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Abstract 

Background  As the largest substantive organ of animals, the liver plays an essential role in the physiological pro‑
cesses of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains 
poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver 
tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs.

Results  The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, 
T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial 
cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% 
and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared 
to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis 
demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched 
in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional 
enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly 
enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional 
enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were signifi‑
cantly enriched in the metabolic pathways.

Conclusions  In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene 
expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.
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Background
Pigs are one of the most farmed livestock in the world. 
The meat of pigs is widely eaten by people across the 
world [1]. At the same time, the physiological structure 
of pigs is similar to that of humans, so it is an ideal ani-
mal model [2]. The liver is the largest digestive gland 
in the animal body and plays an important role in the 
physiological processes of digestion, metabolism, and 
immune defense [3–5]. Furthermore, the liver is a 
visceral organ that is capable of remarkable natural 
regeneration after tissue loss and retain basic meta-
bolic functions [6–8]. However, the liver cellular land-
scape has barely been explored at single-cell resolution, 
which limits our molecular understanding of pig liver 
structure and function.

Traditional transcriptomics detects the average value 
of all cells in a sample, and it is difficult to give a clear 
answer at the cellular scale [9]. Single-nucleus RNA 
sequencing (snRNA-seq), enables robust and unbiased 
exploration of individual cell states and types, yield-
ing new insights into tissue biology [10–12]. Therefore, 
snRNA-seq is a promising approach to investigate the 
transcriptome of individual cells in tissue [13]. Recent 
studies have shown that snRNA-seq has emerged as a 
complementary approach to investigate complex tissues 
at single-cell level in mouse and human samples [14–20]. 
However, the application of snRNA-seq in pigs is rela-
tively limited. Recent snRNA-seq analysis were focused 
on the lung, cerebral cortex, hypothalamus, and periph-
eral blood in pigs [21–23]. There is limited information 
on the liver atlas of pigs.

Therefore, this study used snRNA-seq to identify cell 
types, explore the biological function of pig liver deeply, 
and describe the transcriptome characteristics of cells 
comprehensively. The findings revealed the transcrip-
tional landscape of the pig liver and the effect of pig 
breeds on liver cell types and functions, providing a 
theoretical basis for future in-depth research on pig liver 
function.

Materials and methods
Animal feed and liver tissue collection
In the Dahe Black Pig Research Institute of Fuyuan 
County, six male Dahe pigs and six male Dahe black pigs 
of the same batch with similar body weight were ran-
domly selected. Pigs of the same breed come from the 
same maternal parent and parity. Each pig was raised 
in a single pen and all pigs were fed the same basic diet 
without any antibiotics. When pigs reached 194 days of 
age, the right lobe of the liver was collected from every 
animal, a part was fixed with 4% paraformaldehyde fixa-
tive solution for histological verification, and the rest was 

frozen in liquid nitrogen for the preparation of single 
nuclear suspension and RNA extraction.

Liver morphology and cell number
Liver samples were removed from the 4% paraformal-
dehyde fixative solution and embedded in paraffin. Each 
liver was sliced to a thickness of 4 mm. From each block, 
two consecutive histological sections randomly posi-
tioned within the block and mounted on adhesion micro-
scope slides. Sections were stained with hematoxylin and 
eosin (Beijing Solarbio Science&Technology Co., Ltd., 
Beijing, China) for analysis. Periodic acid-Schiff staining 
(PAS) (Shanghai Yuanye Biotechnology Co., Ltd., Shang-
hai, China) was used to highlight the contours of the 
individual cell and to count the endothelial cell, hepato-
cyte, and lymphocyte.

