. Endocrinology
2011, 152:1702-1712.

Suzuki K, Mori A, Ishii KJ, Saito J, Singer DS, Klinman DM, Krause PR, Kohn
LD: Activation of target-tissue immune-recognition molecules by double-
stranded polynucleotides. Proc Natl Acad Sci U S A 1999, 96:2285-2290.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	New homogenization method for small-scale preparation of nuclear extracts
	Optimizing separation of nuclear and cytoplasmic fractions
	High salt extraction is an efficient method for small-scale nuclear protein extraction
	Validation of the new small-scale nuclear protein extraction method

	Conclusions
	Methods
	Cell culture and TPA stimulation
	Nuclear protein extraction
	Reagents
	Solutions
	Equipment
	Protocol

	Determination of protein concentration
	EMSA

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

