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Abstract 

Background  There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV 
functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins includ-
ing Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors 
(hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus 
may have distinct binding partners, human genome binding locations, and functions.

Results  In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells 
to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific 
EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments 
revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, 
type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences 
in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 
human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 bind-
ing events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary 
biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks.

Conclusions  This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differ-
ences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results 
highlight the importance of considering EBV type in the control of human gene expression and disease-related 
investigations.
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Background
Epstein-Barr Virus (EBV) is a human gammaherpes-
virus that infects over 90% of the world’s population 
[1].  While usually asymptomatic, acute EBV infection 
can cause infectious mononucleosis. After initial infec-
tion, the virus enters a latent infection of B lympho-
cytes and persists throughout the lifetime of the host 
[2]. EBV is associated with a number of human cancers 
(e.g., Hodgkin’s lymphoma [3], Burkitt lymphoma [2], 
and nasopharyngeal carcinoma [4]) and autoimmune 
disorders (e.g., systemic lupus erythematosus (SLE) 
and multiple sclerosis (MS)). The causal role of EBV in 
autoimmune disease has become clearer with recent 
molecular and epidemiological studies [5–9]. For exam-
ple, a recent study reported a 32-fold increase in MS 
risk following EBV infection and showed that MS flare 
ups occurred after an increase of EBV protein levels in 
the serum [10]. Given the myriad of diseases associated 
with EBV infection, understanding the molecular mech-
anisms by which EBV triggers human disease is critical 
for the development of improved preventative strategies 
and therapeutic interventions.

Two distinct genetic types of EBV exist: EBV type 1 
(EBV-1) and EBV type 2 (EBV-2) [11–13]. Our knowl-
edge of the virus is primarily based on EBV-1, first char-
acterized in the 1960s, while EBV-2 is less well studied 
[14]. EBV-1 is classified as a global virus, while most lit-
erature describes EBV-2 as being endemic to Africa [15], 
although evidence suggests it is likely much more wide-
spread than previously thought. For example, approxi-
mately 20% of college students in England between 1999 
and 2000 tested seropositive for EBV-2 [16, 17]. Similarly, 
90% of adult patients with MS in Spain were coinfected 
with both EBV-1 and EBV-2 [18]. EBV type 2 has been 
detected in oral swabs of pediatric patients with MS in 
Canada [19], and a South Korean study found that 54.5% 
of patients with SLE were infected with both EBV types 
1 and 2 [20]. Collectively, these findings indicate that 
EBV-2 can be found globally, and it may therefore be 
more relevant to global human disease than previously 
thought.

EBV-1 and EBV-2 both express forms of Epstein-Barr 
Nuclear Antigen 2 (EBNA2), a viral transactivator pro-
tein that impacts gene expression in the host and viral 
genomes [21–23]. EBNA2 is typically expressed as part 
of the viral latency III program, which transforms pri-
mary human B  cells into immortalized lymphoblastoid 
cell lines (LCLs) [24, 25]. EBV-1 and EBV-2 EBNA2 dif-
fer substantially at the sequence level, sharing only 53% 
amino acid identity between the EBV-1 B95.8 strain and 
the EBV-2 AG876 strain [12]. Functionally, EBNA2 types 
1 and 2 have unique effects on EBV type-specific pri-
mary human B cell transformation [26] and growth [27]. 

Point mutations within both the transactivation domain 
and casein kinase II phosphorylation site of EBNA2 type 
2 drastically alter the ability of EBV-2 to maintain LCL 
growth in vitro [26, 27].

Type 1 EBNA2 has been implicated in several autoim-
mune diseases [8, 9, 28–30], with nearly half of known 
SLE and MS risk loci occupied by EBNA2 [5]. Further-
more, EBNA2 interacts with many of these risk loci in a 
genotype-dependent manner, suggesting that variation 
in the host genome impacts binding of EBNA2 to risk 
variants [5]. EBNA2 also substantially rewires the human 
gene regulatory network in infected B cells, and these 
EBNA2-dependent chromatin-altering events are highly 
enriched at autoimmune risk loci [9].

EBNA2 lacks a DNA binding domain. Instead, it inter-
acts with human transcription factors (hTFs) to bind 
DNA and regulate expression. A number of transcription 
factors are known cofactors of EBNA2: recombination 
signal binding protein for immunoglobulin kappa J region 
(RBPJ) [22, 31], spleen focus forming virus proviral inte-
gration oncogene (SPI1, also referred to as PU.1) [32, 33], 
and Early B Cell Factor 1 (EBF1) [34, 35]. While much is 
known based on EBV-1 infected cells and the associated 
EBNA2 type 1 proteins, the substantial amino acid differ-
ences with EBNA2 type 2 suggest that the interaction of 
these strains with both the host genome and hTF part-
ners may vary between types. 

In this study, we systematically examine both EBV-1 
and EBV-2 EBNA2 genomic binding events, interac-
tion partners, and disease genetic risk locus occupancy 
to determine both shared and unique functions (Fig. 1). 
Using a series of functional genomic experiments, we 
identify similarities and differences in EBNA2 type 1 and 
2 genomic binding locations and interacting DNA bind-
ing partners. Furthermore, we identify shared and unique 
associations between types 1 and 2 EBNA2 and loci asso-
ciated with human disease risk. Collectively, these results 
greatly expand our understanding of type 2 EBNA2 func-
tion and potential disease roles.

Results
Extensive type‑specific EBNA2 binding in the human 
genome
To our knowledge, no prior study has compared EBNA2 
type 1 and type 2 binding on a genome-wide scale. To 
this end, we used ChIP-seq to systematically establish 
where EBNA2 types 1 and 2 bind within the human 
genome (Fig. 1). We performed EBNA2 type 2 ChIP-seq 
experiments in the B  cell line AG876 and in the B  cell 
line Jiyoye, each of which are infected by EBV-2. Like-
wise, we performed EBNA2 type 1 ChIP-seq experi-
ments in the LCL GM12878 (EBV-1). We supplemented 
these data with publicly available Mutu-III (EBV-1) data 
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[36] (Supplemental Dataset 1). The majority of these 
datasets were of excellent quality based on ChIP-
seq ENCODE standards (see Methods). Specifically, 
all EBNA2 datasets had over 3,000 peaks, with Frac-
tion of Reads in Peaks (FRiP) scores ranging from 
0.04 – 0.35 (Supplemental Dataset 2). As expected, all 
EBNA2 datasets had strong motif enrichment results 
for known cofactors (RBPJ or EBF1 motifs ranked #1 
in every experiment, with p-values < 10–300) as well as 
strong overlap with public ChIP-seq datasets (EBNA2 
or RBPJ ChIP-seq from EBV infected B cells ranked #1 
in every experiment, with enrichment p-values < 10–210) 
(Supplemental Datasets 3—4).

We first compared the peak locations between each 
EBNA2 ChIP-seq dataset (Fig.  2A), revealing 2,889 

shared peaks, 3,368 peaks unique to EBNA2 type 2, 
and 7,054 peaks unique to EBNA2 type 1 (Fig.  2B). As 
expected, we found equal signal strength (normalized 
read depth) within the shared peaks across all four cell 
lines (AG876, Jiyoye, Mutu-III, and GM12878), stronger 
type 1 signal in type 1 specific peaks, and stronger type 2 
signal in type 2 specific peaks (Fig. 2C, top, middle, and 
bottom groups, respectively). To evaluate the robustness 
of our type-specific findings, we created “type 1 specific 
stringent peaks” and “type 2 specific stringent peaks” to 
complement the “lenient peaks” presented throughout 
this study (see Methods). Using these stringent EBNA2 
ChIP-seq peak datasets, we identified 796 shared peaks, 
632 peaks unique to EBNA2 type 2, and 551 peaks unique 
to EBNA2 type 1 (Supplemental Figure 1A). Collectively, 
these data reveal the existence of both shared and dis-
tinct genomic binding locations for EBNA2 types 1 and 2.

Next, to identify pathways that might be differen-
tially regulated by type 1 and type 2 EBNA2, we used 
the GREAT software package [37] to perform gene set 
enrichment on genes located near EBNA2 binding sites 
for the gene ontology (GO) biological process category. 
To determine which GO terms were impacted by EBNA2 
types, we defined unequal enrichment when the differ-
ence in the normalized FDR between type-specific peaks 
was greater than 20% (Fig.  2D). While most GO terms 
were considered “equally enriched” between EBNA2 type 
1 and EBNA2 type 2, 16 pathways had higher enrich-
ment towards type 1 and 41 had higher enrichment in 
type 2 (Supplemental Dataset 5). All enriched biologi-
cal pathways were relevant to immune cells. Type 1 spe-
cific EBNA2 peaks were generally enriched for pathways 
related to the immune response. EBNA2 type 1 peaks 
were specifically enriched for the Fc Receptor pathway 
(difference of over 20 orders of magnitude in the adjusted 
p-value). Notably, there is increased expression of FCGR​ 
in EBV-1 transformed cells compared to EBV-2 trans-
formed cells in our RNA-seq data. Four out of the 41 
EBNA2 type 2 enriched GO terms were related to T cell 
activation, proliferation, and differentiation. These T cell-
specific findings are consistent with the unique ability of 
EBV-2 to infect T cells [38, 39]. EBNA2 type 2 specific 
peaks are also enriched for pathways related to cell death, 
which is consistent with the reduced ability of type 2 EBV 
to transform B cells relative to type 1 EBV [38, 40].