Cell suspension preparation
The liver tissue samples for snRNA-seq were selected 
from one male Dahe pigs and one male Dahe black pigs 
with body weights closest to the average body weight. 
Samples were subjected to nuclear isolation, sequenc-
ing, and library preparation following the 10X Genom-
ics protocol. Approximately 500 mg of hepatic tissue was 
dissociated into a singular nuclear suspension via tissue 
homogenization in a chilled lysis buffer (0.25 M sucrose, 
5  mM CaCl2, 3  mM MgAc2, 10  mM Tris–HCl pH 8.0, 
1  mM DTT, 0.1  mM EDTA, 1 × Protease Inhibitor and 
1U/µL RiboLock RNase Inhibitor (Thermo Scientifc, cat 
no. O0381) with pestle strokes. The resulting homogenate 
was subsequently filtered through a 70  µm cell strainer, 
yielding a nuclear fraction collected in a 50 ml centrifuge 
tube, with a 1 ml volume. This nuclear fraction was mixed 
with an equal volume of 50% iodixanol solution (0.16 M 
sucrose, 10 mM NaCl2, 3 mM MgCl2, 10 mM Tris–HCl 
pH 7.4, 1 U/µL RiboLock RNase Inhibitor, 1  mM DTT 
and 0.1  mM PMSF Protease Inhibito (Thermo Scien-
tifc, cat no. 36978), yielding a final concentration of 25%, 
and supplemented with 1  mL of 33% iodixanol solu-
tion at the tube’s base and 30% iodixanol solution at the 
top. The solution underwent inversion mixing 10 times 
before centrifugation at 500 × g for 8  min at 4℃, subse-
quent to myelin layer removal from the gradient’s apex. 
Nuclei were harvested from the 30% iodixanol interface, 
resuspended in nuclear wash and resuspension buff-
ers, and centrifuge (0.04% bovine serum albumin, 0.2 
U/µL RiboLock RNase inhibitor, 500  mM mannitol and 
0.1 mM PMSF protease inhibitor in PBS) at 500 × g and 
4℃ for 5 min. Filtration through a 40 µm cell filter elimi-
nated cell debris and sizable aggregates. The nuclei’s total 
count, concentration, and integrity ratio were ascer-
tained via hemocytometer-assisted microscopic exami-
nation of trypan-stained samples. Ultimately, the nuclear 
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concentration was regulated to 700–1,200 nuclei/µL, 
with nuclei inspected using the 10X Chromium platform.

snRNA‑seq library preparation and sequencing
Cellular suspensions were loaded on a 10X Genomics 
GemCode Single-cell instrument that generates single-
cell Gel Bead-In-EMlusion (GEMs). Using Chromium 
Next GEM Single Cell 3’Reagent Kit v3.1 for Library 
Generation and Sequencing of cDNA. Upon dissolution 
of the Gel Bead in a GEM, primers containing (i) an Illu-
mina® R1 sequence (read 1 sequencing primer), (ii) a 16 
nt 10 × Barcode, (iii) a 10 nt Unique Molecular Identifier 
(UMI), and (iv) a poly-dT primer sequence were released 
and mixed with cell lysate and Master Mix [24].

Silane magnetic beads were used to remove leftover 
biochemical reagents and primers from the post GEM 
reaction mixture. Full-length, barcoded cDNAs were 
then amplified by PCR to generate sufficient mass for 
library construction. R1 (read 1 primer sequence) were 
added to the molecules during GEM incubation. P5, 
P7, a sample index, and R2 (read 2 primer sequence) 
were added during library construction via End Repair, 
A-tailing, Adaptor Ligation, and PCR. The final libraries 
contained the P5 and P7 primers used in Illumina bridge 
amplification. A Single Cell 5’ Library comprised stand-
ard Illumina paired-end constructs which begin and end 
with P5 and P7. The Single Cell 5′ 16  bp 10X Barcode 
and 10  bp UMI were encoded in Read 1, while Read 2 
was used to sequence the cDNA fragment. Sample index 
sequences were incorporated as the i7 index read. Read 1 
and Read 2 were standard Illumina® sequencing primer 
sites used in paired-end sequencing [25].

snRNA‑seq data processing and quality control
FASTQ files were processed with 10X Genomics Cell 
Ranger (v3.1.0) using the default parameters and aligned 
to the Ensembl_release104 Sscrofa 11.1 (NCBI Acces-
sion AEMK00000000.2) reference genomes. The gene 
expression matrix was processed and analyzed by Seu-
rat package (v3.2.1). To filter out low-quality cells, the 
investigation removed reads from cells in which less than 
240 and over 3,600 genes were detected, cells with more 
than 16,000 UMIs, and cells with more than 10% share of 
mitochondrial gene expression.

Cell clustering by Seurat
Using the R package Seurat [26], multiple criteria were 
employed to filter cells, eliminating multi-cellular entities 
and cells with suboptimal states, while retaining high-
quality cells. The gene expression levels were normalized 
using a log transformation method, with “mitochondrial 
genes” and “cell cycle scoring” as regression variables. 
The resulting high-quality cell data was subjected to data 

integration and batch effect correction using Harmony 
[27]. Soft k-means clustering was applied to the dimen-
sion-reduced data.

