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Abstract 

Background  Lipid metabolism plays a pivotal role in asthma pathogenesis. However, a comprehensive analy-
sis of the importance of lipid metabolism-related genes (LMRGs) in regulating the immune microenvironment 
in asthma remains lacking. The transcriptome matrix was downloaded from the Gene Expression Omnibus (GEO) 
dataset. Differentially expressed analysis and weighted gene coexpression network analysis (WGCNA) were 
conducted on the GSE74986 dataset to select hub LMRGs, and gene set enrichment analysis (GSEA) was con-
ducted to explore their biological functions. The CIBERSORT algorithm was used to determine immune infiltration 
in the asthma and control groups, and the correlation of diagnostic biomarkers and immune cells was performed 
via Spearman correlation analysis. Subsequently, a competitive endogenous RNA (ceRNA) network was constructed 
to investigate the hidden molecular mechanism of asthma. The expression levels of the hub genes were further 
validated in the GSE143192 dataset, and RT‒qPCR and immunofluorescence were performed to verify the reliability 
of the results in the OVA asthma model. Lastly, the ceRNA network was confirmed by qRT-PCR and RNAi experiments 
in the characteristic cytokine (IL-13)-induced asthma cellular model.

Results  ASAH1, ACER3 and SGPP1 were identified as hub LMRGs and were mainly involved in protein secre-
tion, mTORC1 signaling, and fatty acid metabolism. We found more infiltration of CD8+ T cells, activated NK cells, 
and monocytes and less M0 macrophage infiltration in the asthma group than in the healthy control group. In 
addition, ASAH1, ACER3, and SGPP1 were negatively correlated with CD8+ T cells and activated NK cells, but posi-
tively correlated with M0 macrophages. Within the ceRNA network, SNHG9-hsa-miR-615-3p-ACER3, hsa-miR-212-5p 
and hsa-miR-5682 may play crucial roles in asthma pathogenesis. The low expression of ASAH1 and SGPP1 in asthma 
was also validated in the GSE74075 dataset. After SNHG9 knockdown, miR-615-3p expression was significantly upregu-
lated, while that of ACER3 was significantly downregulated.

Conclusion  ASAH1, ACER3 and SGPP1 might be diagnostic biomarkers for asthma, and are associated with increased 
immune system activation. In addition, SNHG9-hsa-miR-615-3p-ACER3 may be viewed as effective therapeutic targets 
for asthma. Our findings might provide a novel perspective for future research on asthma.
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Introduction
Bronchial asthma (asthma) is a chronic inflammatory 
disease caused by complex gene‒environment interac-
tions, and is characterized by chronic airway inflamma-
tion, airway hyperresponsiveness, mucus hypersecretion 
and airflow obstruction [1]. Approximately 300 million 
individuals worldwide are affected by asthma, with prev-
alence rates ranging from 1 to 18% in different countries 
[1, 2]. It is an intractable heterogeneous and multifacto-
rial disease with a wide range of molecular, biochemi-
cal and cellular inflammatory characteristics. Although 
effective therapies that could relieve asthma symptoms 
are available, a large proportion of patients show poor 
control and experience persistent residual symptoms, 
indicating that the underlying pathogenetic mechanisms 
of asthma are unclear [3, 4]. Recently, lipid metabolism 
has been regarded as a novel hallmark of asthma [5]. 
Therefore, identifying the potential biomarkers of lipid 
metabolism and mechanisms underlying asthma might 
provide insights into the pathogenesis of asthma and 
determine new therapeutic targets.

Lipid metabolism is a complex physiological process 
including the uptake, transport, biosynthesis (anabo-
lism) and degradation (catabolism) of lipids [6], that 
participates in many active functions of our body, such 
as energy storage, nerve impulse transmission, hormone 
regulation, protein distribution and function, and cell 
inflammation [6, 7]. Increasing evidence from laboratory 
and clinical studies has indicated that lipid metabolism 
plays a pivotal role in the pathogenesis of asthma [5]. 
For example, fatty acid metabolism could activate mac-
rophages, leading to the generation of various inflamma-
tory cytokines, such as TNF-α, IL-6, and IL-1β, which 
impact lung function and participate in the initiation 
of asthma in patients with obesity [8]. McErlean et  al 
[9]. proved that prostaglandin-endoperoxide synthase 
1 (PTGS1), a lipid metabolism-associated enzyme, was 
implicated in epigenetic mechanisms underlying asthma 
pathogenesis in the airways. A laboratory study showed 
that lipid metabolism-related genes, such as Scd1, Fasn, 
and Lpcat1, downstream of the STAT3-SCD1 axis con-
tributing to lung homeostasis could suppress allergic 
airway inflammation in asthma models [10]. In addi-
tion, lipid metabolism regulates many immune cellular 
processes, such as IgE production by B cells, eosinophil 
migration to the lungs, and perturbations in the Th1/Th2 
balance, which in turn affect allergic asthma [5]. The spe-
cific knockout of PGI2 analogs or PGI2 receptors upreg-
ulates IL-4, IL-5, and IL-13 release from T cells in vitro 
and in  vivo and ultimately aggravates asthma [11, 12]. 
Although, existing studies have revealed the significant 
roles of lipid metabolism and lipid metabolism-related 
genes (LMRGs) in asthma, most studies have focused on 

specific LMRGs, and studies comprehensively analysing 
LMRGs in combination with the immune microenviron-
ment of asthma have rarely been conducted.

