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Abstract 

Human leukocyte antigen (HLA) is closely involved in regulating the human immune system. Despite great advance 
in detecting classical HLA Class I binders, there are few methods or toolkits for recognizing non-classical HLA Class 
I binders. To fill in this gap, we have developed a deep learning-based tool called DeepHLAPred. The DeepHLAPred 
used electron-ion interaction pseudo potential, integer numerical mapping and accumulated amino acid frequency 
as initial representation of non-classical HLA binder sequence. The deep learning module was used to further refine 
high-level representations. The deep learning module comprised two parallel convolutional neural networks, each 
followed by maximum pooling layer, dropout layer, and bi-directional long short-term memory network. The experi-
mental results showed that the DeepHLAPred reached the state-of-the-art performanceson the cross-validation test 
and the independent test. The extensive test demonstrated the rationality of the DeepHLAPred. We further analyzed 
sequence pattern of non-classical HLA class I binders by information entropy. The information entropy of non-classical 
HLA binder sequence implied sequence pattern to a certain extent. In addition, we have developed a user-friendly 
webserver for convenient use, which is available at http://​www.​biols​cience.​cn/​DeepH​LApred/. The tool and the analy-
sis is helpful to detect non-classical HLA Class I binder. The source code and data is available at https://​github.​com/​
tangx​ingyu0/​DeepH​LApred.
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Introduction
Human leukocyte antigen (HLA) genes are located at the 
human histocompatibility complex (MHC) region on the 
short arm of chromosome 6 [1, 2]. HLA genes have more 
than one different allele, which are encoded into cell-sur-
face glycoproteins which play a key role in the immune 
system [3, 4]. Generally, HLA genes are classified into 
three categories, class I, class II, and class III [5], while 

HLA class I genes are further divided into two subcate-
gories: classical (HLA-A, HLA-B, HLA-C) and non-clas-
sical (HLA-E, HLA-G, HLA-F) [6]. As of Feb 2023, the 
IPD-IMGT/HLA database deposited 25,228 HLA Class I 
alleles, including 7712 HLA-A, 9164 HLA-B, 7672 HLA-
C, and 10,592 HLA Class II alleles [7, 8]. The non-classi-
cal HLA class I genes are different from classical I ones 
in a wide range of respects including specific patterns 
of transcription, protein expression, and immunologi-
cal functions [9]. For example, non-classical HLA class I 
genes are less polymorphic than classical, characterized 
by a low genetic diversity and by a particular expression 
pattern, structural organization, and functional profile 
[10–13].

An adaptive immune response was activated by bind-
ing of peptides from antigenic pathogens to HLA and 
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then eliminated the source pathogens [14]. Therefore, 
identifying the HLA binding peptides not only helps 
understand the immune mechanism, but also facilitates 
rational subunit vaccine design. However, this is still a 
bottleneck to precisely recognize the non-classical HLA 
binders at present [15]. Hannoun et al. employed the bio-
chemical methodology to identify 4 HIV-1-derived HLA-
E-binding peptides in assays [16]. This methodology is 
very complex, time-consuming, and laborious [17]. Over 
the recent twenty years, computational methods have 
attracted more attention due to simplicity and effective-
ness. No less than ten computational methods have been 
proposed for predicting HLA binders [15, 18–25].

In 1993, Bisset et  al. employed the neural network to 
determine HLA-DR1 binding peptides [18]. Trained by 
the peptide segments known to bind to HLA-DR1, the 
neural network was able to learn representations relating 
to HLA-DR1-binding capacity to a certain extent. Singh 
et al. developed a graphical web tool to identify HLA-DR 
binder [15] and an online web tool to predict peptides 
binding to MHC class-I alleles [19]. Nielsen et al. utilized 
the stabilization matrix method to develop a quantitative 
MHC class II binding prediction [26]. Lata et al. created a 
support vector machine-based method for prediction of 
promiscuous binders of MHC class II alleles [27]. Wang 
et  al. combined multiple machine learning algorithms 
to explore HLA-peptide binding affinities for HLA DR, 
DP, and DQ alleles [28]. Peters et al. set up a benchmark 
dataset for detecting peptide binding to MHC-I alleles, 
and compared the neural network-based and two matrix-
based predictions [29]. Lin et  al. compared and evalu-
ated thirty prediction servers for seven human MHC-I 
molecules and argued that non-linear predictors were 
superior to matrix-based ones [30]. Nielsen et al. devel-
oped a pan-specific HLA-DR prediction [31], while Jurtz 
et  al. fused the eluted ligand and peptide binding affin-
ity data to promote prediction of peptide-MHC class I 
interaction [20]. Most of computational methods above 
were based on the traditional machine learning (shallow 
learning), which were restricted to the small number of 
leaning samples. The generalization ability of the model 
was sometimes not as good as expected. Ye et  al. [22] 
employed long short-term memory (LSTM) and multiple 
head attentions to build a deep learning-based method 
(MATHLA) for classical HLA class I binding peptide pre-
diction. The MATHLA showed the improved accuracy of 
prediction for HLA-C alleles and depicted some HLA-
ligand binding patterns [22]. Zhang et  al. proposed a 
complex model (HLAB) for HLA class I binding peptide 
prediction [23]. The HLAB used the pre-trained Protein 
Bidirectional Encoder Representations (ProBERT) [32] 
to extract initial representations from peptides,, which is 
a BERT model [33–35] trained by the protein sequences 

