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Abstract 

Background  Artemisia annua is the major source for artemisinin production. The artemisinin content in A. annua 
is affected by different types of light especially the UV light. UVR8, a member of RCC1 gene family was found to be 
the UV-B receptor in plants. The gene structures, evolutionary history and expression profile of UVR8 or RCC1 genes 
remain undiscovered in A. annua.

Results  Twenty-two RCC1 genes (AaRCC1) were identified in each haplotype genome of two diploid strains of A. 
annua, LQ-9 and HAN1. Varied gene structures and sequences among paralogs were observed. The divergence 
of most RCC1 genes occurred at 46.7 – 51 MYA which overlapped with species divergence of core Asteraceae dur-
ing the Eocene, while no recent novel RCC1 members were found in A. annua genome. The number of RCC1 genes 
remained stable among eudicots and RCC1 genes underwent purifying selection. The expression profile of AaRCC1 
is analogous to that of Arabidopsis thaliana (AtRCC1) when responding to environmental stress.

Conclusions  This study provided a comprehensive characterization of the AaRCC1 gene family and suggested 
that RCC1 genes were conserved in gene number, structures, constitution of amino acids and expression profiles 
among eudicots.
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Background
Artemisia annua, a traditional Chinese medicine, belong-
ing to Asteraceae family, is the major source for arte-
misinin which is widely used in the treatment of malaria 
[1, 2]. Artemisinin-based combination therapies (ACTs) 
have been highly recommended by the World Health 
Organization for treating malaria [3–5]. Though semi-
synthetic artemisinin has been developed [6, 7], low yield 
and high cost make large-scale industrial applications 
unavailable [8]. Currently, A. annua is the major source 
of artemisinin.

The main distribution areas of A. annua were concen-
trated in mid-latitudes in southeastern Asia, western 
and central Europe, south-eastern North America and 
south-eastern South America [9]. In China, A. annua 
grown in the south of the Qinling Mountains-Huaihe 
River Line had a higher artemisinin content compared 
to the northern ones [10]. Humidity and sunshine dura-
tion were speculated as major limiting ecological fac-
tors that affect the accumulation of artemisinin [11]. A. 
annua is a determinate short-day plant with a critical 
photoperiod [12], while biomass and artemisinin produc-
tion were increased in response to long-day photoperiod 
[13]. The daylight contains a variety of radiation, of which 
the Ultraviolet-B radiation (UV-B, 280–315  nm) [14] is 
an important environmental signal that pleiotropically 
regulates development, morphogenesis and physiology 
in plants [15]. Previous studies have demonstrated that 
short-term UV-B treatment to A. annua may be a safe 
approach to accumulating artemisinin content while act-
ing on stress-regulated genes to keep the plant healthy 
[16]. Besides, UV-B radiation and phytohormone gibber-
ellins coordinately promoted the accumulation of arte-
misinin in A. annua, with a significant up-regulation of 
two genes in artemisinin biosynthetic pathway (ADS and 
CYP71AV1) [17].

UV RESISTANCE LOCUS 8 (UVR8) is an evolution-
arily well conserved UV-B photoreceptor that regulates 
UV-B photomorphogenesis in plants [18], which employs 
a unique photosensory mechanism for light absorption 
and initiation of the signaling events that eventually lead 
to particular physiological responses [19–21]. UVR8 con-
tains sequence similarity and predicted structural simi-
larity to human Regulator of Chromatin Condensation 1 
(RCC1), whose sequence is highly conserved among all 
eukaryotes and consists of a seven-bladed-β-propeller, 
also known as seven RCC1 repeat units [22, 23]. RCC1 
functions as a guanine-nucleotide-exchange factor (GEF) 
for the Ran G-protein to regulate diverse biological pro-
cesses, nucleocytoplasmic transport, and the cell cycle 
[24]. UVR8 is a member of RCC1 gene family, which 
strongly associates with chromatin, while UVR8 has lit-
tle Ran GEF activity and it is present in both the cytosol 