Based on this, we conducted differential expression 
analysis and weighted gene coexpression network analy-
sis (WGCNA) and further constructed a competitive 
endogenous RNA (ceRNA) network to select hub LMRGs 
and reveal the hidden intrinsic molecular mechanism of 
hub LMRGs in asthma. Additionally, immune infiltration 
analysis and correlation analysis between hub LMRGs 
and immune cells were performed to explore the rela-
tionships between hub LMRGs, the immune microen-
vironment, and asthma. Our study might provide novel 
diagnostic biomarkers and therapeutic targets for asthma 
and promote the personalized treatment of asthmatic 
patients.

Materials and methods
Data acquisition and processing
We downloaded asthma microarray datasets from the 
Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/). The selection criteria 
included the following: i) the gene expression profil-
ing must include both disease and control groups; ii) 
asthma was defined by the criteria of the Global Initiative 
for Asthma (GINA) [2] and the national  asthma  guide-
lines; and iii) samples had a mapped gene expression 
matrix. Profiles with nonhuman tested specimens, 
incomplete data, related to cell lines, and associated with 
other diseases were excluded. Four datasets with reli-
able sample sources were included in this study, includ-
ing 2 mRNA (GSE74986  and  GSE74075) [13, 14], 1 
miRNA (GSE120172) [15], and 1 lncRNA (GSE143192) 
[16] expression profiles. The GSE74986 dataset anno-
tated using GPL6480 (Agilent-014850 Whole Human 
Genome Microarray 4 × 44  K G4112F) contained 
bronchial-alveolar lavage samples from 74 asthmatic 
patients and 12 healthy controls [13]; the GSE74075 
dataset used as the validation set contained 16 samples 
(asthma:normal = 10:6); the GSE120172 dataset involved 
24 samples (asthma:normal = 12:12); and the GSE143192 
dataset involved 8 samples (asthma:normal = 4:4). More 
detailed information about the four datasets and the 
characteristics of the participants are shown in Addi-
tional file 1: Table S1 and Table S2.

The raw microarray gene expression data were pre-
processed by the R Bioconductor package affy, including 
background correction, normalization, and log2 trans-
formation [17]. The microarray probes were converted 
into gene symbols based on the platform annotation file, 
probe sets without corresponding gene symbols were 
removed, and average expression values were retained 
when one gene was targeted by several probes. In 
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addition, a total of 769 LMRGs were obtained from the 
molecular signatures database (MSigDB) (https://​www.​
gsea-​msigdb.​org/​gsea/​msigdb).

Differentially expressed genes identification
Differentially expressed genes (DEGs) between asthmatic 
patients and healthy controls from the GSE74986 dataset 
were selected utilizing the “limma” package in R [18]. The 
Benjamini–Hochberg (FDR) [19] procedure was used to 
correct for multiple testing. FDR < 0.05 and |log2(fold 
change, FC)|> 1 were set as cut-off thresholds for statisti-
cal significance.

Identification of gene modules by weighted gene 
coexpression network analysis (WGCNA)
WGCNA has been extensively used in investigating 
the relationship between coexpression gene modules 
and clinical phenotypes [20]. We utilized the R package 
“WGCNA” to construct coexpression networks [20]. 1) 
Genes with greater than 25% variation were selected for 
WGCNA. 2) The hclust function was utilized to cluster 
samples and recognize outliers. 3) The soft-thresholding 
power, which was derived by coexpression similarity, 
was calculated using the pick-Soft-Threshold function 
of WGCNA. The optimal power was chosen when the 
scale-free index (R2) reached 0.80 and the mean connec-
tivity approximated 0. 4) The topological overlap matrix 
(TOM) and the corresponding dissimilarity (1-TOM) 
were transformed from the adjacency matrix. 5) Mod-
ules were detected through hierarchical clustering and 
dynamic tree cut function, with a minimum number 
(gene group) of 50 for the genes dendrogram [21]. 6) 
For the modules correlated with the clinical phenotypes, 
gene significance (GS) and module membership (MM) 
were calculated and visualized. Finally, the module with 
the highest correlation coefficient was selected as the key 
module and applied for further analysis.

Identification of BA‑lipid metabolism‑related DEGs (BA‑LM 
DEGs) and functional enrichment analysis
The BA-LM DEGs were obtained from the intersection 
of the LMRGs, WGCNA significant module genes, and 
DEGs detected from the GSE74986 dataset using the 
“VennDiagram” package in R. The differentially expressed 
BA-LM DEGs between asthmatic patients and healthy 
controls were identified by the Wilcoxon test. To explore 
the potential roles of the BA-LM DEGs in asthma, 
ClueGO, a Cytoscape plug-in, was used to perform Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses, and create a 
functionally organized GO/pathway term network [22]. 
A p value < 0.05 was regarded as the cut-off threshold.