from the UniRef100 [36] as well as BFD [37] databases 
then employed bi-directional LSTM (Bi-LSTM) to refine 
contextual semantics, utilized the Umap [38] to reduce 
the dimensions, and finally built seven binary classifi-
cation models. Chu et  al. [24] proposed a transformer-
based method for peptide-HLA binding prediction. The 
experiments showed superior performance over 14 state 
of art methods.

More attentions were paid to classical HLA genes than 
non-classical HLA class I genes in the past ten years [39]. 
However, the recent studies have demonstrated that non-
classical HLA class I alleles play equally important roles 
in transcription, protein expression, and immune regu-
lation [9, 13, 40–45]. To best of our knowledge, only the 
HLAncPred [6] was explicitly intended to predict binders 
for non-classical HLA class I alleles. The HLAncPred was 
a feature engineering and traditional machine learning-
based method, which used different machine learning 
algorithms with different representations to construct the 
predicting models. Although the HLAncPred obtained 
the quite high performance, it was inconvenient to 
choose a specified model for multiple-type datasets. 
Hence, it is necessary to develop a more efficient method 
for non-classical HLA binder prediction. Here, we 
developed a deep learning-based method for non-clas-
sical HLA binder prediction, called DeepHLAPred. The 
DeepHLAPred first extracted initial representations of 
non-classical HLA binding and non-binding peptide 
sequences by three encoding methods, and then fed 
them into an embedding layer followed by a deep lean-
ing module which consisted of two parallel sequences. 
Each sequence comprised mainly convolutional neural 
network (CNN) at different scale and Bi-LSTM. The two 
fully connected layers were attached to the deep leaning 
module for the decision. To validate the effectiveness and 
efficiency of the DeepHLAPred, we tested it extensively 
on the balanced, the unbalanced, and the independent 
datasets.

Materials and methods
Materials
Adequate and reliable data is crucial for building a robust 
predictive model. We used the non-classical class I HLA 
binding peptides collected by Dhall et al. [6] as the bench-
mark datasets. All the binding peptides were experimen-
tally validated by the fluorescence-based, and the mass 
spectrometry or the X-ray crystallography, which were of 
8 to 15 amino acid residues. Dhall et al. [6] grouped the 
peptides into two categories: the balanced and the imbal-
anced, each with five datasets. In the balanced category, 
each dataset included the equal numbers of the positive 
and the negative samples, while the number of the nega-
tive samples was ten times more than the number of 
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positive ones for each dataset in the imbalanced category. 
The positive samples were identical for both the balanced 
and the imbalanced category. The binding peptides (posi-
tive samples) for HLA-E∗01:01, HLA-E ∗01:03, HLA-
G∗01:01, HLA-G∗01:03, and HLA-G∗01:04 alleles were 
142, 632, 2633, 751, and 812, respectively. Peptides of all 
the binders were downloaded from the website: https://​
webs.​iiitd.​edu.​in/​ragha​va/​hlanc​pred.