To mitigate noise interference from individual gene 
expression levels in single-cell transcriptomics data, 
the vst algorithm was applied for high-variable gene 
selection. Principal Component Analysis (PCA) was 
performed on the integrated data to reduce the dimen-
sionality to 50 principal components for capturing the 
main information. The parameter k.param was set to 20, 
and the Annoy algorithm with Euclidean distance metric 
was employed to calculate cell-to-cell distances. The Lou-
vain [28] algorithm was used for clustering the dimen-
sion-reduced data with a resolution parameter set to 
50, partitioning all cells in the single-cell transcriptome 
into distinct cell subpopulations, facilitating subsequent 
analyses.

Differentially expressed genes (DEGs)
Expression value of each gene in given cluster were com-
pared against the rest of cells using Wilcoxon rank sum 
test [29]. Significant up-regulated and down-regulated 
genes were identified using a number of criteria. First, 
genes had to be at least 1.28-fold overexpressed in the 
target cluster. Second, genes had to be expressed in more 
than 25% of the cells belonging to the target cluster. 
Third, P-value is less than 0.05. The False Discovery Rate 
(FDR) correction was used for multiple test corrections.

Gene ontology (GO) and Kyoto encyclopedia of genes 
and genomes (KEGG) analyses of cell types
To annotate the function of these DEGs, GO analysis was 
conducted by using the GOseq software for each of the 
three main categories: biological process, cellular com-
ponent and molecular function. Firstly, all peak related 
genes were mapped to GO terms in the Gene Ontology 
database (http://​www.​geneo​ntolo​gy.​org/), gene numbers 
were calculated for every term, significantly enriched GO 
terms in differentially expressed genes comparing to the 
genome background were defined by hypergeometric 
test. The calculating formula of P-value is:

Here N is the number of all genes with GO annota-
tion; n is the number of differentially expressed genes 
in N; M is the number of all genes that are annotated to 
the certain GO terms; m is the number of differentially 
expressed genes in M. The calculated P-values were 
corrected using FDR, taking FDR ≤ 0.05 as a threshold. 
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GO terms meeting this condition were defined as sig-
nificantly enriched GO terms in differentially expressed 
genes.

Genes usually interact with each other to play roles 
in certain biological functions. Pathway- based analysis 
helps to further understand genes biological functions. 
KEGG is the major public pathway-related database 
[30–32]. KEGG pathway enrichment analysis identi-
fied significantly enriched metabolic pathways or sig-
nal transduction pathways in differentially expressed 
genes comparing with the whole genome background 
results [33]. The calculating formula is the same as that 
in GO analysis. Here N is the number of all transcripts 
that with KEGG annotation, n is the number of differ-
entially expressed genes in N, M is the number of all 
transcripts annotated to specific pathways, and m is 
number of differentially expressed genes in M. The 
calculated P-values were corrected using FDR, taking 
FDR ≤ 0.05 as a threshold. Pathways meeting this con-
dition were defined as significantly enriched in differ-
entially expressed genes.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
(v8.4.0) [34]. The Shapiro–Wilk test, Wilcoxon rank-sum 
test, Pearson’s chi-square test, Unpaired student t test 
and Log-rank test were used in this study. Hazard ratio 
(HR) and confidence interval (CI) were calculated from 
Cox proportional hazards regression models. All sta-
tistical tests were two-sided, and significant differences 
between each two groups were indicated by *P < 0.05 and 
**P < 0.01.

Results
Liver tissue structure and cell number
The body weight of the Dahe pigs (DH) were higher than 
the Dahe black pigs (DHB), while the liver weight and 
liver index of DH were lower than the DHB (P < 0.05) 
(Fig. 1a). Conversely, there was no significant difference 
in crude fat (EE) content between Dahe pig liver (DHL) 
and Dahe black pig liver (DHBL) (P > 0.05) (Fig. 1b). Liver 
tissues samples displayed a normal structure without 
obvious inflammatory cell infiltration and fibrous tis-
sue deposition in the portal area (Fig.  1c). The number 
of liver tissue cells was verified using PAS, focusing on 
endothelial cells, lymphocytes, and hepatocytes, which 
were the highest numbers. Among them, there was no 
significant difference in the number of endothelial cells 
and hepatocytes of the DHL and DHBL, while the num-
ber of lymphocytes was significantly higher in the DHBL 
than that in the DHL (P < 0.05) (Fig. 1d).