and nucleus in contrast to other RCC1 family proteins 
localized in  the nucleus [25]. Normally, UVR8 is evenly 
distributed in the cytoplasm and nucleus, however, under 
UV-B treatment, it tends to accumulate in the nucleus 
through interaction with constitutive photomorphogenic 
1 protein (COP1), triggering a UV-B cascade [18, 26, 27]. 
The amino acid sequence of UVR8 is enriched with aro-
matic residues [28]. The aromatic amino acids refer to 
amino acids with benzene ring in molecular structure, 
including tyrosine (F), phenylalanine (P) and trypto-
phan (W), which is bound up with UV absorption [29]. 
The Arabidopsis thaliana (AtUVR8) has 14 W residues, 
among which W285 and W233 were shown to have an 
important role in UV-B-triggered signaling [30, 31]. The 
participation of UVR8 in the UV-B response is UV-B 
dose-dependent, which mediates several responses to 
low doses of UV-B, while high UV-B doses trigger other 
adaptive mechanisms [32]. The UVR8 and other mem-
bers in the RCC1 gene family have been identified in 
a range of plant species [33, 34]. For instance, Spartina 
alterniflora RCC1 (SaRCC1), negatively regulates salt 
stress responses by affecting stress-related gene expres-
sion [33]. RUG3 (a mitochondrial protein) is required 
for efficient splicing of the nad2 mRNA, which encodes 
a complex I subunit in mitochondria of A. thaliana [35]. 
Tolerant to Chilling and Freezing 1 protein (TCF1), 
interacts with histones H3 and H4 and associates with 
chromatin containing a target gene, encoding a glyco-
sylphosphatidylinositol-anchored protein that regulates 
lignin biosynthesis, and thus affect the freezing tolerance 
of plants [36, 37]. RCC1-like domain (RLD) proteins, 
identified as LZY interactors, are essential regulators of 
polar auxin transport [38]. SAB1 is a crucial new com-
ponent of ABA signaling which negatively regulates ABI5 
through multidimensional mechanisms during post-
germination in A. thaliana [39]. Currently, the UVR8 
and RCC1 gene family in A. annua genome has not been 
reported as well as their evolutionary history.

In this study, a comprehensive bioinformatic analysis 
was conducted on the RCC1 gene family at the genome-
wide level of four haplotype genomes of two A. annua 
strains, including gene structures, phylogenetic relation-
ship construction, gene variation and gene expression 
profile, which could provide useful information for fur-
ther functional investigations of A. annua.

Results
Identification and characterization of AaRCC1 genes
Genes with RCC1 domain (PF00415) were defined as can-
didate RCC1 genes and then manually corrected. In total, 
22 RCC1 genes (named AaRCC1_01 to AaRCC1_22) 
were identified in each haplotype of A. annua (LQ-9 
haplotype 0 and haplotype 1, HAN1 haplotype 0 and 
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haplotype 1) (Fig. 1A and Table S1). RCC1 gene number 
was consistent among four haplotypes. Gene structures 
varied among gene members (Fig.  1B). The exon num-
bers varied from 4 to 16, and gene length ranged from 2, 
911 (AaRCC1_15) to 11, 666 (AaRCC1_19) bp (Table 1). 

The RCC1 domain number varied from 4 to 7 and some 
members had PH (PF00169), BRX (PF08381) or FYVE 
(PF01363) domain (Fig.  1C). Genes with the  same exon 
number and function domain annotated in RCC1_14, 16, 
17, 18, 19 clustered in a same clade, showing similarities 

Fig. 1  Characteristics of AaRCC1 genes. A Phylogenetic relationships (numbers on the nodes represent supporting values). B Gene structures. Blue 
rectangles represent the coding sequences, thin blue lines connecting two exons represent introns, and thick blue lines represent 5′-UTR or 3′-UTR. 
C Domain information identified by PfamScan. D Identity and Ka/Ks values between alleles

Table 1  The basic information about the RCC1 genes in A. annua LQ-9 haplotype 0

Gene name Gene length (bp) CDS length (bp) Intron/ Exon Pep length MW PI Tryptophan 
content (%)