DeepHLAPred framework
Figure  1 showed the schematic framework of Deep-
HLAPred. The binding peptides were first encoded by 
electron-ion interaction pseudo potential (EIIP), inte-
ger numerical mapping (INM), and accumulated amino 
acid frequency (AAAF), which then passed through the 
embedding layer. Two parallel CNNs were employed to 
further refine high-level abstract information, each fol-
lowed by max pooling, by Batch Normalization, by Drop-
out, and by Bi-LSTM. The Bi-LSTM was intended to 
learn the dependency relationship in the peptides. Lastly, 
the fully connected layer was attached to the Bi-LSTM 
layer. The sigmoid activation function was used for deci-
sion in the last fully connected layer, which outputted a 
probability value between 0 and 1. If the probability value 
was greater than 0.5, it was determined as non-classical 
HLA class I binders, and otherwise it was non-classical 
HLA non-binders. The detailed model parameters were 

shown in the Supplementary Table 1. The formula of the 
sigmoid function was expressed as:

EIIP
The EIIP was defined as the energy of delocalized elec-
trons of amino acid [46], which is one of the most impor-
tant physical property of amino acid. We used the EIIP to 
encode each amino acid (Table 1). For example, the pep-
tide sequence “CEFSQC” was encoded by the EIIP into 
(0.08292, 0.00580, 0.09460, 0.08292, 0.07606, 0.08292). 
The EIIP of a peptide reflected the distribution of the free 
electron energies.

INM
In order to solve the problem of sparse dimension caused 
by one-hot encoding, we assigned different positive 
integer values to twenty amino acids (Table 1). We used 
MathFeature [47] to compute the INM. The MathFeature 
is a python package which is able to compute up to 37 
categories of representations for DNA, RNA or protein 
sequences. For example, the sequence “CEFSQC” was 
mapped into a numeric vector (5, 7, 14, 16, 6, 5).

(1)Sigmoid(x) = 1+ e−x −1

Fig. 1  The flowchart of DeepHLAPred. Dense stands for fully-connected layer. The numbers in the bracket represent value of corresponding 
parameters

https://webs.iiitd.edu.in/raghava/hlancpred
https://webs.iiitd.edu.in/raghava/hlancpred
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AAAF
The AAAF [47] reflected the distribution density of 
amino acid in a protein sequence. Assuming a non-classi-
cal HLA Class I binding peptide sequence S = s1s2 · · · sn , 
where n denoted the length of the sequence S. The AAAF 
was computed by

A peptide sequence of n residues was of n dimensional 
AAAF feature. For example, the AAAF of the sequence 
“CEFSQC” was (1.0000, 0.50000, 0.33333, 0.25000, 
0.20000, 0.33333). We also used the MathFeature [47] to 
compute the AAAF.

CNN
The CNN is a feed-forward neural network [48, 49] that 
is one of the most popular algorithms in the area of deep 
learning. It significantly reduces the number of training 
parameters [48, 50]. The CNN consists mainly of convo-
lutional and pooling operation. The convolutional opera-
tion is called also the filter operation. In order to refine 
multiple-view representations, the CNN uses more than 
a filter (kernel). The pooling operation is a down-sampling 
technique, which reduces computations and overfitting 
to a certain extent. Compared with traditional neural 
networks, the CNN is characterized by weight sharing 
and local connectivity. Over the past decades, CNN has 
achieved remarkable success in various fields, such as 
medical image analysis [51, 52], speech recognition [53], 
target detection [54], natural language processing [55–58]. 
We applied two parallel one-dimensional convolutional 
operations which are of different scale. One was with the 

(2)f
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)

= 1
j

j
∑

t=1

T (st)
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kernel size of 10 and another was with the kernel size of 8. 
The max pooling operation with a pooling window size of 
2 was attached to the corresponding convolution. RELU 
was used as the activation function. The batch normaliza-
tion and the dropout were used to reduce overfitting. The 
dropout rate was set to 0.5.

Bi‑LSTM
The LSTM is actually a kind of recurrent neural net-
work (RNN), which is of gate mechanism [59–61]. Each 
repeated module in the common LSTM consists of the 
input gate, the output gate, forget gate and the cell state. 
At the heart of LSTM is the cell state, which preserves 
previous record. The forget gate determines what infor-
mation of previous state cell is forgot or remembered. 
The input gate determines what new information is 
added to the cell state. The candidate value is created by 
the tanh function. The forget gate, the candidate value 
and the input gate jointly update the cell state. The hid-
den state is updated by the output gate and the cell 
state. The LSTM well solve the long-term dependence, 
gradient vanishing, or gradient exploding problems 
[62–64]. The Bi-LSTM captures bidirectional relation-
ship between words (token). In this study, we used the 
Bi-LSTM.