To determine whether differences in chromatin acces-
sibility could account for the observed differences in 
EBNA2 binding, we next measured chromatin acces-
sibility in EBV type 1 or EBV type 2 infected B cells. 
To this end, we also generated ATAC-seq data in the 
AG876, Jiyoye, GM12878, and Mutu-III cell lines. All 
datasets were of ‘Excellent’ or ‘Good’ quality (see Meth-
ods). For example, all datasets had over 40,000 peaks, 

Fig. 1  Schematic overview: study design for identification 
of type-specific EBNA2 binding events and binding partners. Starting 
with two human B cell lines with type 1 EBV infection and two human 
B cell lines with type 2 EBV infection, we performed EBNA2 chromatin 
immunoprecipitation (ChIP-seq). Using these data, we identified 
shared and type-specific EBNA2 ChIP-seq peaks in the human 
genome. Differential EBNA2 interactions with human cofactors were 
predicted computationally and validated experimentally
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with FRiP scores greater than 0.12 and Transcription 
Start Sites (TSS) enrichment scores greater than 7 (aver-
age of 16.9) (Supplemental Dataset 2 ).

We next re-focused our analysis on the 31,379 regions 
in the genome with shared accessibility across the four 
cell lines (Supplemental Figure  2 and see Methods). 
22.3% of genomic regions occupied by EBNA2 in at least 
one of the four cell lines were located within these com-
monly accessible loci. Within these commonly accessi-
ble loci, we found 1,366 EBNA2 type 2 specific binding 
locations, 3,405 EBNA2 type 1 specific binding locations, 
and 2,234 EBNA2 locations shared across type 1 and 
2 (Supplemental Figure  3). Notably, the proportions of 
these groups are nearly identical to the proportions we 
observed before accounting for chromatin accessibility 

differences (Fig. 2B). Thus, type-specific EBNA2 binding 
events cannot simply be accounted for by differences in 
chromatin accessibility across cell lines.

Shared and distinct co‑occupancy of human TFs 
with EBNA2 types 1 and 2
EBNA2 lacks a DNA binding domain and requires hTF 
partners to occupy genomic targets. We hypothesized 
that the DNA sequences located under EBNA2 ChIP-seq 
peaks might offer insight into shared and type-specific 
preferences of EBNA2 for hTF binding partners. To this 
end, we performed unbiased human transcription fac-
tor binding site motif enrichment analysis at shared and 
type-specific EBNA2 regions. As expected, the most 
strongly enriched motif classes for both types of EBNA2 

Fig. 2  EBNA2 types 1 and 2 interact with the human genome in a type-specific manner. A Schematic for identification of type 1 and type 2 
specific EBNA2 peaks. B Shared and type-specific EBNA2 peak counts. C ChIP-seq signal strength (normalized read depth) for type 1 (GM12878, 
Mutu-III) and type 2 (AG876, Jiyoye) EBNA2 at shared and type-specific regions. As expected, shared peaks (top) have equivalent signal strength 
between the four cell lines. EBNA2 type 1 specific peaks have greater signal strength in EBV-1 cell lines (middle left) compared to EBV-2 cell lines 
(middle right). Likewise for type 2 (bottom). See Methods for EBNA2 ChIP-seq analysis details. D Identification of EBNA2 type-specific enrichment 
of Gene Ontology Biological Processes. GO enrichment analysis of Biological Processes was performed within EBNA2 type 1 specific and type 
2 specific ChIP-seq peaks. Each dot represents the normalized significance of one GO term. Type 1 specific (x-axis) and type 2 specific (y-axis) 
normalized significance are compared. The solid black line indicates equivalent significance between the compared peak sets. Dashed lines indicate 
the cut off for type specific enrichment (difference of 20% or more)
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include SPI1, RBPJ, and EBF1 (Fig. 3A). SPI1 motifs are 
equivalently enriched in shared, type 1, and type 2 spe-
cific peaks (Fig. 3A, red dots near diagonal lines of both 
panels). RBPJ motifs were enriched in the shared peaks, 

with equivalent enrichment in type 2 specific peaks 
and somewhat less enrichment in type 1 specific peaks 
(Fig.  3A, right panel, yellow dots along the diagonal 
line; left panel, yellow dots near x-axis, respectively). 

Fig. 3  Identification of shared and type-dependent EBNA2 human cofactors. A Unbiased computational prediction of EBNA2 human cofactors. 
Human transcription factor (hTF) motif enrichment analysis was performed within EBNA2 type 1 specific, type 2 specific, and shared peaks. Each dot 
represents the normalized significance of one hTF motif. Type 1 specific (y-axis, left) or type 2 specific (y-axis, right) normalized motif significance 
is compared to shared peaks (x-axis in both panels). Black diamonds indicate exemplar hTF motifs for the four hTF classes that are depicted 
in (B). The black line indicates equivalent significance between the compared peak sets. Motifs are colored by class. B Frequency of occurrence 
of exemplary motifs in EBNA2 shared and type-specific peak sets. For the four exemplary motifs, the percent of peaks containing predicted 
binding sites for the motif is shown. Each bar represents percent foreground (i.e., the percent of actual peak DNA sequences containing a match 
to the motif ). The horizontal black line within each bar depicts percent background (i.e., the percent of randomly selected genome sequences, 
matching GC content). Asterisks indicate significant motif enrichment (P < 0.05), as calculated by HOMER. C Experimental validation of predicted 
EBNA2 co-occupancy with hTFs. Co-occupancy was assessed by hTF and EBNA2 ChIP-seq peak overlap. The hTFs BATF and JUNB were chosen 
as representative AP-1 family members (see Results). For each of the five hTFs, a union peak set was created by combining peaks across all cell 
lines. For each bar, the percent of each hTF union peak set overlapping each EBNA2 ChIP-seq peak category is shown. Datasets with significant 
overlap between EBNA2 peak sets and the union peak set of hTFs (as calculated by RELI) are indicated with asterisks (P < 0.05). Note the consistency 
between the motif-based predictions (B) and ChIP-seq experimental validation results (C)
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Strikingly, we observed a very strong preference for EBF1 
motifs at type 1 specific regions compared to those that 
are shared (Fig.  3A, left panel, green dots near y-axis). 
Likewise, we observed a strong preference for AP-1 
motifs (which are highly present at the enhancers of 
many cell types [41–44]) at type 2 specific regions com-
pared to those at shared peaks (Fig. 3A, right panel, pur-
ple dots near y-axis).

Focusing on these four classes of motifs, we next 
examined motif presence (as opposed to enrichment) 
at shared and type-specific EBNA2 regions. Comparing 
type-specific motif presence allows us to further clas-
sify potential type-specific EBNA2 hTF preferences. For 
each class of motifs, we identified an exemplary motif 
(Fig. 3A, boxed motifs) and calculated the motif presence 
frequency within shared and type-specific EBNA2 peak 
sets. For all four hTFs, 15–32% of the shared EBNA2 
peaks overlap their respective motifs (i.e., 15–32% of 
the underlying DNA sequences contain strong predicted 
binding sites for the corresponding hTF based on its 
exemplary motif ) (Fig. 3B, solid bars). We classify an hTF 
preference as equivalent when 1) the motif is enriched in 
both type 1 and type 2 peaks and 2) there is less than 
a 5% difference in motif overlap in type-specific EBNA2 
peak sets. Using these criteria, EBNA2 type 1 and 2 have 
an equivalent preference for SPI1 (Fig. 3B: 19% vs 15%). 
In contrast, RBPJ and AP-1 motif analyses predict an 
EBNA2 type 2 specific preference, and EBF1 analyses 
predict a type 1 specific preference (Fig.  3B). Identical 
predictions were made based upon motif enrichment 
statistics (Supplemental Figure 4).

To test these predictions, we performed ChIP-seq 
experiments for RBPJ, EBF1, and SPI1 in the GM12878, 
Jiyoye, and AG876 cell lines. BATF and JUNB were cho-
sen as representative AP-1 hTFs based on their expres-
sion levels across the cell lines. We supplemented these 
20 new experiments with publicly available data (see 
Methods). All hTF ChIP-seq datasets were of high qual-
ity and met or exceeded ENCODE data quality stand-
ards. Datasets had a peak count ranging from 2,061 
(RBPJ) to 48,570 (SPI1), with FRiP scores ranging from 
0.04 – 0.35 (Supplemental Dataset 2 ). Each dataset had 
strong motif enrichment results and statistically signifi-
cant overlap with public ChIP-seq datasets of the same 
protein (Supplemental Datasets 3-4).

These ChIP-seq experiments confirmed co-occupancy 
of each of these factors at regions bound by EBNA2 type 
1 and 2. In particular, shared EBNA2 peaks had 58%, 80%, 
79%, 63%, and 56% overlap with SPI1, EBF1, RBPJ, BATF, 
and JUNB ChIP-seq peak sets, respectively (Fig.  3C). 
This overlap is consistent with previous observations 
focused on type 1 EBNA2 ChIP-seq [45]. Overall, the 
ChIP-seq co-occupancy results were highly consistent 

with the motif predictions (i.e., compare the patterns of 
like-colored bars in Fig. 3B and C). Similar to the motif 
analysis, we classified type 1 and type 2 EBNA2 as having 
equivalent preferences for an hTF if 1) there is statistically 
significant overlap of the type-specific EBNA2 peaks and 
hTF peaks and 2) the percent overlap difference is less 
than 10%. As predicted by the motif analysis, types 1 and 
2 EBNA2 had equivalent preference for SPI1 (Fig.  3C, 
left). We also confirmed a strong type 1 preference for 
EBF1 (31.5% difference). Likewise, we confirmed a type 2 
EBNA2 preference for RBPJ (33.4% difference). Contrary 
to our predictions, BATF and JUNB equivalently occu-
pied loci with type 1 and type 2 EBNA2 based on our 
criteria. However, when we focused on regions of shared 
open chromatin between EBV types, the results meet our 
criteria (Supplemental Figure 5). Notably, examination of 
the stringent type 1 and type 2 specific EBNA2 peak sets 
revealed the same hTFs that were predicted using our 
“lenient” peak sets (Supplemental Figure 1B).