Landscape of single‑nucleus transcriptome in the porcine 
hepatic tissue
The study used snRNA-seq of liver samples to character-
ize cellular heterogeneity (Fig. 2a). 1,647 and 1,481 cells 
were captured from DHL sample and DHBL sample for 
library construction and paired-end sequencing. Reads 
from the cells with gene numbers less than 240 and over 
3,600 (Fig.  3a), with more than 16,000 UMIs (Fig.  3b), 
and with more than 10% mitochondrial gene expression 
(Fig.  3c) were removed. Finally, 1,355 and 1,171 high-
quality cells were obtained from the DHL and DHBL 
(Fig.  3d-f ). 407,797,286 and 403,918,586 sequencing 
reads were obtained from DHL and DHBL, with 96.9% 
valid barcodes. 91.5% of the sequencing reads could be 
mapped to the DHL genome, and 92.3% of the sequenc-
ing reads could be mapped to the DHBL genome (Table 
S1). This study identified 23,402 genes in these 1,355 
cells of the DHL, with 1,890 median genes per cell, and 
the median UMI count per cell was 3,767. Moreover, 
the study identified 23,102 genes in these 1,171 cells of 
DHBL, with 1,902 median genes per cell, and the median 
UMI count per cell was 3,934 (Table 1).

This study classified cell types for all samples together 
and based on T-distributed stochastic neighbor embed-
ding (t-SNE) dimensionality reduction and unsuper-
vised cell clustering. Thirteen cell clusters were identified 
based on the expressed unique transcriptional profiles 
(Fig. 2b). The number of expressed genes in each cluster 
ranged from 9,141 to 20,115 (Table S1). The cell numbers 
distributed in each cluster ranged from 17 to 822 (Fig. 2c) 
and exhibited differences between the DHL and DHBL 
(Fig.  2d, Table S2). Clusters 0 and 1 were the two clus-
ters with higher number of cells in the DHL and DHBL. 
Cell number of clusters 0, 2, 5, 6, 7, 9, and 11 in the DHL 
were higher than that in the DHBL, while Cell number 
of clusters 1, 3, 4, 8, 10, and 12 in the DHL were lower 
than that in the DHBL. Additionally, the gene expression 
heat map was generated for the top 5 marker genes in 13 
clusters and identified the genes which were significantly 
enriched in each of the 13 clusters (Fig. 2e and Table S3). 
The results indicated certain demarcation boundaries 
between each cluster (Fig.  2e). Among them, cluster 1 
and 2 were inferred to be a cell type preliminarily. Cluster 
3 and 5 were inferred to be a cell type preliminarily.

Identification of cell types in the porcine liver tissue
Subsequent annotations were made based on the expres-
sion of cell type specific marker genes in relevant liver 
studies [35–40]. The thirteen cell clusters were identified 
as seven cell types (Fig. 4a), including endothelial cells, T 
cells, hepatocytes, Kupffer cells, stellate cells, B cells, and 
cholangiocytes (Fig.  4b). Endothelial cells were marked 
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by adhesion G protein-coupled receptor (ADGRF5) and 
kinase insert domain receptor (KDR), and T cells were 
marked by cluster of differentiation 8 subunit alpha 
(CD8A) (Figs. 4c, d). Hepatocytes and Kupffer cells were 
marked by glucose-6-phosphatase catalytic subunit 1 
(G6PC1) and cluster of differentiation 163 (CD163), 
respectively. Stellate cells and B cells were marked by 
collagen type I alpha 1 chain (COL1A1) and BCL11 

transcription factor A (BCL11A), respectively. Cholangi-
ocytes were marked by PKHD1 ciliary IPT domain con-
taining fibrocystin (PKHD1) (Fig.  4c, d). The expression 
levels of each marker gene in each cell type are shown in 
Table 2.