Model evaluation
We used the following five evaluation metrics: 
SN(sensitivity), SP(specificity), ACC (accuracy), MCC (Mat-
thews correlation coefficient) to measure the performance 
[65, 66]. Their formulas were expressed as:

In addition, we used ROC curves (receiver operating 
characteristic curves) to visualize the performance. The 
ROC curve is to link true positive rate (TPR) against false 
positive rate (FPR) under various threshold. TPR and 
FPR were defined by

(4)SN = TP
TP+FN

(5)SP = TN
TN+FP

(6)ACC = TP+TN
TP+TN+FP+FN

(7)MCC = TP×TN−FP×FN√
(TP+FN )(TP+FP)(TN+FP)(TN+FN )

Table 1  The EIIP and INM value of each amino acid

Amino Acid EIIP INM Amino Acid EIIP INM

Alanine(A) 0.37100 1 Leucine(L) 0.00000 11

Arginine(R) 0.95930 2 Lysine(K) 0.37100 12

Asparagine(N) 0.00359 3 Methionine(M) 0.08226 13

Asparticacid(D) 0.12630 4 Phenylalanine(F) 0.09460 14

Cystine(C) 0.08292 5 Proline(P) 0.01979 15

Glutarnine(Q) 0.07606 6 Serine(S) 0.08292 16

Glutamicacid(E) 0.00580 7 Threonine(T) 0.09408 17

Glycine(G) 0.00499 8 Tryptophan(W) 0.05481 18

Histidine(H) 0.02415 9 Tyrosine(Y) 0.05159 19

Isoleucine(I) 0.00000 10 Valine(V) 0.00569 20
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The area under the ROC curve (AUC) was employed 
to quantitatively assess performance. In the above equa-
tions, TP, TN, FP,  and FN were denoted as true positive 
(number of samples correctly as positive), true negative 
(number of samples correctly predicted as negative), false 
positive (number of samples incorrectly predicted as pos-
itive), and false negative (number of samples incorrectly 
predicted as negative), respectively.

Results and discussions
Cross validation on the balanced category
We conducted five-fold cross-validation on five balanced 
datasets (HLA-G*01:01, HLA-G*01:03, HLA-G*01:04, 
HLA-E*01:01, HLA-E*01:03) to examine the DeepHL-
APred. Five-fold cross-validation is to randomly split 
the dataset into five parts, of which four parts are used 
for training the model and the other is used for testing 
the model. The training and testing process is repeated 
five times to ensure that each is trained four times and 
tested only a time. As shown in Fig. 2, the DeepHLAPred 
achieved excellent performance, with AUC reaching 
98.92%, 98.12%, 98.55%, 95.95%, and 93.84% on five data-
sets of HLA-G*01:01, HLA-G*01:03, HLA-G*01:04, HLA-
E*01:01, and HLA-E*01:03, respectively. For intuitively 

(8)TPR = TP
TP+FN

(9)FPR = FP
FP+TN

contrasting the DeepHLAPred to the HLAncPred which 
is the latest method for non-classical HLA Class I binder 
prediction, we draw histograms of SN, SP, ACC, MCC, 
and AUC (Fig. 3). Except for the SN on the datasets HLA-
G*01:04 and HLA-E*01:03, and the AUC on the datasets 
HLA-G*01:01 and HLA-E*01:01, the DeepHLAPred obvi-
ously outperformed the HLAncPred. The DeepHLAPred 
improved SN by 1.70%, SP by 1.02%, ACC by 1.37%, and 
MCC by 3.05% on the dataset HLA-G*01:01. The Deep-
HLAPred increased SN by 5.21%, SP by 2.22%, ACC by 
3.72%, MCC by 6.83%, and AUC by 1.12% on the dataset 
HLA-G*01:03. The DeepHLAPred promoted SP by 2.43%, 
ACC by 0.48%, MCC by 0.79%, and AUC by 0.55% on the 
dataset HLA-G*01:04. The DeepHLAPred raised SN by 
1.27%, SP by 3.92%, ACC by 2.79%, and MCC by 5.55% 
on the dataset HLA-E*01:01. The DeepHLAPred elevated 
SP by 8.61%, ACC by 2.35%, MCC by 3.31%, and AUC by 
0.84% on the dataset HLA-E*01:03. We performed 5-fold 
cross validations 5 times and used T-test to compare dif-
ference between DeepHLAPred and the HLAncPred. 
As shown in Table  2, most metrics were significantly 
improved excluding AUC on the HLA-E*01:01, SN on the 
HLA-E*01:03, and SN on the HLA-G*01:04.