Aromatic amino 
acid content (%)

AaRCC1_01 7375 1434 14/15 477 51,568.61 6.5 1.89 7.06

AaRCC1_02 11,400 1624 15/16 540 58,375.81 9.37 1.48 9.01

AaRCC1_03 5477 2853 7/8 950 104,348.87 6.92 1.26 6.11

AaRCC1_04 6354 1287 5/6 428 45,206.27 6.64 2.57 7.68

AaRCC1_05 5265 2718 7/8 905 99,733.53 9.19 1.55 7.24

AaRCC1_06 3312 1149 8/9 382 40,711.91 5.6 2.36 7.18

AaRCC1_07 4776 1449 10/11 482 50,596.17 5.62 2.90 6.54

AaRCC1_08 3089 1188 9/10 395 42,267.78 5.85 3.80 7.26

AaRCC1_09 3568 1593 8/8 466 50,337.21 6.15 2.58 6.58

AaRCC1_10 6180 3240 10/10 1079 117,690.82 9.36 1.39 8.80

AaRCC1_11 4340 1470 5/6 489 53,398.99 7.53 1.02 5.75

AaRCC1_12 4192 1269 4/4 422 44,822.19 5.37 2.84 9.41

AaRCC1_13 3921 1695 4/5 536 58,024.84 5.43 2.80 6.16

AaRCC1_14 10,082 3366 8/9 1121 121,840.35 8.65 1.34 8.58

AaRCC1_15 2911 1638 4/5 545 58,757.24 5.12 2.94 6.42

AaRCC1_16 9373 3321 8/9 1106 119,713.11 9.08 1.45 8.99

AaRCC1_17 8934 3117 9/10 1038 114,125.44 8.83 1.25 6.33

AaRCC1_18 9223 3306 8/9 1101 119,920.67 9.11 1.45 7.03

AaRCC1_19 11,666 3309 8/9 1102 120,245.48 8.89 1.45 6.18

AaRCC1_20 8104 1554 14/15 517 54,888.78 7.57 1.55 6.90

AaRCC1_21 4945 1559 6/5 532 57,086.69 5.91 1.13 6.00

AaRCC1_22 (AaUVR8) 8141 1320 11/12 439 47,637.46 5.44 2.96 7.33
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on gene structures and domain regions. The average con-
tent of tryptophan (1.96%) and aromatic amino acids 
(7.54%) in AaRCC1 proteins were significantly higher 
than those of other proteins in the whole genome 
(average tryptophan 1.38%, average aromatic amino 
acids 3.19%, p-value < 0.05). The AaRCC1_22 showing 
the  highest protein identity (76.52%) to that of Arabi-
dopsis thaliana (AtUVR8) was identified as AaUVR8, 
which has relatively high W content in protein sequences 
among all RCC1 genes (Table  1). All CDS and protein 
sequences of RCC1 genes were aligned pairwisely. High 
similarities were detected among alleles of each AaRCC1 
gene (CDS sequence identity 79.61–100%, protein 
sequence identity 94.20%-100%), while sequence varia-
tion existed (protein sequence identity 10.43%-82.11%) 
(Fig.  1D). Notably, most of  the Ka/Ks values calculated 
between alleles and gene members were less than 1, indi-
cating these RCC1 genes were under purifying selection 
(Fig. 1D) and tend to eliminate deleterious mutations and 
maintain functional stability [40].

RCC1 genes are conserved during speciation 
in eudicot
A comparison analysis of RCC1 genes between A. annua 
and four other species was conducted. We found a simi-
lar gene number of RCC1 family in five species. There 
are 24 RCC1 members in A. thaliana, 22 in A. annua, 
27 in H. annuus (Fig.  2A), 23 in Chrysanthemum nan-
kingense and 21 in Vitis vinifera. In contrast with gene 