Biochemical assessment of differential EBNA2 type 1 and 2 
preferences for RBPJ and EBF1
To assess the biochemical basis for type-specific EBNA2 
co-occupancy with RBPJ across the genome, we next per-
formed co-immunoprecipitation (Co-IP) experiments to 
test the hypothesis that EBNA2 type-specific ChIP-seq 
peak colocalization patterns reflect differential physical 
interaction preferences with RBPJ. We performed Co-IP 
using nuclear lysates from the Akata (EBV negative), 
GM12878 (EBV-1), and AG876 (EBV-2) cell lines (Sup-
plemental Figure 6). Co-immunoprecipitation confirmed 
that both type 1 and type 2 EBNA2 immunoprecipitated 
RBPJ (Supplemental Figure  6). In our experiments, we 
did not identify notable differences in the ability of type 
1 and type 2 to Co-IP RBPJ. Thus, we conclude that type-
specific RBPJ binding of EBNA2 is not based on differ-
ences in the biochemical interaction of the proteins. As 
in previous studies [22], we found little evidence of direct 
EBNA2-EBF1 or EBNA2-SPI1 interactions through 
Co-IP experiments. We therefore conclude that EBNA2 
type 1 and type 2 likely interact with EBF1 and SPI1 
through intermediate proteins and not through direct 
biochemical interactions.

To further understand the EBNA2 type 1 preference 
for EBF1, we measured EBF1 expression across the 
EBV type 1 and type  2 cell lines. RNA was extracted 
from the AG876, Jiyoye, and GM12878 cell lines. We 
also included Mutu-III RNA-seq data from our previ-
ous study [46]. The resulting data were of high quality 
(Quality Control (QC) Report, Supplemental Dataset 
2) and displayed strong agreement between replicates 
(Supplemental Figure  7). For transcriptomic analyses, 
we calculated the average normalized counts (using 
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DESeq2, see Methods) of EBNA2 and each hTF for 
each EBV type (EBV-1 or EBV-2). The relative expres-
sion was compared to the protein level expression 
of EBV-1 infected (GM12878 and Raji) and EBV-2 
infected (AG876 and Jiyoye) cells using Western blots 
(see Methods). When the average relative expression 
between type 1 and type 2 is over two, we conclude that 
there is type-specific expression.

EBV type 1 cells demonstrated strong type-specific 
expression of EBF1, with 8.5-fold higher levels of EBF1 in 
type 1 cells relative to EBV type 2 cell lines (Jiyoye average 
normalized count = 1, AG876 average normalized count = 
401) (Table  1). Type 1 elevated EBF1 expression was also 
found at the protein level, with 5.4-fold greater EBF1 expres-
sion in EBV-1 cell lines compared to EBV-2 cell lines (Sup-
plemental Figure 8, Table 2). These data indicate that EBF1 
is not available to co-occupy genomic regions with EBNA2 
in Jiyoye cells, which explains the observed lack of enrich-
ment of EBF1 motifs in EBNA2 Jiyoye ChIP-seq peaks.

Because Jiyoye cells do not express EBF1, we next per-
formed an additional set of analyses focused on compar-
ing AG876 and GM12878 as representative EBV-2 and 
EBV-1 cell lines, respectively. After limiting the analysis 
to AG876, type-specific EBF1 expression differences were 
mirrored in the motif enrichment and ChIP-seq over-
lap analyses: we identified a greater proportion of peaks 
with the EBF1 motif in GM12878 (type 1) compared to 
AG876 (type 2) (Table 3). Consistently, EBF1 overlapped 
GM12878 EBNA2 ChIP-seq peaks at a higher percent-
age than AG876 EBNA2 ChIP-seq peaks (78% and 67%, 
respectively; Supplemental Figure 9). These findings indi-
cate that while EBNA2 type 1 prefers EBF1 compared to 
EBNA2 type 2, EBNA2 type 2 can likely also interact with 
EBF1 on a more limited basis.

To further dissect the enhanced co-binding of EBNA2 
type 1 with EBF1 relative to EBNA2 type 2, we performed 
split nanoluciferase experiments (Supplemental Fig-
ure 10). For these experiments, we cloned one half (small 

Table 1  Expression levels (normalized RNA-seq read counts) for genes of interest. Values are the mean of biological 
triplicates. N/A Not applicable

BATF JUNB SPI1 EBF1 RBPJ EBNA2 TYPE 1 
(B95.8)

EBNA2 
TYPE 2 
(AG876)

GM12878 1,131 5,887 998 2,784 5,572 10,009 N/A

MUTU-III 238 1,751 1,142 650 3,841 3,359 N/A

AG876 1,407 3,661 826 401 8,285 N/A 5,019

JIYOYE 1,259 6,607 515 1 10,795 N/A 10,651

RAMOS (EBV-) 77 935 824 979 3,336 N/A N/A

Table 2  Average Western blot densitometry signal for proteins of interest in this study. Values are the mean of biological triplicates

BATF JUNB SPI1 EBF1 RBPJ EBNA2

GM12878 885 3960 343 219 2170 68

RAJI 396 1560 775 339 1930 61

AG876 671 1750 292 94 2970 76

JIYOYE 718 1580 112 9 1800 45

Table 3  EBF1 motif enrichment across datasets. Results are ordered from most to least enriched

NS Not significant, N/A Not applicable

EBNA2 Peaks % of Target Sequences with 
Motif

% of Background Sequences with 
Motif

p-value Enrichment

Type 1 Specific Peaks 26.7% 5.1% 10–774 5.2

Mutu-III 24.7% 5.7% 10–731 4.3

GM12878 16.2% 4.2% 10–139 3.9

Shared EBNA2 Peaks 15.3% 7.5% 10–44 2.0

AG876 10.5% 5.6% 10–27 1.9

Jiyoye 7.2% 5.3% 10–8 1.4

Type 2 Specific Peaks 4.5% 4.6% NS N/A
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bit, SmBIT) of the nanoluciferase molecule to EBF1 and 
the other half (large bit, LgBIT) to EBNA2. In this experi-
mental system, the detection of luciferase is dependent 
upon the two molecules being proximal to one another 
(i.e., SmBIT and LgBIT come together to allow nanolu-
ciferase to produce light). We found that EBNA2 type 2 
and EBF1 are in close proximity to each other at a higher 
frequency than EBNA2 type 1 and EBF1. These findings 
suggest that even if EBNA2 is not biochemically inter-
acting with EBF1, the proteins are co-localizing in both 
type 1 and type 2 EBV cells. These results are consist-
ent with the conclusion that type 1 enhanced co-binding 
with EBF1 is due to lower expression of EBF1 in cells that 
express type 2 EBNA2.

EBNA2 type 1 and type 2 binding at known EBNA2 target 
genes
Previous studies have firmly established EBNA2 tar-
get genes that are important for both the virus and host 
[27, 40, 47–52]. The current study offers a new oppor-
tunity to assess shared and distinct EBNA2 type 1 and 2 
occupancy at these EBNA2-controlled loci. We broadly 
hypothesized that type-shared and type-specific EBNA2 
occupancy patterns will follow the type-specific expres-
sion levels of EBNA2 target genes. We again categorized 
genes as having type-specific expression when the aver-
age expression (normalized counts calculated by DESeq2) 
difference between the EBNA2 types is more than two.

Based on studies focused on both type 1 and 2 EBV, 
EBNA2 upregulates MYC, resulting in accelerated B cell 
proliferation and immortalization [40, 47, 48]. In our 
data, we observed high expression of MYC across all four 
cell lines, with an average normalized count difference of 
only 1.64 (Fig.  4A, top panel). We observe higher MYC 
expression in Mutu-III, AG876, and Jiyoye cell lines. 
These three cell lines are derived from Burkitt lympho-
mas, where MYC translocation drives MYC expression 
[53–55]. Two well characterized “EBNA2 Super Enhanc-
ers” (ESE) are located approximately 520  kb (the “525 
ESE”) and 430 kb (the “428 ESE”) upstream of MYC, each 
of which control MYC expression in infected B cells [45, 
56, 57]. Consistently, we identified strong conservation of 
EBNA2 peaks between all four cell lines at both ESE sites 
(Fig.  4A, bottom panel). We also observed robust bind-
ing of EBNA2 co-partners EBF1, SPI1, and RBPJ at the 
same regions in both type 1 and type 2 EBV infected cell 
lines. We conclude that the EBNA2-based gene regula-
tory mechanisms underlying its control of MYC expres-
sion are largely conserved across EBV types.

Numerous studies have established that EBNA2 type 
1 drives higher expression of Chemokine (C-X-C Motif ) 
Receptor 7 (CXCR7; also referred to as ACKR3) com-
pared to EBNA2 type 2 [27, 40, 49]. Our expression data 

confirm these results, with a 20.9-fold increase in aver-
age CXCR7 expression in EBV-1 cell lines compared to 
EBV-2 cell lines (Fig.  4B, top panel). Correspondingly, 
we observed five type 1 specific and no type 2 specific 
EBNA2 ChIP-seq peaks in the CXCR7 locus (Fig. 4B, bot-
tom panel). Little is known regarding which co-partners 
regulate CXCR7 along with EBNA2. While we observed 
equal RBPJ and SPI1 binding activity in the GM12878, 
Jiyoye, and AG876 cell lines, we observed stronger EBF1 
binding activity in GM12878 compared to AG876 at the 
type 1 EBNA2 specific binding events. Thus, type 1 spe-
cific binding of EBNA2 and EBF1 are consistent with the 
observed higher expression levels of CXCR7 in EBV-1 
infected cell lines. To further explore EBF1 colocaliza-
tion with EBNA2, we performed ChIP-qPCR for EBF1 at 
three EBNA2 ChIP-seq peaks in the CXCR7 locus (Sup-
plemental Figure  11). As expected, we found that EBF1 
had much stronger binding within EBNA2 peaks in type 
1 cells compared to type 2 cells, including at the type 1 
EBNA2 specific + 3 kb region.