Validation on the imbalanced category
To further validate the effectiveness and efficiency 
of the DeepHLAPred, we amplified the numbers of 
negative samples ten times, which along with positive 
samples were called the imbalanced category (see the 
section  Materials and methods). We shuffled samples 

Fig. 2  The ROC curves and AUC values on the five-fold cross validation
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in each dataset and randomly chose 10% samples for 
testing. We repeated this operation ten times. Figure 4 
showed the ROC curves and the average ROC curves. 
The DeepHLAPred obtained the average AUC of 
98.78% ±  0.003 on the HLA-G*01:01, 97.91% ±  0.003 
on the HLA-G*01:03, 98.22%  ±  0.005 on the HLA-
G*01:04, 97.49%  ±  0.013 on the HLA-E*01:01, and 
94.69% ±  0.013 on the HLA-E*01:03 respectively. By 
contrast with Fig.  3, AUC was generally stable on the 
whole.

Comparison with the state‑of‑the‑art methods
It’s crucial to examine the performance of the DeepHL-
APred on the independent datasets so as to objectively 
estimate its generalization ability. We retrieved 82 posi-
tive samples for HLA-E*01:01 and 67 positive ones for 

HLA-E*01:03 from the IEDB database [67], We randomly 
selected an equal number of negative samples from the 
imbalanced category, and none of these data were pre-
viously present in the training datasets. The positive 
along with negative samples constituted two independ-
ent datasets. We compared the DeepHLAPred  with the 
state-of-the-art methods: HLAncPred ((https://​webs.​
iiitd.​edu.​in/​ragha​va/​hlanc​pred) [6], MHCflurry 2.0 
[21], NetMHCpan 4.1 (https://​servi​ces.​healt​htech.​dtu.​
dk/​servi​ces/​NetMH​Cpan-4.​1/) [68]). As shown in the 
Table  3, DeepHLAPred demonstrated stable and excel-
lent performance on the independent datasets. Although 
it was inferior to  other three methods in terms of SP, 
DeepHLAPred exhibited greater stability in the predic-
tion of different allele types, and it significantly outper-
formed MHCflurry 2.0 and NetMHCpan 4.1 in terms 

Fig. 3  Comparison with state-of-the-art methods on five-fold cross-validation in balanced datasets

Table 2  The P-values by T-test 

P-Value SN SP ACC​ MCC AUC​

HLA-E*01:01 0.0048 0.0036 0.00002 0.00004 0.0610

HLA-E*01:03 0.9318 0.0000004 0.00002 0.00003 0.0014
HLA-G*01:01 0.00000002 0.0004 0.000001 0.000001 0.0002
HLA-G*01:03 0.00000007 0.011 0.000007 0.000008 0.0002
HLA-G*01:04 0.7370 0.0025 0.0098 0.0105 0.0056

https://webs.iiitd.edu.in/raghava/hlancpred
https://webs.iiitd.edu.in/raghava/hlancpred
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
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of SN, ACC, and MCC. Compared to HLAncPred, 
DeepHLAPred achieved a notable improvement on the 
HLA-E*01:01 dataset, increasing SN by 13.41%, ACC by 
4.27%, and MCC by 6.03%. On the HLA-E*01:03 data-
set, DeepHLAPred achieved performance comparable 
to HLAncPred, with a slight decreased SN by 1.5% but 

an increase of 1.49% of SP. Additionally, ACC and MCC 
were very close between the two methods.

Discussion
Generally speaking, a single category of representation 
was inadequate to represent a protein sequence to full 

Fig. 4  The ROC curves of 10-times shuffle validation on the imbalanced category

Table 3  Comparisons with the state-of-the-art methods on independent datasets

Datasets DeepHLAPred HLAncPred MHCflurry 2.0 NetMHCpan 4.1

SN SP ACC​ MCC SN SP ACC​ MCC SN SP ACC​ MCC SN SP ACC​ MCC

HLA-E*01:01 0.7195 0.8780 0.7988 0.6052 0.5854 0.9268 0.7561 0.5449 0.2804 0.9634 0.6220 0.3339 0.4756 0.9390 0.7073 0.4679

HLA-E*01:03 0.9402 0.8507 0.8955 0.7942 0.9552 0.8358 0.8955 0.7967 0.1493 0.9552 0.5522 0.1765 0.3880 0.9851 0.6866 0.4651

Table 4  The performance of single representation and combinations on HLA-G*01:01

HLA-G*01:01 SN SP ACC​ MCC AUC​

AAAF 0.6010 0.5382 0.5699 0.1397 0.5965

EIIP 0.8465 0.8304 0.8386 0.6774 0.9069

INM 0.9167 0.8529 0.8851 0.7720 0.9488

AAAF + EIIP 0.9102 0.8619 0.8859 0.7729 0.9532

AAAF + INM 0.9325 0.8504 0.8914 0.7856 0.9572

INM + EIIP 0.9465 0.9052 0.9253 0.8523 0.9788
INM + EIIP + AAAF 0.9407 0.9145 0.9276 0.8557 0.9762



Page 8 of 16Huang et al. BMC Genomics          (2023) 24:706 

Table 5  The performance of single representation and combinations on HLA-G*01:03