Identification of hub genes and gene set enrichment 
analysis (GSEA)
The STRING website (https://​cn.​string-​db.​org/) was used 
to build a protein–protein interaction (PPI) network of 
BA-LM DEGs detecting gene connections, and minimum 
confidence ≥ 0.4 was defined as the cut-off threshold [23]. 
The network was then visualized with Cytoscape software 
(version 3.9.1) [24], after removing discrete proteins. We 
used the molecular complex detection (MCODE) plug-in 
in Cytoscape software to extract the pivotal subnetwork 
and obtain hub genes [25]. Additionally, gene set enrich-
ment analysis (GSEA) with the annotation of hallmark 
gene sets was conducted via the SangerBox platform 
(http://​sange​rbox.​com/) to analyse the biological func-
tions of hub genes in asthma [26]. Asthmatic patients 
were divided into low- or high-expression groups based 
on the median value of hub gene expression, and GSEA 
was performed with nominal P < 0.05, |enrichment 
scores| (ES) > 0.4, and false discovery rate (FDR) < 0.25 
considered statistically significant [27].

Immune cell infiltration analysis
To uncover the immune infiltration landscape of asthma 
and control samples, the “CIBERSORT” R package, 
which could calculate the abundance of specific cells in 
the mixture matrix, was used [28]. The proportions and 
heatmap of the 22 immune cells in the samples were 
visualized using the “barplot” and “pheatmap” packages, 
respectively. Subsequently, the “vioplot” package was 
used to compare the differences in infiltrating immune 
cells between the two groups [29], and the “Corrplot” 
package was further used to draw a correlation heatmap 
of 22 immune cells. Finally, Spearman correlation analy-
sis of hub genes and immune cells was performed via the 
SangerBox platform (http://​sange​rbox.​com/), and a P 
value < 0.05 was set as the cut-off criterion.

Construction of the ceRNA network
Differentially expressed miRNAs (DEmiRNAs) and lncR-
NAs (DElnRNAs) between asthma and control samples 
from the GSE120172 and GSE143192 datasets, respec-
tively, were analysed by the “limma” R package [18], upon 
selection criteria of p value < 0.05 and |log2(fold change, 
FC)|> 0.5. Then, we utilized miRWalk (http://​mirwa​lk.​
umm.​uni-​heide​lberg.​de/) combining the TargetScan, 
miRDB and miRTarBase databases to determine the 
target miRNAs of hub genes [30]. Target miRNAs were 
intersected with DEmiRNAs  from GSE120172 to obtain 
common miRNAs. Next, StarBase (http://​starb​ase.​sysu.​
edu.​cn/​starb​ase2/​index.​php) was used to predict lncR-
NAs interacting with the common miRNAs [31], and 
the common lncRNAs were identified by taking the 

https://www.gsea-msigdb.org/gsea/msigdb
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intersection of the target lncRNAs and DElncRNAs from 
GSE143192. Finally, we integrated hub genes, miRNAs, 
and lncRNAs to construct a lncRNA‒miRNA-mRNA 
ceRNA network and visualized it using Cytoscape soft-
ware [24] (version 3.9.1).

Validation in the GEO dataset
The present study confirmed the expression status of 
potential hub genes from the GSE74075 dataset using the 
Wilcoxon test method with a p value < 0.05 as the critical 
value to consider statistical significance.

Validation in the OVA models
Animals and grouping
C57BL/6 J male mice were provided by Vital River Lab-
oratories (Beijing, China). Mice were allowed tap water 
and rodent chow and were maintained on a 12  h light/
dark cycle under a favorable environment (22–24℃). 
After 1 week of acclimatization, the C57BL/6 mice were 
randomly divided into two groups (n = 4 per group). The 
OVA group was sensitized by an i.p. injection (100 µL) 
of 20 µg chicken OVA (Sigma, United States) emulsified 
in Imject alum (Pierce, United States) on days 0 and 14 
and subsequently challenged for 40 min with an aerosol 
generated by ultrasonic nebulization of 2% OVA in saline 
from 24 to 41 days [32]. The control group was treated 
with saline in both the sensitization and excitation 
phases. All experimental procedures used in this study 
were approved and conducted according to the guide-
lines of the laboratory Animal Management Committee 
of Shandong University.