For EBV to enter lymphocytes and epithelial cells, viral 
protein gp350 interacts with the human cluster of dif-
ferentiation 21 (CD21) protein, which is also referred to 
as complement receptor 2 [39, 58–60]. Type 1 EBNA2 
interacts with RBPJ to increase the expression of CD21 
[50–52]. To our knowledge, no studies have examined 
this mechanism in the context of type 2 EBNA2. In our 
data, EBV type 2 cells had 9.9-fold higher average CD21 
expression compared to EBV type 1 cells (Fig.  4C, top 
panel). Therefore, we hypothesized that there would be 
increased EBNA2 type 2 activity at the CD21 locus com-
pared to type 1. At the CD21 locus, we observed two 
regions with type 2 specific accessibility: the promoter 
and 20  kb upstream (Fig.  4C, bottom panel). Chroma-
tin was significantly more accessible in type 2 cell lines 
in both regions (DiffBind p-value = 1.12E-4). RBPJ also 
demonstrated enhanced co-occupancy at the 20 kB 
upstream EBNA2 peak in both type 2 cell lines relative 
to the type 1 cell line (DiffBind p-value = 5.37E-7). These 
mechanisms could explain the observed type 2 enhanced 
CD21 expression levels.

EBNA2 types 1 and 2 occupy shared and distinct human 
autoimmune disease risk loci
We previously showed that EBNA2 type 1 (Mutu-III) 
ChIP-seq peaks directly overlap nearly half of the genetic 
risk loci for MS, SLE, and other autoimmune diseases 
(“EBNA2 disorders”) with robust and statistically signifi-
cant enrichment according to our RELI algorithm [5, 9]. 
The present study provides the first opportunity to sys-
tematically identify possible connections between type 2 
EBNA2 and human diseases. We first used RELI to assess 
the enrichment of EBNA2 type 1 and type 2 datasets from 
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this study at MS and SLE disease risk loci. As expected, 
pooled type 1 EBNA2 peaks (GM12878 and Mutu-III) 
significantly overlapped the risk loci for both MS and 

SLE (Fig.  5A – diagonal striped bars). Importantly, we 
observed similar levels of enrichment for pooled type 2 
EBNA2 peaks (AG876 and Jiyoye) (Fig.  5A – horizontal 

Fig. 4  Type-specific expression of human genes that corresponds with type-specific EBNA2 and hTF partner genomic occupancy. One example 
is shown for each of the following: shared EBNA2 binding (A: MYC, chr8:128,168,540–128,775,448), type 1 specific EBNA2 binding (B: CXCR7, 
chr2:237,441,986–237,513,677), and type 2 specific EBNA2 binding (C: CD21, chr1:207,601,245–207,633,439). For each locus, the normalized counts 
(DESeq2) of the human gene are shown above a UCSC Genome Browser screenshot depicting (top to bottom): the gene, chromatin accessibility, 
EBNA2 binding (ChIP-seq), and hTF binding (ChIP-seq) in each cell line. Type-specific and shared EBNA2 peaks are indicated above the EBNA2 
ChIP-seq tracks. In panel A, previously identified type 1 EBNA2 super enhancers at the MYC locus ([57]; MYC ESE2, chr8:128,312,176–128,320,865; 
MYC ESE1: chr8:128,215,588–128,228,144) are boxed and labeled. Data from biological replicates are shown throughout. A = AG876; J = Jiyoye; 
M = Mutu-III; G = GM12878; L = LCL. Data ranges: MYC Overview [ATAC-seq (0 to 5; Mutu-III 0 to 0.7); EBNA2 ChIP-seq (0 to 14); EBF1 ChIP-seq (0 
to 5); SPI1 ChIP-seq (0 to 5); RBPJ ChIP-seq (0 to 5)]; MYC 525 ESE [ATAC-seq (0 to 3; Mutu-III 0 to 0.4); EBNA2 ChIP-seq (0 to 13); EBF1 ChIP-seq (0 
to 5); SPI1 ChIP-seq (0 to 1); RBPJ ChIP-seq (0 to 2)]; MYC 428 ESE [ATAC-seq (0 to 4; Mutu-III 0 to 0.7); EBNA2 ChIP-seq (0 to 8); EBF1 ChIP-seq (0 to 4); 
SPI1 ChIP-seq (0 to 5); RBPJ ChIP-seq (0 to 5)]; CXCR7 [ATAC-seq (0 to 3; Mutu-III 0 to 0.4); EBNA2 ChIP-seq (0 to 10); EBF1 ChIP-seq (0 to 4)]; CD21 
[ATAC-seq (0 to 8; Mutu-III 0 to 0.4); EBNA2 ChIP-seq (0 to 6); SPI1 ChIP-seq (0 to 3); RBPJ ChIP-seq (0 to 3)]
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striped bars). To assess the peaks that are unique to type 1 
and type 2 EBNA2, we next performed RELI using EBNA2 
type 1 and type 2 specific peaks. We again observed statis-
tically significant enrichment for type 1 and type 2 spe-
cific EBNA2 peaks at SLE disease risk loci. While EBNA2 
type 1 specific peaks were statistically significant with an 
enrichment of 2.1 for MS risk loci, EBNA2 type 2 specific 
peaks were not significant (p-value = 1) (Fig. 5A, bottom 
graphs). Similar overall results are obtained using our 
stringent type-specific EBNA2 peaks (Supplemental Fig-
ure  1C). Taken together, these data indicate that shared 
and type-specific EBNA2 ChIP-seq peaks are highly 
enriched at MS and SLE genetic risk loci, indicating the 
likely importance of type 2 EBNA2 in these diseases in 
addition to type 1 EBNA2.

We next examined EBNA2 binding patterns at all dis-
ease risk loci contained in the Genome Wide Association 
Studies (GWAS) catalogue (see Methods, Supplemental 
Dataset 7). To this end, we compared disease risk loci 

enrichment between all pooled EBNA2 type 1 peaks and 
all EBNA2 type 2 peaks (Fig.  5B). We found that many 
of our previously reported EBNA2 disorders [5], such 
as systemic lupus erythematosus (SLE), inflammatory 
bowel disease (IBD) and celiac disease, are equivalently 
enriched between the two types of EBNA2 (Fig.  5B). 
In contrast, MS genetic risk loci are more significantly 
enriched for type 1 EBNA2 (Fig. 5B – bottom, right dot 
closer to x-axis). Meanwhile, risk loci for primary biliary 
cholangitis (PBC), which to our knowledge has never 
been connected to EBNA2, are more highly enriched for 
type 2 EBNA2 peaks (Fig. 5B – dot near y-axis), suggest-
ing a new possible role for EBV-2 in this disease.

Discussion
To our knowledge, no prior study has examined EBNA2 
type 2 binding on a genome-wide scale. In this study, we 
examined EBNA2 interactions with the human genome, 
human  TF partners, and human genetic risk loci in a 

Fig. 5  EBNA2 type 1 and 2 occupancy at human disease risk loci. Statistical enrichment of the overlap between type 1 and type 2 EBNA2 ChIP-seq 
peaks with human disease risk genetic variants. A Top: Enrichment of full EBNA2 ChIP-seq peak sets at disease risk loci for diseases previously 
established for type 1 EBNA2 (multiple sclerosis (MS) and systemic lupus erythematosus (SLE)). Bottom: Enrichment of type-specific and shared 
EBNA2 peak sets. Datasets with significant overlap (as calculated by RELI) are marked with asterisks (P < 0.05). B Enrichment of type-specific EBNA2 
ChIP-seq peak sets at all disease risk loci. Each dot represents RELI results (normalized -log corrected p-value) for EBNA2 enrichment for a given 
disease. Results were normalized to the max negative log p-value for each EBNA2 dataset to facilitate comparisons. The black line indicates 
equivalently significant enrichment for type 1 and type 2 EBNA2. Previously established “EBNA2 disorders” (dark blue dots) and other diseases 
discussed in the text are labeled. Disease abbreviations: CD Celiac Disease, IBD Inflammatory Bowel Disease, JIA Juvenile Idiopathic Arthritis, MS 
Multiple Sclerosis, PBC Primary Biliary Cholangitis, RA Rheumatoid Arthritis, SLE Systemic Lupus Erythematosus, T1D Type 1 Diabetes, UC Ulcerative 
Colitis
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virus type-specific manner. In addition to providing the 
first genome-wide type 2 EBNA2 ChIP-seq datasets, our 
findings show that (1) EBNA2 interacts with the human 
genome in a type-specific manner, (2) there is differen-
tial hTF interaction between EBNA2 types, (3) type-
specific EBNA2 binding events are found proximal to 
genes regulated in an EBV type-specific manner, and (4) 
EBNA2 type 2 also interacts with autoimmune disease 
risk loci. Our findings show that, despite an overall shar-
ing of cofactors for EBNA2 types 1 and 2, EBNA2 exten-
sively interacts with the human genome at type-specific 
locations.