According to the circle plots, clusters 0, 6, 7, and 11 
were classified as endothelial cells. Clusters 1, 2, and 10 
were classified as T cells. Clusters 3 and 5 were classified 

Fig. 1  Structure features, index and the number of some cells in the DHL and DHBL. a The body weight, liver weight, and liver index; b The liver 
EE%; c liver morphology and structure with H&E. Scale bar, 100 µm; d Cell number in the liver tissue. Endothelial cells (red arrows), lymphocytes 
(blue arrows), and hepatocytes (yellow arrows). Scale bar, 50 µm
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as hepatocytes. Cluster 4 and 8 were classified as Kupffer 
cells and stellate cells, respectively. Clusters 9 and 12 
were classified as B cells and cholangiocytes, respectively 
(Fig.  4e). A gene expression heat map of marker genes 

across the seven cell types was generated (Fig. 4f, Table 
S4). In addition, potential new marker genes for each cell 
type were found basing on their the highest gene expres-
sion level, such as LIM domain binding 2 (LDB2) and 
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RNA binding motif single stranded interacting protein 
3 (RBMS3) in endothelial cells, dedicator of cytokinesis 
10 (DOCK10) and src kinase associated phosphoprotein 
1 (SKAP1) in T cells, carbamoyl-phosphate synthase 1 

(CPS1) and alpha-1-antichymotrypsin 2 (SERPINA3-2) 
in hepatocytes, pleckstrin and Sec7 domain containing 
3 (PSD3) in Kupffer cells, matrix Gla protein (MGP) and 
four and a half LIM domains 2 (FHL2) in stellate cells, 
EBF1 and histone deacetylase 9 (HDAC9) in B cells, and 
dachshund family transcription factor 1 (DACH1) in 
cholangiocytes (Figs. 5, 6, Table S5).

Number and functional enrichment of cells in the porcine 
liver tissue
The study identified 699 endothelial cells, 244 T cells, 219 
hepatocytes, 110 Kupffer cells, 35 stellate cells, 41 B cells, 
and 7 cholangiocytes in the DHL. In contrast, the study 
indentified 326 endothelial cells, 421 T cells, 222 hepato-
cytes, 114 Kupffer cells, 46 stellate cells, 32 B cells, and 10 
cholangiocytes in the DHBL (Fig. 7a, b, Table S6). There 
were differences in the number of each cell type (Fig. 7c, 
Table S6). Moreover, there were DEGs between each cell 
type, and the number of up-regulated and down-regu-
lated genes were shown (Fig. 7d). DEGs were obtained by 
comparing the gene expression between DHBL and DHL, 
with FC > 1.28 and p value < 0.05. In this study, endothe-
lial cells, T cells and hepatocytes were the dominant cell 
types in the liver tissue of two pig breeds. These three cell 

DHL DHBL

2500

5000

7500

10000

DHL

DHBL

U
M
IN

u
m
b
er

DHL DHBL
0

2.5

5

7.5

DHL

DHBL

M
it
o
ch

o
n
d
ri
a
p
er
ce

n
ta
g
e
(%

)

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

1000

2000

3000

2500 5000 7500 10000

nCount_RNA

nF
ea
tu
re
_R

N
A

●●

●●

DHL

DHBL

0.96

e f

a cb

d
DHL DHBL

1000

2000

3000

4000

DHL

DHBL

G
en

e
N
u
m
b
er

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●
●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●
●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●● ●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●● ●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

0.0

2.5

5.0

7.5

10.0

2500 5000 7500 10000

nCount_RNA

pe
rc
en
t.m

it
o

●●●

●●●

DHL

DHBL

−0.32

0

500

1000

1500

2000

DHL DHBL

ce
ll 

nu
m

be
r

Before

After

Fig. 3  Quality control of snRNA-seq. a Cells with gene numbers from 240 to 3,600 were retained. The cells with fewer than 240 genes are 
considered low quality, and the cells with more than 3,600 genes are likely to be two or more cells in one drop; b Cells with 16,000 UMIs were 
retained. The cells with UMI numbers more than 16,000 are likely two or more cells in one drop; c Cells with 10% mitochondrial gene expression 
were retained. The percentage of mitochondrial gene expression more than 10% in a single cell indicates poor cell state, which is not conducive 
to subsequent analysis to reflect the real cell condition; d Relationship between nUMI and nGene. The dots in different colors represent cells 
from different samples. X axis is the number of UMI and Y axis is the number of genes percentage. The number at the top of the figure is the Pearson 
correlation coefficient between the number of UMI and the number of genes/mitochondria percentage; e Relationship between nUMI and pMito. 
The dots in different colors represent cells from different samples. X axis is the number of UMI and Y axis is the percentage of mitochondria. The 
number at the top of the figure is the Pearson correlation coefficient between the number of UMI and the percentage of mitochondria; f Quantity 
comparison before and after cell quality control