Real‑time quantitative polymerase chain reaction (RT‒
qPCR)
Total RNA was extracted from lung tissues using TRI-
zol reagent (Cwbio, Jiangsu, China) following the manu-
facturer’s instructions. Then, the extracted RNA was 
reverse-transcribed into cDNA using the HiFiScript 
cDNA Synthesis Kit (Cwbio). RT‒qPCR was performed 
using an UltraSYBR Mixture (Cwbio) on real-time PCR 
detection equipment (Bio-Rad, Hercules, CA, United 
States). The primer sequences were as follows: mouse 
ASAH1 (Forward: 5’-AGT​CTT​CTC​ACC​TGG​GTC​CTA-
3’, Reverse: 5’-CAA​TCT​TCT​GTC​CAC​GGC​GG-3’), 
mouse ACER3 (Forward: 5’-TGC​ATG​TTT​GAG​TGT​
TTC​AAGA-3’, Reverse: 5’-ACC​AAC​ATT​CCA​TAC​ATG​
ACCTG-3’), mouse SGPP1 (Forward: 5’-GCT​TGT​ACT​
GTT​CGT​GAG​GGA-3’, Reverse: 5’-GAA​CCC​AAC​CAT​
CCC​GTA​GG-3’), and mouse GAPDH (Forward: 5’-GGC​
CCC​TCT​GGA​AAG​CTG​TGG-3’, Reverse: 5’-CCC​GGC​
ATC​GAA​ GGT-GGA​AGA​-3’) were purchased from 
Sangon Biotech (Shanghai, China). GAPDH served as 
an internal reference for mRNAs and lncRNAs, and 

U6 was employed as an internal reference for miRNAs. 
The expression differences between groups were com-
pared using the t test (two-tailed) in GraphPad Prism 9. 
P < 0.05 was considered statistically significant. Detailed 
sequences are listed in Additional file 2: Table S3.

Immunofluorescence staining
For immunofluorescent (IF) staining, lung tissues 
were fixed with 4% paraformaldehyde for 20  min. Sam-
ples were incubated with anti-rabbit ASAH1 antibody 
(1:80, Proteintech, Chicago, United States), anti-rabbit 
ACER3 (1:200, Proteintech, Chicago, United States), and 
anti-rabbit -SGPP1 antibody (1:200, Affinity, Ancaster, 
Canada). The secondary antibody was coralite 594-con-
jugated goat anti-rabbit IgG (H + L) (1:200, Proteintech, 
Chicago, United States). Nuclei were dyed with 4,6 diami-
dino-2-phenylindole (DAPI) (Sigma, Darmstadt, Ger-
many). All the above staining was conducted according 
to the manufacturer’s instructions. Images were observed 
and captured with a fluorescence microscope (Nikon, 
Tokyo, Japan). Image analysis was performed with ImageJ 
(NIH, Bethesda, MD, USA) and GraphPad Prism 9 soft-
ware (San Diego, CA, USA).

Cell culture and transfection
BEAS-2B cells were purchased from the Cell Bank of 
the Chinese Academy of Sciences and were cultured in 
DMEM high glucose medium (CM15019, Macgene) con-
taining 0.1% antibiotics (BL505A, Biosharp) and 10% 
FBS (A6907FBS-500, Invigentech) at 37  °C in a humidi-
fied atmosphere of 5% CO2. BEAS-2B cells were seeded 
in 6-well plates and grown to 60–70% confuence, at 
which time media were exchanged for antibiotic-free 
media. Cells were then transfected with si-SNHG9 (Gen-
eral Biol, Chuzhou, China) (sequence: 5’-CCC​GAA​GAG​
UGG​CUA​UAA​ATT-3’) using the transfection reagent 
(OGTR(C)20131001, Obio, Shanghai, China), in accord-
ance with the manufacturer’s protocol. At 6 h post-trans-
fection, BEAS-2B cells were then treated with Human 
IL-13 (C-Fc) (C01M, Novoprotein, Suzhou, China) for 
24 h to establish an asthma cell model.

Results
Identification of DEGs
A total of 520 DEGs between asthma and control samples 
were detected in the GSE74986 dataset under the cut-off 
thresholds of FDR < 0.05 and |log2(fold change, FC)|> 1, 
among which 64 genes were upregulated and 456 genes 
were downregulated (Additional file  3: Table  S4 and 
Additional file 4: Table S5). The volcano plot of 520 DEGs 
and heatmap of the top 50 DEGs are shown in Figs. 1 and 
2 respectively.



Page 5 of 27Jia et al. BMC Genomics          (2024) 25:129 	

Identification of gene modules by WGCNA
Cluster analysis was performed to detect and remove 
outliers, the height cut-off value was set at 160, and all 
samples were retained for subsequent analysis (Fig. 3A). 
The optimal soft threshold power was determined to be 
10 (scale-free R2 = 0.80) to ensure a scale-free network 
(Fig. 3B). The dynamic shear tree algorithm was used to 
merge modules (dissimilarity degree < 25%) at the mini-
mum module size of 50, and a total of 9 modules were 
obtained, in which genes had similar coexpression traits 
(Fig. 3C). The correlation analysis between modules and 
traits demonstrated that the turquoise module exhibited 
the highest adverse correlation with asthma (cor = -0.52; 
P < 0.001) (Fig.  4A and Additional file  5: Table  S6), and 
Fig.  4B shows that a strong GS-MM correlation was 
obtained in the turquoise module (cor = 0.62, p < 0.001). 
Therefore, the turquoise module was considered the 
key module, in which the downregulated genes were 
regarded as BA-related genes.