Our study builds upon previous studies that identified 
type and strain variations within EBV. Structurally, the 
low 53% sequence identity between EBNA2 type 1 and 
type 2 is striking, given the relatively high sequence simi-
larity in other parts of the EBV genome [40]. Differences 
in EBNA2 type 1 and 2 gene expression levels have previ-
ously been shown to result in type-specific differences in 
human gene expression [13, 40]. Some of this type-spe-
cific human gene regulation is caused by a single amino 
acid at D442S that impacts binding at human genes, 
including CXCR7 and LMP1 [27]. In addition to variation 
in EBNA2, EBV type-specific variation within the BZLF1 
promoter plays a role in the ability of B cells to enter the 
lytic phase [14, 61–63]. Further, LCLs infected with type 
2 viral  strains have lower expression of IRF4 and EBF1 
compared to LCLs infected with type 1 viral strains [63]. 
Similar findings were observed within our data, although 
IRF4 did not meet our stringent criteria. These are 
only two of many known and currently unknown type-
dependent differences.

Across all the human DNA bound by EBNA2, 78% 
was EBV type-specific, with only 22% shared across EBV 
types 1 and 2 (Fig.  2). Pathway-based analyses identi-
fied groups of genes near EBNA2 binding sites that were 
enriched for either type 1 or type 2 EBNA2. Pathways 
with type-specific enrichment were all related to the 
immune system – particularly, leukocyte biology and 
immune processes. For type 2 enriched pathways, it is 
notable that four T cell pathways are enriched along with 
three apoptotic pathways. These results align well with 
known biology of type 2 EBV where the type 2 strains are 
better able to infect T cells compared to the type 1 EBV 
virus [38–40]. Mechanistically, these differences in bind-
ing could be driven by the type-specific co-occupancy 
of EBNA2 with EBF1 (type 1) and RBPJ (type 2) (Fig. 3). 
Some of these differences in co-occupancy and hTF bind-
ing localize to genes with type-specific expression, such 
as CXCR7 and CD21 (Fig.  4). We previously demon-
strated the impact of EBNA2 on human chromatin acces-
sibility; however, differences in human genome binding 
and hTF co-occupancy were robust even after accounting 

for differences in chromatin accessibility (Supplemen-
tal Figures 3 and 5). Despite the magnitude of sequence 
differences, type 1 and 2 EBNA2 did retain some shared 
characteristics, including robust occupancy with SPI1 
and AP-1 hTFs, an ability to interact with RBPJ and EBF1 
(albeit to different, type-dependent degrees), and regula-
tion of the previously described EBV super enhancer at 
the MYC locus [56] (Fig. 4A).

One of the important findings of this study is the identi-
fication of EBNA2 type 1 specific co-occupancy preference 
for EBF1. EBF1 is known to interact with EBNA2 at the 
N-terminal dimerization (END) domain [34]. When this 
domain is removed, EBNA2 can no longer interact with 
EBF1, and EBV fails to immortalize primary B cells due 
to their inability to complete the cell cycle. Our data sug-
gest that EBNA2 type 1 has more EBNA2-EBF1 interac-
tions compared to EBNA2 type 2. This provides a possible 
mechanistic basis for the more efficient immortalization 
of B cells by EBV-1 compared to EBV-2. The EBNA2 type 
1 specific preference for EBF1 is particularly notable at 
the CXCR7 locus (Fig. 4B). Functionally, the type-specific 
gene expression differences induced by EBNA2 could lead 
to type-specific cell immortalization, proliferation, and 
migration, particularly in inflammatory contexts.

We observed strong RBPJ motif enrichment and co-
occupancy of RBPJ in genomic regions bound by both 
type 1 and type 2 EBNA2. These results are consistent 
with the importance of RBPJ as a cofactor for both types 
of EBNA2 [22, 64]. Additionally, our data support EBNA2 
type 2 forming a greater number of unique RBPJ-EBNA2 
complexes compared to EBNA2 type 1. For example, at 
CD21 we identified enhanced RBPJ co-occupancy only 
with EBNA2 type 2. CD21 is the receptor that EBV uses 
to gain entry to human cells [50–52]. CD21 expression is 
increased in EBV type 2 cells, despite EBV type 2 having 
less ability to transform B cells. We hypothesize that type 
2 enhanced CD21 expression is a mechanism that EBV 
type 2 uses to attempt to augment its entry into cells.

Previous work established the clinical implications of 
type 1 EBNA2 binding to immune disease risk loci [5, 9]. 
This study expands these findings to include the possibil-
ity that EBNA2 type 2 interacts with a person’s individual 
risk variants to increase disease risk. EBV has been impli-
cated in the complex etiology of multiple autoimmune 
diseases [10, 18, 30, 65–91]. However, most studies do 
not consider EBV type, designing experimental reagents 
that ambiguously detect EBNA2. Additionally, limited 
studies have assessed the potential for EBNA2 type 2 to 
contribute to autoimmune disease progression. In this 
study, we demonstrate an equivalent enrichment of type 
2 EBNA2 binding at autoimmune genetic risk loci. These 
findings are consistent with epidemiological studies iden-
tifying EBV-2 in samples from patients with MS [18, 19]. 
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Considering the global reach of EBV-1 and EBV-2 [18], 
future studies should consider additional mechanisms 
through which EBV-2 mediates the etiology of autoim-
mune diseases.

Conclusions
Taken together, these findings provide the first genome 
wide assessment of EBNA2 types 1 and 2 in the context 
of genomic binding locations, human cofactors, and 
enrichment at human genetic risk loci. We identified 
both shared and distinct binding of EBNA2 type 1 and 2, 
with a type 1 preference for EBF1 and a type 2 preference 
for RBPJ. The binding of both type 1 and type 2 EBNA2 
are enriched at autoimmune disease risk loci. Collec-
tively, these data provide a foundation for future studies 
aimed at understanding type 2 EBNA2 biology and dis-
ease mechanisms.

Methods
Cell lines
GM12878, Mutu-III, and Raji cell lines were assessed 
as representative EBV-1 cell lines. GM12878 is an EBV-
transformed LCL that is infected with the B95.8 virus. 
Mutu-III cells are Burkitt B  cells infected with the EBV 
type 1 Mutu EBV virus that have the EBV latency III pro-
gram. Raji cells are Burkitt B cells infected with the EBV 
type 1 Raji virus. Raji cells have several EBV genomic 
deletions, but they express most EBV latency III onco-
genes. Jiyoye and AG876 (gifted from the Farrell Lab), 
infected with the EBV type 2 Jiyoye and EBV type 2 
AG876 virus, respectively, were assessed as representa-
tive EBV-2 cell lines. The Akata cell line, which lacks 
EBV, was used for co-immunoprecipitation assays. The 
HEK-293 cell line, which also lacks EBV, was used for 
split nanoluciferase. All cell lines, except HEK-293 cells, 
were cultured in Roswell Park Memorial Institute (RPMI) 
1640 (Dulbecco’s Modified Eagle Medium (DMEM) was 
utilized for HEK-293 cells) with 2 mM L-glutamine, 0.2% 
Normocin, 10% fetal bovine serum, and 1X antibiotic–
antimycotic at 200,000 – 500,000 viable cells/mL. Cells 
were incubated in vented flasks at 37 °C with 5% carbon 
dioxide in an upright position (flat for HEK-293 cells).

Supplemental Dataset 1  details all datasets used for 
analysis, which were processed using the computational 
tools detailed below.

Chromatin Immunoprecipitation (ChIP) with sequencing 
(ChIP‑seq)
ChIP-seq experiments were performed to identify loca-
tions in the human genome occupied by the two EBNA2 
types and hTFs predicted to colocalize with EBNA2 in 
the EBV-2 and EBV-1 infected B cell lines. Specifically, for 
EBV-2, we generated new ChIP-seq datasets for EBNA2, 

BATF, EBF1, JUNB, RBPJ, and SPI1 in both the AG876 
and Jiyoye cell lines. For EBV-1, we generated new ChIP-
seq datasets for EBNA2 and RBPJ for the GM12878 cell 
line. We obtained publicly available GM12878 ChIP-seq 
datasets for BATF, EBF1, JUNB, and SPI1, and Mutu-III 
EBNA2 ChIP-seq data from the Gene Expression Omni-
bus (GEO). GEO IDs and additional information can be 
found in Supplemental Dataset 1. All datasets were ana-
lyzed using the same analysis pipeline, which is based 
on the ENCODE consortium standards and is described 
below.

ChIP-seq for transcription factors (BATF, Santa Cruz 
sc-100974; EBF1, Santa Cruz sc-137065; EBNA2, [PE2] 
Abcam ab90543; JUNB, Active Motif 39549; RBPJ, CST 
5313; and SPI1, CST 2266) was performed using antibod-
ies against each, in duplicate per cell line, using standard 
experimental procedures as described in Hong et al. 2021 
[9]. Previous studies [40, 92] and our own data show that 
the EBNA2 PE2 antibody can recognize both EBNA2 
type 1 and EBNA2 type 2 (Supplemental Figure 8). Cells 
were incubated in a crosslinking solution (1% formal-
dehyde, 5  mM 4-(2-hydroxyethyl)-1-piperazineëthane-
sulfonic acid (HEPES) pH 8.0, 10  mM sodium chloride, 
0.1  mM ethylenediaminetetraacetic acid (EDTA), and 
0.05  mM ethylene glycol tetraacetic acid (EGTA)) in 
Roswell Park Memorial Institute (RPMI) culture medium 
with 10% fetal bovine serum (FBS) and placed on a 
tube rotator at room temperature for 10  min. To stop 
crosslinking, glycine was added to a final concentration of 
0.125 M, and the tubes were rotated at room temperature 
for 5  min. Cells were washed twice with ice-cold phos-
phate-buffered saline (PBS), resuspended in lysis buffer 1 
(50 mM HEPES pH 8.0, 140 mM NaCl, 1 mM EDTA, 10% 
glycerol, 0.25% Triton X-100, and 0.5% NP-40), and incu-
bated for 10 min on ice. Nuclei were harvested after cen-
trifugation at 5,000 rpm for 10 min, resuspended in lysis 
buffer 2 (10 mM Tris–HCl pH 8.0, 1 mM EDTA, 200 mM 
NaCl, and 0.5 mM EGTA), and incubated at room tem-
perature for 10  min. Protease and phosphatase inhibi-
tors (Halt™ Protease and Phosphatase Inhibitor Cocktail 
(100X), Thermo Fisher Scientific, Waltham, MA) were 
included in both lysis buffers. Nuclei were resuspended 
in sonication buffer (10 mM Tris [pH 8.0], 1 mM EDTA, 
and 0.1% sodium dodecyl sulfate (SDS)). An S220 focused 
ultrasonicator (COVARIS, Woburn, MA) was used to 
shear chromatin (150–500-bp fragments) with 10% duty 
cycle, 175 peak power, and 200 bursts per cycle for 7 min. 
A portion of the sonicated chromatin was run on an 
agarose gel to verify fragment sizes. Sheared chromatin 
was pre-cleared with 10 μL of Protein A or G Dynabeads 
(Thermo Fisher Scientific) at 4 °C for 1 h.