Table 1  Basic statistics information of snRNA-seq results

Index DHL DHBL

Number of Reads 407,797,286 403,918,586

Number of cells 1,355 1,171

Number of UMI 4,716,583 4,132,025

UMI/cells 3,480.87 3,528.63

Mitochondrial UMI ratio 1.28% 1.28%

Median UMI Counts per Cell 3767 3934

Number of identified genes 23,402 23,120

Median Genes per Cell 1890 1902

Sample saturation 89.00% 91.00%

Valid Barcodes 96.90% 96.90%

Q30 Bases in Barcode 95.90% 95.70%

Q30 Bases in RNA Read 90.50% 88.90%

Q30 Bases in UMI 95.00% 94.30%

Reads Mapped Confidently to Genome 91.50% 92.30%
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types accounted for 85.76% and 82.74% of the DHL and 
DHBL, respectively. The up-regulated gene numbers in 
endothelial cells, T cells and hepatocytes were 985, 556, 
and 744 in DHBL compared to DHL, respectively. The 
down-regulated gene numbers in endothelial cells, T cells 
and hepatocytes were 959, 372, and 815 in DHBL com-
pared to DHL, respectively (Table S7). To gain further 
understanding of the difference in DHL and DHBL, the 
study focused on the top 20 pathways.

In endothelial cells, 1,944 DEGs were identified and 
a volcano plot of DEGs was generated (Fig.  8a). A total 
of 694 significantly enriched GO terms were identified, 
including 48 cellular component terms, 527 biological 
process terms, and 64 molecular function terms (Table 
S8). Among the top 20 terms ranked in significance, 13 
terms belong to cellular components, 4 terms belong to 
biological process, and 3 terms belong to molecular func-
tion (Fig. 8a). A total of 20 significantly enriched KEGG 

Table 2  The expression levels of each marker gene in each cell type

Gene ID Marker gene endothelial cell T cell hepatocyte Kupffer cell stellate cell B cell cholangiocyte

ENSSSCG00000001725 ADGRF5 37.89 1.45 3.07 0.34 0.24 0.35 0.78

ENSSSCG00000008844 KDR 17.40 1.74 3.88 0.36 0.52 0.74 1.32

ENSSSCG00000008217 CD8A 0.35 7.00 0.60 0.10 0.15 0.45 0.00

ENSSSCG00000036449 G6PC1 1.14 1.16 20.28 0.59 0.76 0.15 0.86

ENSSSCG00000033146 CD163 1.63 3.34 3.14 39.26 0.90 0.55 1.54

ENSSSCG00000036135 COL1A1 1.20 0.53 1.35 0.14 12.98 0.02 0.14

ENSSSCG00000008392 BCL11A 0.12 0.26 0.20 2.10 0.04 7.09 0.49

ENSSSCG00000001746 PKHD1 0.23 0.20 0.97 0.03 0.07 0.00 44.54
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pathway were identified, 10 pathways were significantly 
down-regulated in endothelial cell of DHBL compared to 
DHL, including focal adhesion, endocytosis, phosphati-
dylinositol signaling system, MAPK signaling pathway, 
FoxO signaling pathway, sphingolipid signaling pathway, 
phospholipase D signaling pathway, protein processing 
in endoplasmic reticulum, platelet activation, Fc gamma 
R-mediated phagocytosis, aldosterone synthesis and 
secretion (Table S9).

In T cells, 928 DEGs were identified and a volcano plot 
of DEGs was generated (Fig.  8b). A total of 498 signifi-
cantly enriched GO terms were identified, including 51 
cellular component terms, 399 biological process terms, 
and 48 molecular function terms (Table S10). Among the 
top 20 terms ranked in significance, 10 terms belong to 
cellular components, 8 terms belong to biological pro-
cess, and 2 terms belong to molecular function (Fig. 8b). 
A total of 34 significantly enriched KEGG pathway were 
identified, 9 pathways were significantly up-regulated in 

T cells of DHBL compared to DHL. Only MAPK signal-
ing pathway was significantly down-regulated in the T 
cell of the DHBL compared to the DHL (Table S11).