HLA-G*01:03 SN SP ACC​ MCC AUC​

AAAF 0.5854 0.5440 0.5653 0.1299 0.5738

EIIP 0.8365 0.7814 0.8089 0.6190 0.8874

INM 0.8800 0.8298 0.8549 0.7107 0.9235

AAAF + EIIP 0.8525 0.8079 0.8296 0.6618 0.9116

AAAF + INM 0.9001 0.8083 0.8542 0.7115 0.9227

INM + EIIP 0.8990 0.8685 0.8835 0.7683 0.9537

INM + EIIP + AAAF 0.9160 0.8682 0.8922 0.7852 0.9556

Table 6  The performance of single representation and combinations on HLA-G*01:04

HLA-G*01:04 SN SP ACC​ MCC AUC​

AAAF 0.5666 0.5646 0.5659 0.1315 0.5748

EIIP 0.8485 0.7964 0.8226 0.6462 0.9012

INM 0.8905 0.8470 0.8688 0.7389 0.9342

AAAF + EIIP 0.8630 0.8066 0.8350 0.6710 0.9079

AAAF + INM 0.9025 0.8419 0.8725 0.7471 0.9269

INM + EIIP 0.9198 0.8721 0.8960 0.7929 0.9547

INM + EIIP + AAAF 0.9137 0.8875 0.9008 0.8022 0.9586

Table 7  The performance of single representation and combinations on HLA-E*01:01.

HLA-E*01:01 SN SP ACC​ MCC AUC​

AAAF 0.6595 0.6514 0.6559 0.3102 0.6815

EIIP 0.6848 0.7229 0.7041 0.4086 0.7781

INM 0.7977 0.7903 0.7917 0.5867 0.8534

AAAF + EIIP 0.7848 0.7251 0.7541 0.5099 0.8130

AAAF + INM 0.8447 0.7624 0.8029 0.6092 0.8430

INM + EIIP 0.8458 0.7807 0.8144 0.6293 0.8512
INM + EIIP + AAAF 0.8037 0.7989 0.7995 0.6022 0.8463

Table 8  The performance of single feature and combinations of features on HLA-E*01:03

HLA-E*01:03 SN SP ACC​ MCC AUC​

AAAF 0.6150 0.5221 0.5689 0.1386 0.5867

EIIP 0.6870 0.6345 0.6605 0.3224 0.6979

INM 0.7059 0.6755 0.6946 0.3892 0.7392

AAAF + EIIP 0.7114 0.6560 0.6843 0.3687 0.7327

AAAF + INM 0.7217 0.6723 0.6969 0.3945 0.7481

INM + EIIP 0.7387 0.7109 0.7246 0.4498 0.7815

INM + EIIP + AAAF 0.7451 0.7261 0.7358 0.4712 0.7901
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advantage. To validate this view, we experimented with 
single category of representation and their combination. 
As listed in Tables 4, 5, 6, 7 and 8, the INM performed 
best, followed by the EIIP, and the AAAF performed 
worst among the single category of representation. For 
example, the INM exceeded the AAAF by 31.52% ACC, 
the EIIP by 4.65% ACC on the dataset HLA-G*01:01. 
Difference in the performance between the EIIP and the 
INM was not too much. This indicated that the EIIP and 
INM better represent the peptide sequence. The combi-
nation of the AAAF, the INM and the EIIP reached the 
best ACC among the combination of any two and any 
single category of representation. This indicated that 
this combination enables complementation of different 
information.

In the context of deep learning, the embedding layer 
is primarily intended to transform high dimensional dis-
crete inputs into low dimensional continuous vectors. 
The embedding layer captures the correlation within the 
inputs, reduces computational complexity, and enhance 
the generalization ability. Therefore, the embedding layer 
is popularly used in the deep learning model. Figure  5 
showed the performance of the DeepHLAPred with the 
embedding layer and without the embedding layer. The 
inclusion of the embedding layer significantly improved 
performance on each dataset. Take for example the 

dataset HLA-E*01:03, the DeepHLAPred without the 
Embedding layer obtained an SN of 74.51%, SP of 72.61%, 
ACC of 73.58%, MCC of 47.12%, and AUC of 79.01%, 
respectively, while the DeepHLAPred with the embed-
ding layer, reached SN of 89.71%, SP of 86.56%, ACC of 
88.12%, MCC of 76.31% and AUC of 93.84%, respectively. 
The inclusion of the embedding layer improved SN by 
15.20%, SP by 13.95%, ACC by 14.54%, MCC by 29.19%, 
and AUC by 14.83%, respectively. Similar phenomenon 
was observed in the other datasets.