Identification of BA‑LM DEGs and functional enrichment 
analysis
As shown in the Venn diagram (Fig.  4C), 32 BA-LM 
DEGs were identified by intersecting 769 LMRGs, 1431 
WGCNA significant module genes, and 520 DEGs. The 
comparison analysis revealed that asthmatic patients had 
lower expression of ABHD3, ACER3, ACSL1, ACSL3, 

ASAH1, CCNC, CD36, CYP51A1, DDHD1, ETNK1, 
GK, GPCPD1, HSD17B11, IDI1, MED23, MTMR6, 
PIK3CA, PLD1, PPP1CB, PPP1CC, PPT1, PRKAR1A, 
PTGES3, RAB14, RAN, SACM1L, SCP2, SEC23A, SGPP1, 
TBL1XR1, and TXNRD1 and higher expression of 
SLC44A2 (Fig. 5A). GO and KEGG enrichment analyses 
showed that BA-LM DEGs were mainly enriched in the 
PPAR signaling pathway, sphingosine metabolic process, 
and inositol phosphate metabolism. Further investigation 
revealed that ACER3 and ASAH1 were mainly involved 
in sphingolipid metabolism, diol metabolic process, 
membrane lipid catabolic process, sphingolipid catabolic 
process, sphingoid metabolic process, and sphingosine 
metabolic process. SGPP1 was closely related to phos-
pholipid dephosphorylation, sphingolipid metabolism, 
diol metabolic process, sphingoid metabolic process, and 
sphingosine metabolic process (Fig. 5B).

Identification of hub genes and GSEA
After removing discrete proteins, a PPI network was 
created with 26 nodes and 26 edges that contained 25 
downregulated genes and 1 upregulated gene (Fig.  6A). 
The MCODE analysis identified a key module in the 
network, including three hub genes (ASAH1, ACER3 
and SGPP1), all of which were downregulated genes and 
strongly linked to asthma (Fig.  6B). To deeply analyse 
the effects of hub genes on asthma, we performed GSEA 

Fig. 1  Volcano diagram showing DEGs between asthma and control groups. DEGs: differentially expressed genes
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Fig. 2  Heatmap of top 50 up-regulated and down-regulated DEGs. DEGs: differentially expressed genes
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to analyse the potential signaling pathways. The top 
five hallmark pathways are shown in Fig.  7A-C. Protein 
secretion, adipogenesis, mTORC1 signaling, fatty acid 
metabolism, and E2F targets were significantly enriched 
in ASAH1 high-expression samples. Moreover, mTORC1 

signaling, adipogenesis, MYC target v1, protein secre-
tion, and fatty acid metabolism were significantly influ-
enced by increased ACER3 expression in asthma. SGPP1 
high-expression samples were predominantly enriched 

Fig. 3  Weighted gene co-expression network analysis (WGCNA). A Clustering dendrogram of samples. B Analysis of network topology for various 
soft-thresholding powers. C Clustering dendrogram of genes
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Fig. 4  WGCNA and Venn diagram. A Heatmap of the association between modules and asthma. B Correlation plot between MM (X-axis) and GS 
(Y-axis) of genes contained in the turquoise module. C Venn diagram showing common genes between the DEGs, LMRGs and the genes 
in the turquoise module. MM: module membership, GS: gene significance, DEGs: differentially expressed genes, LMRGs: lipid metabolism related 
genes, WGCNA: Weighted gene co-expression network analysis
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Fig. 5  Identifcation and enrichment analysis of common genes. A Boxplot of 32 common genes in asthma and control groups. B Functional 
enrichment of 32 common genes. **p < .01, ***p < .001, and ****p < .0001
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in fatty acid metabolism, protein secretion, E2F targets, 
mTORC1 signaling, and MYC target v1.

Immune cell infiltration analysis
The proportion and expression of 22 immune cells in 
each sample were clearly visualized in the bar plot and 

heatmap (Fig.  8A, B). The violin diagram demonstrated 
that CD8+ T cells, activated NK cells, and monocytes 
were highly expressed in the asthma group compared 
with the control group, whereas M0 macrophages 
showed less expression (Fig.  9). The correlation analy-
sis between diagnostic biomarkers and immune cells 

Fig. 6  PPI network and the hub genes. A Protein–protein interaction network. B Hub genes identifed from the PPI network using the MCODE. PPI: 
protein–protein interaction, MCODE: molecular complex detection
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Fig. 7  GSEA enrichment analysis. A-C GSEA enrichment plots of hub genes (ASAH1, ACER3 and SGPP1). GSEA: gene set enrichment analysis
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Fig. 8  The landscape of immune infiltration between asthma and control groups. A Pile-up histogram showing composition of immune cells 
in each sample. B Heatmap displaying the distribution of 22 types of immune cells



Page 13 of 27Jia et al. BMC Genomics          (2024) 25:129 	

revealed that ASAH1, ACER3, and SGPP1 were nega-
tively correlated with CD8+ T cells and activated NK 
cells but positively correlated with M0 macrophages. 
Moreover, SGPP1 showed a negative relationship with 
monocytes (Figs.  10A-C, 11A, B, 12A, B, 13A, B, 14A, 
B, 15A, B and 16A, B). Therefore, these results demon-
strated that CD8+ T cells, activated NK cells, monocytes, 
and M0 macrophages may be the potential core immune 
cells involved in the  pathogenesis of asthma, and the 
hub genes are correlated with the immune infiltration 
landscape, which might provide fresh insight for future 
research on asthma.