families like terpene synthase (TPS) [41] and UDP-
glucuronosyltransferase (UGT​) [42, 43], the gene num-
ber of RCC1 remained conserved without significant 
expansion by segmental/tandem duplication or whole 
genome polyploidization. However, duplication debris 
of RCC1 was identified for AaRCC1_07 and AaUVR8 in 
A. annua genome and duplicated genes were function-
ally silenced by corrupting of gene structures (Figure 
S2). Furthermore, similar codon usage was found among 
RCC1 orthologs (Fig.  2B). Protein sequences were con-
served among RCC1 orthologs across the five species. 
For example, the UVR8 showed high conservation on 
protein sequences of AtUVR8 (A. thaliana), CnUVR8 (C. 
nankingense), HaUVR8 (H. annuus), AaUVR8 (A. annua) 
and VvUVR8 (V. vinifera), especially on W233, W285 and 
W337 that related to UV-B response functions [20, 44] 
(Fig. 2C). Ks values among orthologs in each species were 
calculated pairwisely, which were enriched at a peak near 
Ks = 1.46 (Fig. 2D). The RCC1 genes were diverged at 46.7 
to 51 MYA based on Ks and r value from A. thaliana [45], 
which overlapped with the time of most subfamilies of 
core Asteraceae diverged during Eocene [46]. Few novel 
RCC1 genes were identified after Eocene.

AaRCC1 exhibited tissue and treatment specific expression 
profile
The expression profile of AaRCC1 genes was examined 
in different tissues (root, stem, leaf, flower) and different 
treatments (lights with different wavelengths, including 

Fig. 2  The feature of RCC1 family in five species. A The syntenic relationship of A. annua and H. annuus, green lines represent syntenic RCC1 gene 
pairs (LQ-9 haplotype 0), the red line indicates  the UVR8 gene pair, while the grey background represents other syntenic gene pairs. B The codon 
usage ratio of RCC1 orthologs in five species. C The multiple protein sequence alignment of UVR8 in 5 species. D The distribution of Ks value of RCC1 
family members in five species
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UV-B, blue, red, far-red and white light, phytohormones 
including gibberellin and brassinolide). The results dem-
onstrated that 22 RCC1 genes exhibited distinct expres-
sion patterns among various conditions (Fig.  3). The 
expression level of AaUVR8 in flower was significantly 
higher than that of other three tissues in two A. annua 
strains (2.4 to 2.7 fold change compared to other tis-
sues, p-value < 0.05). The expression level of AaRCC1_05 
was significantly down-regulated in roots (4.4 to 1.3 
fold change compared to other tissues, p-value < 0.05). 
AaRCC1_15 and AaRCC1_17 had higher expression 
levels in leaves of LQ-9 than those of HAN1. Instead, 
AaRCC1_08, AaRCC1_16, AaRCC1_04, AaUVR8 and 
AaRCC1_07 had higher expression levels in leaves of 
HAN1, which indicated RCC1 genes of different strains 
also showed different expression levels. Expression quan-
tification by qRT-PCR of AaUVR8 showed 1 to 2.6 fold 
changes among 18 different strains (Figure S3). Inter-
estingly, after UV-B treatment, five RCC1 genes includ-
ing AaUVR8 showed a decreased gene expression, while 
AaUVR8 up-regulated significantly with red light treat-
ment. In contrast, two negative response genes, REPRES-
SOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) 
and RUP2 [47] were up-regulated after UV-B treatment. 
A similar expression pattern was detected in A. thaliana 
(Figure S4).

Discussion
RCC1 genes were found to be regulating factors for a 
series of downstream genes during biological processes, 
including stress responses under abiotic stress and vari-
ous hormone treatments [33–39]. Twenty-two RCC1 
genes with significant sequence variations existed in A. 
annua genome and showed different expression patterns 
in different conditions, which indicated their divergent 