The DeepHLAPred comprised mainly two scales of 
CNN and Bi-LSTM. To demonstrate the superiority of 
the DeepHLAPred, we compared it with models with 
a single CNN, a single Bi-LSTM, a CNN followed by 
Bi-LSTM, two paralleling CNNs with different scales, 
and two paralleling Bi-LSTMs, their performance were 
shown in Tables 9, 10, 11, 12 and 13. The DeepHLAPred 
reached the better performance on the five datasets. We 
found that a single CNN model or single Bi-LSTM model 
is not as good as the CNN + Bi-LSTM combination. The 
above results demonstrated the soundness of the Deep-
HLAPred architecture.

The discriminating ability of representations plays cru-
cial roles in predictive performance. We used the Umap 
[38] to visualize the initial representations and the ones 
learned by the DeepHLAPred. As shown in Fig.  6, the 

Fig. 5  The radar chart of the performance Embedding layer
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Table 9  The performance of different modules on HLA-G*01:01 dataset

HLA-G*01:01 SN SP ACC​ MCC AUC​

Model

  CNN 0.9467 0.9626 0.9548 0.9099 0.9872

  Bi-LSTM 0.9482 0.9615 0.9550 0.9101 0.9863

  CNN + Bi-LSTM (In series) 0.9533 0.9619 0.9577 0.9154 0.9873

  CNN + CNN (In parallel) 0.9582 0.9593 0.9588 0.9176 0.9864

  Bi-LSTM + Bi-LSTM (In parallel) 0.9529 0.9528 0.9529 0.9058 0.9861

  DeepHLAPred 0.9620 0.9685 0.9653 0.9305 0.9892

Table 10  The performance of different modules on HLA-G*01:03 dataset

HLA-G*01:03 SN SP ACC​ MCC AUC​

Model

  CNN 0.9372 0.9039 0.9208 0.8424 0.9726

  Bi-LSTM 0.9257 0.9241 0.9248 0.8499 0.9716

  CNN + Bi-LSTM (In series) 0.9281 0.9402 0.9341 0.8686 0.9786

  CNN + CNN (In parallel) 0.9321 0.9333 0.9328 0.8656 0.9748

  Bi-LSTM + Bi-LSTM (In parallel) 0.9309 0.9437 0.9374 0.8749 0.9703

  DeepHLAPred 0.9454 0.9626 0.9541 0.9083 0.9812

Table 11  The performance of different modules on HLA-G*01:04 dataset

HLA-G*01:04 SN SP ACC​ MCC AUC​

Model

  CNN 0.9264 0.9365 0.933 0.8627 0.9782

  Bi-LSTM 0.9236 0.9234 0.9236 0.8475 0.9729

  CNN + Bi-LSTM (In series) 0.9457 0.9394 0.9386 0.8858 0.9836

  CNN + CNN (In parallel) 0.9310 0.9396 0.9354 0.8727 0.9802

  Bi-LSTM + Bi-LSTM (In parallel) 0.9211 0.9434 0.9323 0.8657 0.9760

  DeepHLAPred 0.9545 0.9630 0.9587 0.9179 0.9855

Table 12  The performance of different modules on HLA-E*01:01 dataset

HLA-E*01:01 SN SP ACC​ MCC AUC​

Model

  CNN 0.8497 0.8512 0.8521 0.7050 0.9540

  Bi-LSTM 0.8666 0.852 0.8588 0.7174 0.9209

  CNN + Bi-LSTM (In series) 0.8475 0.8730 0.8629 0.7234 0.9356

  CNN + CNN (In parallel) 0.9012 0.8588 0.8802 0.7605 0.9509

  Bi-LSTM + Bi-LSTM (In parallel) 0.8721 0.8665 0.8690 0.7378 0.9391

  DeepHLAPred 0.9413 0.9013 0.9226 0.8455 0.9595
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DeepHLAPred remarkably improved the discriminating 
ability of representations.