Immunoprecipitation of TF-chromatin complexes was 
performed with an SX-8X IP-STAR compact automated 
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system (Diagenode). Beads conjugated to antibodies 
against each TF were incubated with precleared chroma-
tin at 4 °C for 8 h. The beads were then washed sequen-
tially with wash buffer 1 (10  mM Tris–HCl [pH 7.5], 
150  mM NaCl, 1  mM EDTA, 0.1% SDS, 0.1% NaDOC, 
and 1% Triton X-100), wash buffer 2 (10 mM Tris–HCl 
[pH 7.6], 400  mM NaCl, 1  mM EDTA, 0.1% SDS, 0.1% 
NaDOC, and 1% Triton X-100), wash buffer 3 (10  mM 
Tris–HCl [pH 8.0], 250  mM LiCl, 1  mM EDTA, 0.5% 
NaDOC, and 0.5% NP-40), and wash buffer 4 (10  mM 
Tris–HCl [pH 8.0], 1 mM EDTA, and 0.2% Triton X-100). 
Finally, the beads were resuspended in 10 mM Tris–HCl 
(pH 7.5) and used to prepare libraries via ChIPmentation 
[93].

The ChIP-seq libraries were sequenced as single-end 
100-base reads on an Illumina NovaSeq 6000 at the Cin-
cinnati Children’s Hospital Medical Center (CCHMC) 
Genomics Sequencing Facility, Cincinnati, Ohio. The 
ChIP-seq transcription factor Pipeline v2.0 from the 
ENCODE Project [94–96] (https://​www.​encod​eproj​ect.​
org/​pipel​ines/) was used to perform QC assessments, 
genomic alignments, and peak calling. In brief, ChIP-seq 
reads were aligned to the human genome (hg19) using 
Bowtie2 (v. 2.3.4.3) [97]. Adaptors were trimmed using 
trimmomatic [98] (v. 0.39). Aligned reads were then 
sorted using samtools (v.1.9) [97] and duplicate reads 
were removed using Picard (v. 2.20.7) (https://​broad​
insti​tute.​github.​io/​picard/). Peaks were called using the 
pipeline’s default parameters with MACS2 (v. 2.2.4) [99]. 
ENCODE “blacklist regions” were removed from the final 
peak set. Irreproducibility Discovery Rate (IDR) opti-
mal peaks, generated from the ENCODE pipeline, were 
obtained and used for all downstream analyses. All pub-
lic ChIP-seq datasets (Supplemental Dataset 1) were also 
analyzed using the same pipeline to obtain IDR peaks. 
To assess data quality, we created a rating system that 
measures “Data Quality” and “Library Complexity” based 
on ChIP-seq Encode Standards. In brief, “Library Com-
plexity” was rated on a three-point scale. Library Com-
plexity (based on NRF >  = 0.5; PBC1 >  = 0.5; PBC2 >  = 1) 
and Data Quality (10 million usable fragments per rep-
licate; Self-consistency Ratio < 2 OR Rescue Ratio < 2; 
FRIP >  = 0.01) were graded on a 3 point scale. If the sam-
ple met all three requirements, it was marked as "Excel-
lent", 2/3 requirements was categorized as "Good", and 
1/3 requirements was categorized as “Fair”. “Altogether, 
15 of the 19 ChIP-seq datasets were deemed ‘Excellent’, 
four were deemed ‘Good’, and none were deemed ‘Fair’ in 
terms of “Data Quality” using this system. With respect 
to “Library Complexity”, 13 of the 19 datasets were 
deemed ‘Excellent’ quality, three were deemed ‘Good’, 
and three  were deemed ‘Fair’. Datasets that fell below 
the quality standards were not considered. Detailed 

QC metrics are provided in Supplemental Datasets 2, 
3, and 4. Full QC information is provided in “Additional 
File 19 QC Reports.zip.”

Assay for Transposase‑Accessible Chromatin 
with sequencing (ATAC‑seq)
Assay for Transposase-Accessible Chromatin with 
sequencing (ATAC-seq) is a method for determining 
chromatin accessibility across the genome. ATAC-seq 
data were generated and analyzed for the AG876, Jiyoye, 
and GM12878 and Mutu-III cell lines. Transposase Tn5 
with sequencing adapter sequences was used to cut the 
accessible DNA, as detailed in Buenrostro et  al. 2015 
[100]. The resulting accessible DNA sequences were iso-
lated, and libraries were prepared from 50,000 cells from 
each cell line using the OMNI ATAC protocol [101]. The 
libraries were sequenced on the Illumina NovaSeq 6000 
(CCHMC Genomics Sequencing Facility) with 2 × 150 bp 
paired-end reads. The ENCODE ATAC-seq pipeline (v2.0) 
was used to perform QC assessments, genomic align-
ments, and peak calling [94–96] (https://​www.​encod​eproj​
ect.​org/​pipel​ines/). In brief, ATAC-seq reads were aligned 
to the human genome (hg19) using Bowtie2 (v. 2.3.4.3) 
[97]. Adaptors were trimmed using trimmomatic [98] 
(v. 0.39). Aligned reads were then sorted using samtools 
(v.1.9) [102] and duplicate reads were removed using Pic-
ard (v. 2.20.7) (https://​broad​insti​tute.​github.​io/​picard/). 
Peaks were called using the pipeline’s default param-
eters with MACS2 (v. 2.2.4) [99]. To assess data quality, 
we created a rating system that measures “Data Quality” 
and “Library Complexity” based on ATAC-seq Encode 
Standards. In brief, “Library Complexity” was rated on a 
three-point scale (based on NRF >  = 0.7; PBC1 >  = 0.7; 
PBC2 >  = 1). If the sample met all three requirements, it 
was marked as "Excellent", 2/3 requirements was catego-
rized as "Good", and 1/3 requirements was categorized 
as “Fair”. ATAC Data Quality (50 million usable frag-
ments per replicate; Self-consistency Ratio < 2 OR Rescue 
Ratio < 2; Alignment rate > 80%; TSS > 6; FRIP > 0.3), was 
graded on a 5-point scale. If the sample met 4 or more 
requirements, it was marked as “Excellent”, 3/5 require-
ments was marked as "Good", and 2/5 requirements 
was marked as “Fair”. Altogether, two of the four ATAC-
seq datasets were deemed ‘Excellent’, two were deemed 
‘Good’, and none were deemed ‘Fair’ in terms of “Data 
Quality” using this system. With respect to “Library Com-
plexity”, two of the four datasets were deemed ‘Excellent’ 
quality, two were deemed ‘Good’, and none were deemed 
‘Fair’. Datasets that fell below the quality standards were 
not considered. Detailed QC metrics are provided in Sup-
plemental Datasets 2, 3, and 4. Full QC information is 
provided in “Additional File 19 QC Reports.zip.”

https://www.encodeproject.org/pipelines/
https://www.encodeproject.org/pipelines/
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://www.encodeproject.org/pipelines/
https://www.encodeproject.org/pipelines/
https://broadinstitute.github.io/picard/
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Identification of EBV type‑specific genomic features
To identify type-specific genomic features (ChIP-
seq and ATAC-seq peaks; see schematic in Fig.  2A), 
all events (peaks) that were found in either EBV-1 
(GM12878 and Mutu-III) or EBV-2 (AG876 and Jiyoye) 
were first combined into the union of EBNA2-1 peaks 
and the union of EBNA2-2 peaks. Using bedtools 
v2.29.2 (https://​bedto​ols.​readt​hedocs.​io/​en/​latest/​
index.​html), we merged overlapping events to prevent 
duplicated peaks in downstream analysis. We next 
determined which events were found exclusively in 
EBV-1 or EBV-2 (bedtools subtract -A). This estab-
lished EBV-1 or EBV-2 specific events, which were 
defined as events that do not overlap with the other 
EBV type (using bedtools default of 1E-9 or 1  bp). 
Shared peaks were determined by removing all type-
specific peaks calculated previously and defined as 
any two peaks between EBV-1 and EBV-2 that over-
lap by at least 1 bp. Likewise, to obtain a dataset of all 
RBPJ events (Fig.  3C), we combined and merged all 
RBPJ peaks from the RBPJ datasets used in this paper 
(Supplemental Dataset 1), as detailed above. This was 
repeated for the other hTFs.