roles in response to the external environment. Though 
divergence existed among individual RCC1 genes in one 
species, the gene number of RCC1 genes remained con-
served among eudicots. The conservation of the number 
of RCC1 genes was not only observed in eudicots but also 
monocots [48]. Increased gene numbers of RCC1 could 
be observed in genomes with recent whole genome poly-
ploidizations [34, 49]. While, the most recent WGT of A. 
annua occurred at 58.12 Ma [50], and most of duplicated 
RCC1 copies were functionally inactive with incomplete 
structures (Figure S2). During the re-diploidization pro-
cess of post-WGD, gene deletion occurred due to dosage 
constraints [51]. Functional copies of RCC1 genes were 
maintained over time and the RCC1 gene loss can be an 
adaptive evolutionary force facing environmental chal-
lenges [45]. A negative selection was observed among 
RCC1 genes as the Ka/Ks ratios were prevalently lower 
than 1 within or between species, which would eliminate 
deleterious mutations and maintain functional stability 
of RCC1 genes [40]. As their conservation characteristics 
among different lineages of eudicots, studies of functional 
examination and regulatory mechanism deconstruction 
should be conducted for each RCC1 member which could 
be beneficial for the whole plant research community.

UVR8 is one of the RCC1 family members and the 
well-known UV-B receptor gene [22]. UV-B radiation is 
an environmental stimulus, a major abiotic stress con-
fronting living tissue. Low-dose and non-damaging UV-B 
regulate photomorphogenesis and metabolite biosynthe-
sis by serving as a photomorphogenic signal [52]. The 
photoactivated UVR8 could transduce UV-B signal via 
multiple mechanisms to regulate transcription and plant 
growth [53]. UVR8 proteins from green algae to higher 
plants are functionally conserved and likely to be pivotal 
in mediating responses to UV-B in numerous species. 

Fig. 3  The expression patterns of AaRCC1 genes. A The expression profile of 22 AaRCC1 genes in four tissues of two strains. B The expression profile 
of 22 AaRCC1 genes under different treatments. GA, gibberellin; BR, brassinolide; B, blue light; R, red light; FR, far red light; WL, white light; D, dark; 
UV_B, UV-B radiation
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Strong purifying selection pressure identified among 
UVR8 orthologs in different lineages maintains its con-
served function. Interestingly, the expression of AaUVR8 
showed a decreasing trend after UV-B treatment, which 
was different from well-known stress-tolerance genes 
(NAC, ERF, CBF) [54–56]. It was considered that the 
UV-B signal was transduced immediately by UVR8 and 
relevant genes while repressors (like RUP1 and RUP2) 
had negative feedback regulation and repressed UVR8 
expression.

Conclusions
In this study, a comprehensive bioinformatic analysis was 
conducted on the AaUVR8 and RCC1 gene family of A. 
annua, which would help explain the role of light signal 
recognition and transduction in A. annua. Besides, the 
study contributed to screening varieties with high resist-
ance to light stress in molecular-assisted breeding.

Materials and methods
Identification, phylogenetic and conserved domain 
analysis of the RCC1 genes in A. annua
Four haplotype genomes (LQ-9 haplotype 0, LQ-9 hap-
lotype 1, HAN1 haplotype 0 and HAN1 haplotype 1) 
and transcriptomes from different tissues of A. annua 
were used in this study, The data were downloaded from 
Global Pharmacopoeia Genome Database (GPGD, http://​
www.​gpgen​ome.​com/) [50, 57]. The annotated AtUVR8 
protein sequences were obtained from the TAIR database 
(http://​www.​arabi​dopsis.​org). Protein sequences from A. 
annua genome were searched against the PFAM database 
(Pfam 32.0) using PfamScan (evalue ≤ 1e-5; http://​www.​
ebi.​ac.​uk/​Tools/​pfa/​pfams​can). Genes with hits to RCC1 
domain (PF00415) were considered as candidate RCC1 
genes. Finally, the genes were viewed and corrected using 
the Apollo browser [58] followed the Wang et al. [59] to 
rule out false-positive results. According to the amino 
acid similarity (identity ≥ 80%), the allelic (one-to-one) 
relationship of RCC1 genes among haplotype genomes 
was confirmed.

The phylogenetic trees of 22 AaRCC1 proteins in A. 
annua LQ-9 haplotype 0 were constructed using MEGA 
X [60] with 1000 bootstrap replications and both neigh-
bor-joining and maximum likelihood models. The phy-
logenetic tree, gene structures and PFAM domains were 
plotted by ggtree package [61].