Construction of the ceRNA network
We selected 61 DEmiRNAs from the GSE120172 
dataset, including 23 upregulated miRNAs and 38 
downregulated miRNAs (Fig.  17A). miRWalk was uti-
lized to predict the target miRNAs of three hub genes 
(ASAH1, ACER3 and SGPP1). A total of 1368 miR-
NAs were selected, and the potential miRNAs were 
intersected with 61 DEmiRNAs to obtain 22 com-
mon miRNAs (Fig.  17B). Then, 783 DElncRNAs were 
selected from the GSE143192 dataset, including 426 
upregulated lncRNAs and 357 downregulated lncRNAs 
(Fig.  17C). The starBase database was utilized to pre-
dict lncRNAs interacting with the common miRNAs. 
We obtained 231 lncRNAs, and 6 lncRNAs overlapped 
between 231 predicted lncRNAs and 783 DEmiRNAs 

Fig. 9  Violin diagram of the proportion of 22 kinds of immune cells in asthma and control groups. Blue and red colors represent control 
and asthma samples, respectively. Markers in red indicate significant differences between the two groups
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Fig. 10  Correlation analysis between hub genes and 22 immune cells. A-C The lollipop diagram showing the relationship of hub genes (ASAH1, 
ACER3 and SGPP1) and immune cells
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Fig. 11  Correlation of ASAH1 with differentially-expressed immune cells. A, B Association between ASAH1 and CD8 + T cell and activated NK cells
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Fig. 12  Correlation of ASAH1 with differentially-expressed immune cells. A, B Association between ASAH1 and monocytes and M0 macrophages
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Fig. 13  Correlation of ACER3 with differentially-expressed immune cells. A, B Association between ACER3 and CD8 + T cell and activated NK cells
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Fig. 14  Correlation of ACER3 with differentially-expressed immune cells. A, B Association between ACER3 and monocytes and M0 macrophages
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Fig. 15  Correlation of SGPP1 with differentially-expressed immune cells. A, B Association between SGPP1 and CD8 + T cell and activated NK cells



Page 20 of 27Jia et al. BMC Genomics          (2024) 25:129 

Fig. 16  Correlation of SGPP1 with differentially-expressed immune cells. A, B Association between SGPP1 and monocytes and M0 macrophages
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(Fig.  17D). Finally, a network of 2 hub genes, 22 miR-
NAs, and 6 lncRNAs was established (Fig. 18). Within 
the network, downregulated SNHG9 may function 
as a ceRNA to inhibit ACER3 by activating hsa-miR-
615-3p. In addition, the upregulation of hsa-miR-4255, 
hsa-miR-1265, and hsa-miR-3685 may suppress the 
expression of ASAH1. Notably, hsa-miR-212-5p might 
regulate ASAH1 and ACER3 at the same time, and hsa-
miR-5682 could bind to three lncRNAs (LINC00662, 
LINC01006, and AC007952.4); thus, hsa-miR-212-5p 
and hsa-miR-5682 may be particularly important in the 
ceRNA network.

Validation of hub genes
The expression distributions of ASAH1, ACER3 and 
SGPP1 were validated in the GSE74075 dataset. The Wil-
coxon test results demonstrated that the expression levels 
of ASAH1 (P < 0.05) and SGPP1 (P < 0.01) were also sig-
nificantly downregulated in asthmatic patients compared 
with those in healthy controls, which were similar to 
those in GSE74986. Interestingly, ACER3 (P = 0.06) was 
also downregulated in GSE74075, but the difference was 
not statistically significant (Fig.  19). Therefore, ASAH1 
and SGPP1 may be the key genes involved in the occur-
rence of asthma.

Fig. 17  CeRNA network construction based on hub genes. A Volcano plot showing DEmiRNA in asthma and control groups. B Venn diagram 
showing common miRNA between miRWalk and DEmiRNA. C Volcano plot showing DElncRNA in asthma and control groups. D Venn diagram 
showing common miRNA between StarBase and DElncRNA. DEmiRNA: Differentially expressed miRNAs, DElncRNA: differentially expressed lncRNA
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At the protein level, immunofluorescence stain-
ing showed that ASAH1, ACER3 and SGPP1 had lower 
expression levels in the OVA group than in the control 

group (P < 0.05) (Fig.  20A-D). RT‒qPCR showed that 
ASAH1, ACER3 and SGPP1 mRNA were downregu-
lated in OVA mice. There was a statistically significant 

Fig. 18  The ceRNA network

Fig. 19  Validation of hub Genes in the GSE74075 dataset
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difference in ACER3 and SGPP1 (P < 0.05), which is con-
sistent with previous results (Fig. 20E-G).