To identify stringent type-specific EBNA2 ChIP-seq 
peaks, we utilized bedtools v2.29.2 (https://​bedto​ols.​
readt​hedocs.​io/​en/​latest/​index.​html). For example, 
stringent EBNA2 type 1 specific peaks were determined 
by taking the intersect (bedtools intersect, default 
parameters) of Mutu-III and GM12878 (type 1) and 
subtracting the union of Jiyoye and AG876 (type 2, see 
above). The same approach was used to create stringent 
EBNA2 type 2 specific peaks. To create the “Shared 
Stringent” peaks, we first calculated the intersection 
(bedtools intersect, default parameters) of Mutu-III and 
GM12878 EBNA2 ChIP-seq peaks creating “All Type 1 
EBNA2 Stringent Peaks”. An analogous approach was 
used to create “All Type 2 EBNA2 Stringent Peaks”. 
"Shared EBNA2 Stringent Peaks" was calculated by tak-
ing the intersection (bedtools intersect, default param-
eters) of “All Type 1 EBNA2 Stringent Peaks” and “All 
Type 2 EBNA2 Stringent Peaks."

To visualize differences in ChIP-seq or ATAC-seq 
signal strength within the type-specific regions (as 
depicted in Fig. 2C, and Supplemental Figures 2 and 3), 
Compute Matrix v3.5.1 and plotHeatmap v3.5.1 from 
deepTools (https://​deept​ools.​readt​hedocs.​io/​en/​devel​
op/​index.​html) were used. For each cell line, the read 
enrichment within each peak contained in a ChIP-seq 
or ATAC-seq dataset (obtained from fc.bigwig files) was 
determined ± 2.5  kb from the peak center. This value 
was then visualized using the plotHeatmap function.

Differential peak analysis using DiffBind
To determine statistically significant differential peaks 
between EBV-1 and EBV-2 datasets (ATAC-seq and 
ChIP-seq), DiffBind v3.10.1 [103] was used with default 
parameters (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​
bioc/​html/​DiffB​ind.​html). Samples were categorized by 
EBV type (EBV-1 or EBV-2). Using the native normaliza-
tion strategy and background binding estimation, differ-
ential peaks were identified. The alpha threshold was set 
to 0.05 with a Linear Fold Change Cutoff of 1.5.

Gene set enrichment analysis using GREAT
GREAT [37] was used to perform gene set enrichment 
for genes near EBNA2 binding sites for the gene ontology 
(GO) biological process category [104]. We ran GREAT 
with its default settings, where each gene is assigned a 
regulatory domain (for proximal: 5  kb upstream, 1  kb 
downstream of the TSS; for distal: up to 1 Mb). We defined 
significant results as those with an FDR-corrected one-
tailed binomial test p-value < 0.05. To determine which GO 
terms were impacted by EBNA2 type, we defined unequal 
enrichment when the difference in the normalized FDR 
between type-specific peaks was greater than 20%.

Transcription Factor (TF) DNA binding motif enrichment 
analysis
Human TF motif enrichment analysis was performed 
using the Hypergeometric Optimization of Motif 
EnRichment (HOMER) software package [105]. A modi-
fied version of HOMER was used, which incorporates 
human motifs obtained from Cis-BP build 2.0 [106] and 
uses a log base 2 likelihood scoring system. We used 
representative hTF motifs (AP-1 [BATF], M09495_2.00; 
EBF1, M09527_2.00; RBPJ, M10413_2.00; and SPI1, 
M04805_2.00) for further analyses (Fig. 3B). These exam-
ple motifs were chosen as representatives because they 
had high motif enrichment in EBNA2 type 1 and/or 
EBNA2 type 2 specific peaks (Supplemental Dataset 3) 
and are strong matches to the established motif for their 
respective hTFs. HOMER was also used to produce QC 
metrics to determine if newly generated ChIP-seq and 
ATAC-seq peak datasets were enriched for expected hTF 
motifs (e.g., the RBPJ ChIP-seq dataset should be highly 
enriched for RBPJ motifs). See Supplemental Dataset 
3 for the full HOMER results of these analyses.

Estimation of the significance of the intersection 
between a set of genomic coordinates and a library of TF 
ChIP‑seq peaks using RELI
The Regulatory Element Locus Intersection (RELI) 
algorithm [5, 107, 108] was used to estimate the 

https://bedtools.readthedocs.io/en/latest/index.html
https://bedtools.readthedocs.io/en/latest/index.html
https://bedtools.readthedocs.io/en/latest/index.html
https://bedtools.readthedocs.io/en/latest/index.html
https://deeptools.readthedocs.io/en/develop/index.html
https://deeptools.readthedocs.io/en/develop/index.html
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
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significance of overlap between genomic features 
generated in this study (e.g., EBNA2 and hTF ChIP-
seq co-occupancy events, as depicted in Fig.  3C; TF 
binding events intersecting GWAS Disease SNPs, as 
depicted in Fig.  5). As input, RELI takes the genomic 
coordinates from a set of genomic features. RELI then 
systematically intersects these coordinates with each 
member of a large library of ChIP-seq datasets one at 
a time, and the number of input regions overlapping 
the peaks of each dataset is counted. Next, the signifi-
cance of the intersection of each dataset is calculated 
(p-value) using a simulation-based procedure in which 
the peaks from the input dataset are randomly distrib-
uted within the union coordinates of open chromatin 
from human cells. A distribution of expected overlap 
values is then created from 2,000 iterations of random 
sampling from this negative set, each time choosing 
a set of negative examples that match the input set in 
terms of the total number of genomic loci. The distri-
bution of the expected overlap values from the rand-
omized data resembles a normal distribution and can 
thus be used to generate a Z-score and corresponding 
p-value estimating the significance of the observed 
number of input regions that overlap each dataset. 
This procedure is then completed for all datasets in 
the ChIP-seq library. P-values are corrected using 
Bonferroni’s method.

To determine the significance of the overlap between 
our EBNA2 ChIP-seq datasets and GWAS-derived 
disease-associated genetic variants, we generated 
a custom GWAS catalogue that combines all of the 
ancestries for a particular disease. To this end, we 
downloaded the Genome Wide Association Stud-
ies Catalogue (https://​www.​ebi.​ac.​uk/​gwas/) v1.0.2, 
as queried on June 20th 2019. Independent risk loci 
for each disease/phenotype were identified based on 
linkage disequilibrium (LD) pruning (r2 < 0.2). Risk 
loci across these independent genetic risk variants 
were identified by linkage disequilibrium expansion 
(r2 > 0.8) based on 1000 Genomes Data using PLINK 
(v.1.90b). This created a list of disease risk loci, along 
with the corresponding genetic variants within the LD 
block. Finally, the LD expanded list for each ancestry 
was merged by disease, creating a single list of variants 
for a given disease. This list of variants was then used 
for RELI analyses.

RELI was also used as a QC metric to determine if 
newly generated ChIP-seq and ATAC-seq datasets 
overlap significantly with relevant public datasets (e.g., 
RBPJ ChIP-seq peaks should overlap significantly with 
published RBPJ ChIP-seq peaks). See Supplemental 
Dataset 4 for the full RELI results.

Western blots
Western blots were used to assess protein levels in EBV-1 
(GM12878 and Raji) and EBV-2 (Jiyoye and AG876) 
infected cells. To obtain nuclear lysates (three biologi-
cal replicates) for Western blots, cells lines were resus-
pended in 1  mL of cold PBS per 10 million cells. Cells 
were then centrifuged at 4 °C, 300 × g for 5 min and the 
PBS was aspirated off. Cell pellets were resuspended in 
400μl of CE buffer (10  mM HEPES, pH 8; 10  mM KCl; 
0.1 mM EDTA; 1 mM DTT; 1 × Halt protease and phos-
phatase inhibitor) and incubated for 15 min on ice. After-
wards, 25μl of 10% Nonidet P-40 were mixed into the 
solution and the samples were centrifuged at max speed 
(17.3 × g) at 4 °C for 3 min. After discarding the superna-
tant, the cell pellet was resuspended in 30μl of NE Buffer 
(20 mM HEPES, pH 8; 0.4 M NaCl; 1 mM EDTA; 1 mM 
DTT; 1 × Halt phosphatase inhibitor). Cells were soni-
cated using the Q125 sonicator (Qsonica) at 20% power, 
5 s pulses for a total of 15 s. The supernatant was stored 
at -70  °C. 5.5μl of aliquot was used to measure protein 
concentration using the bicinchoninic acid assay (BCA) 
(Thermo Fisher Scientific).

Nuclear lysates of samples were mixed with load-
ing buffer and DTT and heated at 95° C for 2 min. After 
cooling, the samples were loaded into a 4–12% Nu page 
Bis–Tris Gel (Invitrogen) and ran for 90 min at 130 V in 
MOPS buffer, or 65 min at 130v in MES buffer. The gel 
was then transferred to a PVDF membrane using the 
iBlot Machine (Thermo Fisher Scientific). For Western 
blot normalization, membranes were stained using the 
Revert™ 700 Total Protein Stain (Licor Bioscience). The 
membrane was blocked in Intercept Blocking Buffer 
for 1 h at room temperature. The primary antibody was 
diluted (BATF, CST 8638, 1:1000; EBF1, Santa Cruz 
sc-137065, 1:500; EBNA2, [PE2] Abcam ab90543, 1:1000; 
JUNB, Active Motif 39,549, 1:1000; RBPJ, CST 5313, 
1:1000; and SPI1, CST 2266, 1:1000) in Intercept Block-
ing Buffer (with Tween 20 diluted at 1:1000) and the 
membranes incubated in primary antibody overnight at 
4  °C with rocking. Membranes were washed in a PBS/
Tween 20 solution twice and were incubated in fluores-
cently labeled secondary antibody in Intercept Blocking 
Buffer (with Tween 20 and SDS) for 60 min at room tem-
perature with rocking. Membranes were washed again 
in a PBS/Tween 20 solution 2 times before being imaged 
using the Odyssey DLx Imaging System (Licor Biosci-
ence). Protein expression levels were determined using 
Empiria Studio v2.2 (Licor Bioscience).