Evolutionary analysis of UVR8 in five eudicot species
RCC1 genes of four other species, A. thaliana, C. nan-
kingense, H. annuus, and V. vinifera were identified 
using same method as used for A. annua. The A. annua 
RCC1 proteins were searched against candidate RCC1 
proteins of other species utilizing BLASTp [62] and hits 

with identity ≥ 40% and coverage ≥ 60% were kept. The 
synteny analysis between A. annua and other species 
was performed by the Multiple Collinearity Scan toolkit 
(MCscan, Python version) [63]. The Ks values of ortholog 
pairs or paralog pairs in five species were calculated using 
KaKs_Calculator2.0 [64]. Multiple sequence alignment of 
ortholog proteins was performed using ClustalX method 
with MEGA X.

Expression analysis based on RNA‑Seq data
The raw reads generated by different tissues (http://​www.​
gpgen​ome.​com/​speci​es/​92) and corresponding tran-
scriptome data with different treatments in A. annua 
(Table  S4) deposited in PRJNA435470 (SRP133983) 
[65] and PRJNA601869 [17] of the NCBI were quality 
controlled using Skewer [66]. High-quality reads were 
mapped to the LQ-9 haplotype 0 genome sequences 
using HISAT2 [67]. The expression level of each gene was 
calculated with StringTie [68]. Differential expression of 
RCC1 genes in four tissues (root, stem, leaf, and flower) 
and different treatments were analyzed with DESeq2 
[69]. Hierarchical clustering analysis and expression level 
of TPM (transcript per million) values was performed 
using the ’pheatmap’ package (https://​cran.​rproj​ect.​org/​
web/​packa​ges/​pheat​map/) in R.

RNA extraction and Expression analysis by quantitative 
PCR
The qPCR samples of A. annua were collected in differ-
ent provinces of China (Table S3), which were identified 
by Li Xiang and preserved in an accessible herbarium 
of Artemisinin Research Center, Institute of Chinese 
Materia Medica, China Academy of Chinese Medi-
cal Sciences. Total RNA was extracted according to the 
instruction manual of the Plant Total RNA Isolation Kit 
(Vazyme, Nanjing, China). First-strand cDNA was syn-
thesized with a HiScript III 1st Strand cDNA Synthesis 
Kit (+ gDNA wiper) (Vazyme, Nanjing, China) accord-
ing to the manufacturer’s instructions. AaActin was used 
as a reference. Primers for AaUVR8 and AaActin (Table 
S2) were designed and synthesized by Sangon Biotech 
Co., Ltd (Shanghai, China). The qPCR reaction was per-
formed using the Applied Biosystems ABI 7500 PCR Sys-
tem (ABI, United States). The PCR amplification mixture 
contained 2 μl of cDNA, 10 μl of ChamQ Universal SYBR 
qPCR Master Mix (Vazyme Biotech Co., Ltd), 0.4  μl of 
10  μM forward and reverse primers, and 7.2  μl ddH2O. 
The PCR reaction was performed with the initial dena-
turation step for 30 s at 95 °C; 40 cycles of 10 s at 95 °C 
and annealing at 60 °C for 30 s. The melting curves (60–
95  °C) were used to check the specificity of each qPCR 
reaction. The standard curves were generated using a 
twofold dilution gradient of the cDNA. Amplification 

http://www.gpgenome.com/
http://www.gpgenome.com/
http://www.arabidopsis.org
http://www.ebi.ac.uk/Tools/pfa/pfamscan
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http://www.gpgenome.com/species/92
http://www.gpgenome.com/species/92
https://cran.rproject.org/web/packages/pheatmap/
https://cran.rproject.org/web/packages/pheatmap/


Page 7 of 9Chen et al. BMC Genomics          (2023) 24:692 	

efficiencies (E = 10–1/slope-1) and correlation coefficient 
(R2) values were calculated by standard curves. The 
relative gene expression was calculated with the 2–ΔΔCt 
method [70].
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