Validation of the ceRNA network
The predicted target lncRNAs, miRNAs and the hub 
genes in the ceRNA network were examined in asthma 
cellular models. RT-qPCR results showed that SNHG9, 
AC007952.4 and ACER3 were significantly decreased 

in the IL-13-induced asthma cellular model than in the 
control group, while hsa-miR-125a-5p, hsa-miR-615-3p 
showed high expression (P < 0.05). The differences in the 
other lncRNAs, miRNAs and ASAH1 between the two 
groups were not statistically significant (Additional file 6: 
Fig. S1). Only the SNHG9-hsa-miR-615-3p-ACER3 axis 
was consistent with the relationship in the ceRNA net-
work. To further verify this network, BEAS-2B cells were 

Fig. 20  The result of validation by immunofluorescent staining and RT-qPCR in mouse models (A–D) immunofluorescent staining images of lung 
tissues and quantification of fluorescence intensity, Nucleus (blue), ASAH1/ACER3/SGPP1 (red), scale bar, 500 um, (n = 4 per group) (E–G) The 
expression of ASAH1, ACER3, and SGPP1 verified by RT- qPCR in the OVA model (n = 4 per per)



Page 24 of 27Jia et al. BMC Genomics          (2024) 25:129 

transfected with the small interfering RNA (siRNA) in 
the subsequent experiments. After SNHG9 knockdown, 
lower level of the SNHG9 was seen in BEAS-2B cells, 
confirming the efficiency of siRNA transfection, with a 
corresponding decrease in ACER3 expression, while hsa-
miR-615-3p level increased in the cells (Additional file 6: 
Fig. S2). The above results confirmed the reliability of the 
SNHG9-hsa-miR-615-3p-ACER3 network.

Discussion
Lipid metabolism is a novel hallmark of asthma, and the 
involvement of LMRGs in the initiation, progression, and 
treatment of asthma has gained increasing attention [33–
35]. To the best of our knowledge, this is the first study to 
comprehensively explore the roles of LMRGs in combi-
nation with the immune microenvironment in the patho-
genesis of asthma by conducting WGCNA and immune 
infiltration analysis and constructing a ceRNA network. 
Our findings may facilitate the development of targeted 
therapy for asthma.

In this study, a total of 520 DEGs were selected, and 
1431 genes in the turquoise module most related to 
asthma with a strong GS-MM correlation were identi-
fied through WGCNA. We then intersected these genes 
with 769 LMRGs to obtain 32 BA-LM DEGs. Enrich-
ment analysis showed that the BA-LM DEGs were mainly 
involved in the PPAR signaling pathway, sphingosine 
metabolic process, and inositol phosphate metabolism, 
suggesting that metabolic pathways may mediate the 
role of LMRGs in the pathogenesis of asthma. Peroxi-
some proliferator-activated receptors (PPARs) are ligand-
activated transcription factors belonging to the nuclear 
hormone receptor superfamily, which can regulate sev-
eral metabolic pathways and may possess potent anti-
inflammatory and immunomodulatory activity [36]. The 
knockout of the PPARα gene could increase the disease 
phenotype in an allergic asthma model [37]. In addition, 
inositol phosphate metabolism could increase muscle 
contraction of hyperresponsive tracheas and is associ-
ated with smooth muscle function [38, 39]. Metabonom-
ics studies also found that it was an important mediator 
involved in bronchial asthma [40, 41]. Thus, activating 
PPARs and inhibiting inositol phosphate metabolism 
may be potential novel treatments for asthma [36, 42].

Three downregulated LMRGs (ASAH1, ACER3 and 
SGPP1) were identified as hub genes for asthma, which 
were validated in GSE143192. Meanwhile, RT‒qPCR 
and immunofluorescence analysis were performed to 
verify the results at the mRNA and protein levels and 
further enhance the reliability of the study. ASAH1 
(N-acylsphingosine amidohydrolase 1), located on 
chromosome 8p22, encodes a member of the acid 
ceramidase family of proteins [43], which hydrolyses 

ceramide into sphingosine and free fatty acids [43, 44]. 
Ceramide is a sphingolipid with powerful proinflamma-
tory and proapoptotic properties. Previous studies have 
demonstrated that elevation of ceramide levels contrib-
utes to the development of airway inflammation and 
dysfunction and hyperresponsiveness in asthma [45, 
46]. Moreover, ceramide metabolism could be a poten-
tial anti-rhinoviral target involved in acute worsening 
of asthma [47], and ceramide/sphingosine-1-phosphate 
imbalance was an underlying metabolic signature 
among asthmatic patients [46], indicating that ASAH1 
may be involved in the  pathogenesis of asthma. GSEA 
revealed that the role of ASAH1 in asthma may be 
closely related to protein secretion, adipogenesis, 
mTORC1 signaling, fatty acid metabolism, and E2F tar-
gets. Therefore, ASAH1 might be a potential novel bio-
marker to diagnose and treat asthma.
ACER3 (alkaline ceramidase 3), located on chromo-