Information entropy analysis
We explored further potential sequence patterns of non-
classical class-I HLA binding peptides from two perspec-
tives: amino acid information entropy and positional 
information entropy. The position specific amino acid 
matrix was defined by:

where zi,j stood for the probability of the amino acid 
i at the position j and n represented the length of the 
sequence. The position specific amino acid matrix was 
estimated in practice by calculating all the samples in the 
balanced datasets. The amino acid information entropy 
and the position information entropy were calculated as:

(10)Z =









z1,1 z1,2 · · ·
z2,1 z2,2 · · ·
...

...
...

z1,n
z2,n
...

z20,1 z20,2 · · · z20,n









Fig. 6  The Umap visualization for (A) initial representations, (B) learned representation on the HLA-E*01:01 dataset, (C) initial representations, 
(D) learned representation on the HLA-E*01:03 dataset. The learned representations refer to output of the first fully-connected layer

Table 13  The performance of different modules on HLA-E*01:03 dataset

HLA-E*01:03 SN SP ACC​ MCC AUC​

Model

  CNN 0.8507 0.8221 0.8377 0.6760 0.9130

  Bi-LSTM 0.8448 0.8063 0.8259 0.6518 0.9053

  CNN + Bi-LSTM (In series) 0.8905 0.8235 0.8575 0.7168 0.9287

  CNN + CNN (In parallel) 0.8509 0.8464 0.8488 0.6974 0.9164

  Bi-LSTM + Bi-LSTM (In parallel) 0.8511 0.8167 0.8346 0.6694 0.9031

  DeepHLAPred 0.8971 0.8656 0.8812 0.7631 0.9384
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and

The lower the information entropy was, the more cer-
tain the distribution of amino acid and position was. 

(11)APi =
∑n

j=1 − Zi,j log
(

Zi,j

)

(12)PPj =
∑20

i=1 − Zi,jlog
(

Zi,j

)

Figure  7 showed the amino acid information entropy 
on five balanced datasets. Evidently, HLA binding pep-
tides generally have lower entropy values than the non-
HLA binding peptides, indicating that the distribution 
of amino acid was not completely random. Amino acid 
information entropy exhibited specificity to the type of 
HLA binding peptides. The HLA-G binding peptides 

Fig. 7  Amino acids information entropy. “POS”, “NEG”, and “SUM” represent positive samples, negative samples, and the total samples, respectively

Fig. 8  The position information entropy of non-classical HLA peptide sequences
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have lower value of amino acid information entropy at the 
Asparticacid (D) and Proline (P), while the HLA-E bind-
ing peptides have lower value at Cystine (C), Methionine 
(M), and Tryptophan (W). This implied that these amino 
acids were not distributed randomly. As shown in Fig. 8, 
we found that the positional information entropy of pep-
tide sequences also was specific to type of HLA-binding 
peptides. Interestingly, positional information entropy at 
the 9-th position in the HLA-E*01:01, HLA-G*01:03, and 
HLA-G*01:04 were lower than others, indicating speci-
ficity of amino acid distribution at this position. These 
findings help us understand the sequence pattern of non-
classical HLA I binding peptides [6, 21].

Webserver
To facilitate to predict non classical HLA class I bind-
ers, we developed a user-friendly webserver which is 
available at http:/​www.​biols​cience.​cn/​DeepH​LApred/. 

The webserver interface was shown in the Fig. 9. Users 
who utilize this webserver hardly require any prior 
knowledge about biology or deep learning. The only 
done is three steps. Firstly, users either input sequences 
in FASTA format into the inputting box or choose to 
upload a FASTA sequence file. Secondly, users select 
types of the non-classical HLA Class I allele which they 
want to predict. Finally, by clicking the submit button, 
users will get the prediction results on the webpage.

Conclusion
HLA is closely related to the human immune system. Pre-
cisely identifying the HLA binding peptides is still chal-
lenging. We used three feature extraction methods, EIIP, 
AAAF, and INM to encode peptide sequences, and pro-
posed a CNN and Bi-LSTM-based deep learning model 
(DeepHLAPred) for non-classical HLA Class I binder 
prediction. The DeepHLAPred was extensively tested by 

Fig. 9  The web server page of the DeepHLAPred

http://www.biolscience.cn/DeepHLApred/
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datasets of non-classical HLA I binder. It was well demon-
strated that our method achieved state of the art perfor-
mance on nearly all the datasets. The information entropy 
analysis implied the sequence pattern of non-classical 
binder to a certain extent. Though the DeepHLAPred 
demonstrated satisfactory performance in the prediction 
of non-classical HLA class I binding peptides. However, 
there still exists considerable room for improvement. In 
addition, the model interpretability need improving. In 
the future work, we shall focus on large language mode to 
improve prediction accuracy and interpretability.
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