Co‑immunoprecipitation (Co‑IP) assays
Co-IP was used to pull down known EBNA2 partners in 
EBV-1 and EBV-2 infected cell lines. To obtain nuclear 

https://www.ebi.ac.uk/gwas/
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lysates, cell lines were resuspended in 1 mL of cold PBS 
per 10 million cells. Cells were then centrifuged at 4 °C, 
300 × g for 5  min and the PBS was aspirated off. Cell 
pellets were resuspended in 400μl of CE buffer (10 mM 
HEPES, pH 7.0; 10 mM KCl; 0.1 mM EDTA; 1 mM DTT; 
1 × Halt phosphatase inhibitor) and incubated for 15 min 
on ice. Afterwards, 25μl of 10% Nonidet P-40 were mixed 
into the solution and the samples were centrifuged at 
max speed (17.3 × g) at 4 °C for 3 min. The supernatant, 
which contains the cytoplasmic portion, was discarded. 
The remaining nuclei samples were washed twice in 500μl 
of cold PBS. Samples were spun for 1 min at max speed 
(17.3 × g). After discarding the PBS supernatant, the cell 
pellet was resuspended in 500μl of Co-IP Buffer (1% 
NP-40; 150 mM NaCl; 10 mM Tris–HCl, pH 7.4; 1 mM 
EDTA, pH 8.0; 3% Glycerol; H2O). Samples were left on 
ice for 10 min. Afterwards, cells were sonicated using the 
Q125 sonicator (Qsonica) at 20% power, 5 s pulses for a 
total of 15 s. Samples were spun down for 10 min at max 
speed and the nuclear lysate was collected. 5.5μl of ali-
quot was used to measure protein concentration using 
the bicinchoninic acid assay (BCA) (Thermo Fisher Sci-
entific). 100ug of nuclear lysate were aliquoted for input 
with 2 × Laemmli loading buffer and stored at -80C.

To begin co-immunoprecipitation, 500ug lysates in 
Co-IP buffer were aliquoted to a final volume of 500uL. 
EBNA2 antibody (PE2 Abcam ab90543; 1:100) was added 
to the Co-IP sample and rotated at 4C for 1  h. Protein 
A/G beads were washed 2 times with Co-IP buffer and 
then added to Co-IP samples at 1:10 dilution and rotated 
for 1  h at 4 degrees. Tubes were placed on a magnetic 
rack and the clear liquid was collected and discarded. The 
remaining beads were washed with 500μl Co-IP buffer 
four times. After washing, 50μl heated sample buffer was 
added to the IP sample and mixed.

IP and input samples were heated at 70C for 5  min. 
After cooling, the samples were loaded into a 4–12% 
Nu page Bis–Tris Gel (Invitrogen) and ran for 90  min 
at 130v in MOPS buffer. The gel was then transferred 
to a PVDF membrane using the iBlot Machine (Thermo 
Fisher Scientific). Samples were blocked in 5% milk in 
PBST (50  ml PBST plus 2.5  g dehydrated milk pow-
der) for at least 1 h. The primary antibody (EBF1, CST 
50752; RBPJ, CST 5313; and SPI1, CST 2266) was 
diluted in 5% milk in PBST at a 1:1000 ratio and the 
membranes incubated in primary antibody overnight 
at 4  °C with rocking. Membranes were washed in a 
PBST solution 3 times for 5  min each and were incu-
bated in HRP conjugated secondary antibody in 5% 
milk in PBST for 1  h at room temperature with gen-
tle shaking. Membranes were washed again in a PBST 
solution 3 times for 5  min each. Then 2  ml of Super-
Signal West Femto Maximum Sensitivity Substrate was 

added to each blot and incubated for 2 min. Substrate 
was removed before being imaged with the ChemiDoc 
Touch Imaging System (Bio-Rad).

RNA‑sequencing (RNA‑seq)
RNA sequencing (RNA-seq) was used to measure human 
gene expression levels in EBV-1 (GM12878 & Mutu-III) 
and EBV-2 (AG876 & Jiyoye) infected cell lines. We gen-
erated new RNA-seq datasets for the AG876, Jiyoye, and 
GM12878 cell lines. Public Mutu-III RNA-seq datasets 
(see Supplemental Dataset 1) were also included. The 
mirVana RNA (Thermo Fisher Scientific) isolation kit 
was used to isolate total RNA from 3–5 million cells of 
each cell line in triplicates (at greater or equal to 90% via-
bility) following the manufacturer’s recommended proce-
dures. Libraries were prepared from RNA samples using 
the TruSeq Stranded Total RNA with Ribo-Zero Globin 
(Illumina, Inc., San Diego, CA) and sequenced at 150 
paired end bases (50 M reads per sample) at the CCHMC 
Genomics Sequencing Facility.

Raw RNA-seq datasets were processed using the nf-
core pipeline [109, 110] (v. 3.11.1) (https://​nf-​co.​re/​
rnaseq). In brief, the samples underwent QC using 
FastQC v. 0.11.9 (https://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/) and adaptors were trimmed 
and filtered using Cut Adapt v. 3.4 (https://​cutad​apt.​
readt​hedocs.​io/​en/​stable/). Other tools, such as Rse-
qQC [111, 112], Qualimap [113, 114], dupRadar [115], 
and Preseq (https://​github.​com/​smith​labco​de/​preseq), 
were used to assess the quality of the datasets. Sequenc-
ing data were aligned to a modified hg19 genome con-
taining transcript sequences for EBV-1 (ASM240226v1 
/ GCF_002402265.1) or EBV-2 (ViralProj20959 / 
GCF_000872045.1), respectively using STAR v. 2.7.9a 
(https://​github.​com/​alexd​obin/​STAR) [116]. Riboso-
mal RNA was removed from the aligned datasets using 
the Silva Library (https://​www.​arb-​silva.​de/) and Sort-
meRNA v. 4.3.4 (https://​bioin​fo.​lifl.​fr/​RNA/​sortm​erna/) 
to eliminate potential contamination from non-target 
RNA species. Transcript abundance estimates were 
calculated using the GENCODE (v. 19) annotation for 
hg19 with additional EBV transcripts (see above) added 
with Salmon (v.1.10.1) (https://​combi​ne-​lab.​github.​io/​
salmon/). Normalized gene read counts were calcu-
lated using DESeq2 [117] utilizing an alpha threshold of 
0.05 and a Linear Fold Change Cutoff of 2. All datasets, 
including public datasets, were analyzed using the same 
pipeline. All datasets passed standard QC procedures 
and showed strong agreement between replicates (Sup-
plemental Dataset 2). Transcripts per million (TPM) were 
generated (Supplemental Dataset 6). Full QC information 
is provided in “Additional File 19 QC Reports.zip.”

https://nf-co.re/rnaseq
https://nf-co.re/rnaseq
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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https://github.com/alexdobin/STAR
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https://combine-lab.github.io/salmon/
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EBNA2/EBF1 split nanoluciferase assays
HEK-293 cells were plated on 6 well plates and trans-
fected the following day using Lipofectamine 2000 
(Thermo Fisher Scientific) following the manufacturer’s 
instructions. The control cells received 0.5 mg of a plas-
mid encoding GFP while the experimental wells received 
0.5 mg of SmBit-EBF1 fusion plasmid and either 0.5 mg 
of B95.8 LgBit-EBNA2 (B95.8) or 0.125  mg of LgBit-
EBNA2 (AG876) fusions to compensate for the lower 
expression of the B95.8 EBNA2. We selected the amount 
of DNA to transfect such that the amount of protein was 
relatively the same. Because B95.8 EBNA has a stretch of 
prolines [118–120], the translation of type 1 B95.8 is less 
efficient. Thus, twice as much B95.8 EBNA2 was trans-
fected relative to AG876 EBNA2. The following day the 
transfected cells were counted, and 100,000 cells of each 
condition were plated in triplicate on a 96 well plate 
and the remaining cells were replated on 6 well plate 
to collect parallel samples for Western blot (see above). 
The next day the cells on the 6 well plate were lysed in 
RIPA-Doc plus protease inhibitors, quantified using the 
BCA protein assay kit and equivalent amount of protein 
lysates were used for Western blot for the SmBit-EBF1 
and LgBit-EBNA2 fusions. For the nanoluciferase assay, 
the media on the cells on the 96 well plate was changed 
to 50  ml of Opti-MEM (Thermo Fisher Scientific) plus 
12.5 ml of Promega Nano-Glo Live Cell Detection (Pro-
mega) reagent and luminescence was read on a GloMax 
(Promega) plate reader with a 10 s integration time.

EBF1 ChIP‑qPCR
Equivalent amounts of EBF1 ChIP libraries from 
GM12878 or AG876 cells were diluted 0.01  ng/μl. The 
amount of specific genomic locations present in the 
diluted ChIP libraries were measured in triplicate by 
qPCR. Briefly, 5 μl of the diluted ChIP libraries were 
added to a mastermix of the target site primers (0.75 μl 
each of primers resuspended at 10 mM), 6 μl water, and 
12.5 μl of 2X SYBR Green (Thermo Fisher Scientific)) 
on a 96 well qPCR plate. The qPCR was then run and 
read on an Applied Biosystems QuantStudio Real-Time 
PCR machine. The GM12878 and AG876 signal for each 
genomic location was normalized using the CT of the 
AG876 samples to determine the relative enrichment of 
EBF1 ChIP from GM12878 compared to AG876.
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