some 11q13.5, is mostly enriched in the superpathway 
of sphingolipid metabolism [48]. Similar to ASAH1, 
ACER3 is one of three  alkaline  ceramidases (ACERs) 
that catalyze the conversion of ceramide to sphingo-
sine. Furthermore, sphingolipids, as bioactive molecules, 
are consistently implicated in lung inflammation and air-
way hyperreactivity, and genetically altered sphingolipid 
metabolism could affect airway resistance and may pre-
dispose patients to the development of asthma [49]. 
These findings may indicate that ACER3 might play a piv-
otal role in asthma pathogenesis. While not statistically 
significant, ACER3 was also downregulated in asthmatic 
patients within the GSE74075 dataset. The specific role 
of ACER3 in asthma has not been reported, and future 
studies are required to further explore the connection 
between ACER3 and asthma.

We observed significantly reduced SGPP1 expression 
levels in asthma patients. SGPP1 (sphingosine-1-phos-
phate phosphatase 1), located on chromosome 14q23.2, 
is a member of the type 2 lipid phosphate phosphatase 
family. Although there is no relevant study on SGPP1 
in asthma, it has been reported that SGPP1 could regu-
late the intracellular level of sphingosine-1-phosphate 
(S1P) [50], which is a biomarker, pathogenic contribu-
tor, and therapeutic target for asthma [51, 52]. In addi-
tion, among its related superpathway is sphingolipid 
metabolism [53]. These findings may support the pos-
sible role of SGPP1 in the pathogenesis of asthma. Fur-
thermore, GSEA indicated that SGPP1 might be mainly 
involved in fatty acid metabolism, protein secretion, E2F 
targets, mTORC1 signaling, and MYC target v1. Never-
theless, the role of SGPP1 in asthma needs to be further 
confirmed.

Further analysis showed that three downregulated 
LMRGs (ASAH1, ACER3 and SGPP1) were negatively 
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correlated with CD8+ T cells, activated NK cells and 
monocytes and positively correlated with M0 mac-
rophages, suggesting that downregulated hub genes 
may be associated with increased immune system acti-
vation in asthma patients. Previous studies showed that 
knockout of the ASAH1 gene elevated ceramide levels 
resulting in enhanced cytotoxic activity of CD8 + T 
cells [54], and ASAH1 and ACER3 were closely  con-
nected  with sphingolipid signaling [55, 56], which is 
involved in regulating the functions of immune cells 
such as CD4 + T cells, CD8 + T cells, NK cells, and 
macrophages [57]. Thus, we hypothesized that individ-
uals with downregulated LMRGs (ASAH1, ACER3 and 
SGPP1) may be liable to mediate the immune response, 
and more easily develop asthma. However, further 
research is needed to clarify the complex interactions 
between LMRGs and immune cells.

The ceRNA network suggested that SNHG9-hsa-miR-
615-3p-ACER3 may be implicated in asthma. Research-
ers found that overexpression of SNHG9 alleviated 
inflammation and apoptosis of endothelial cells by sup-
pressing TRADD expression [58] and was correlated 
with increased immune infiltrates [59]. Wang et al [60]. 
discovered that the gut microbiota reprogramed intes-
tinal lipid metabolism through long noncoding RNA 
SNHG9. Hence, we speculated that SNHG9 might paly 
an unanticipated role in lipid metabolism in asthma. 
However, the role of SNHG9 and hsa-miR-615-3p in 
asthma has not been reported in previous studies. 
Overall, SNHG9, hsa-miR-615-3p and ACER3 might be 
viewed as effective therapeutic targets for asthma.

Finally, although this study comprehensively found 
the essential roles of LMRGs and the immune micro-
environment in asthma pathogenesis, some limitations 
should also be noted. First, the clinical information 
contained in the existing data is limited, so we could 
not control the effect of different factors on the results. 
Second, the GEO database did not have enough sam-
ples, which may cause statistical error. We validated 
the low expression of ASAH1, ACER3 and SGPP1 in the 
GSE74075 dataset. In addition, RT‒qPCR and immuno-
fluorescence analysis verified the results at the mRNA 
and protein levels further enhancing the reliability of 
the study.

Conclusions
In summary, we found a number of LMRGs and 
related signaling pathways in asthma. Among these 
genes, ASAH1, ACER3, and SGPP1 were identified 
as potential diagnostic biomarkers for asthma. CD8+ 
T cells, activated NK cells, monocytes, and M0 mac-
rophages might be the critical immune cells impli-
cated in asthma, and we conjectured that people with 

downregulated hub genes may be liable to mediate the 
immune response, and more easily develop asthma. In 
addition, SNHG9-hsa-miR-615-3p-ACER3 might be 
involved in asthma pathogenesis, and hsa-miR-212-5p 
and hsa-miR-5682 could be viewed as effective thera-
peutic targets for asthma. Our findings might provide 
new perspectives and insights for future research on 
asthma.
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