In hepatocytes, 1,559 DEGs were identified and a 
volcano plot of DEGs was generated (Fig.  8c). A total 
of 484 significant enriched GO terms were identified, 
including 77 cellular component terms, 328 biological 
process terms, and 79 molecular function terms (Table 
S12). Among the top 20 terms ranked in significance, 
12 terms belong to cellular components, 7 terms belong 
to biological process, and 1 term belong to molecular 
function (Fig.  8c). A total of 30 significantly enriched 
KEGG pathway were identified, 27 pathways were sig-
nificantly up-regulated in hepatocytes of DHBL com-
pared to DHL, including peroxisome, ferroptosis, 
metabolic pathways. Protein processing in the endoplas-
mic reticulum and protein export were down-regulated 
in DHBL hepatocytes compared to DHL, respectively 
(Table S13).
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Discussion
The liver serves as an important metabolic organ and 
affects a variety of physiological functions in pigs. The 
molecular characteristics and functional properties of 
organs are determined by their constituent cell types 
[20]. Nevertheless, the cellular composition of pig liver 
remains inadequately understood. The recent advent of 
sensitive snRNA-seq methods has enabled the research 
of cell types in animal tissues [41]. To date, single-nucleus 
studies of human and mouse liver have been reported 
[14, 15, 42–44], but research of single-nucleus in porcine 
hepatic tissue have not been documented yet. In future 
research efforts, the importance of pigs is rapidly grow-
ing, because of their high homology with humans. Pigs 
are not only economically essential livestock, but also in 
anatomy, physiology, biochemistry, and drug metabolism 
[45–48]. Consequently, in this study, the snRNA-seq sys-
tem was used to analyze cell types and functions in por-
cine liver tissue.

At single-cell resolution, pig liver tissue was found to 
contain endothelial cells, T cells, hepatocytes, Kupffer 

cells, stellate cells, B cells and cholangiocytes. These 
seven cell types are also present in human and mouse liv-
ers, suggesting conservation of major liver tissue compo-
nents across species [49]. Endothelial cells form the inner 
wall of hepatic sinusoid, facilitating the passage of blood 
components and promoting cellular uptake of essential 
substances and secretion discharge [50]. T cells and B 
cells perform immune functions, while hepatocytes par-
ticipate in various biological processes, from protein syn-
thesis and lipid metabolism to detoxification [43]. Stellate 
cells have many functions, such as storing vitamin A, 
regulating hemodynamics regulation, supporting liver 
regeneration, and regulating immunity [51]. Kupffer cells 
are specialized hepatic macrophages [52], whereas chol-
angiocytes are bile duct-specific epithelial cells involved 
in bile secretion. The study revealed specific marker 
genes for each cell type. For example, DOCK10 was 
abundantly expressed in normal T cells, and SKAP1 acted 
as an immune cell adaptor, connecting the T cell recep-
tor to LFA-1-facilitated “inside-out” signaling involved in 
T-cell adhesion. As a result, these genes are considered 
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as marker genes for T cells [53, 54]. This facilitates more 
complex cell classification and provides new perspectives 
for future research on hepatic cells.

Endothelial cells, T cells and hepatocytes represent 
the abundant cell populations in this study. A report on 
mouse livers demonstrated that the highest number of 
hepatocytes [20]. However, in this study, endothelial cells 
were the most abundant, suggesting that their numbers 
may vary, although hepatic cell types exhibit a degree of 
conservation across species. Research has indicated that 
endothelial cells participate in angiogenesis, contrac-
tion, and vasodilation process [55]. ADGRF5 and KDR 
genes are essential for vascular development and mainte-
nance. In this study, ADGRF5 and KDR genes were highly 
expressed in endothelial cells, leading us to speculate that 
porcine hepatic tissue may be more involved in vascular-
related physiological processes. There are studies on the 
classification of cells in mouse liver, where endothelial 
cells use the CD31 gene as a surface marker [56]. Mac-
Parland observed three endothelial cell populations, 
among which the most abundant endothelial cell cluster 
displayed enriched expression of F8, PECAM1 [57]. The 
marker genes were used to identify liver cell types, which 
came from the reports in the literature and first identified 
in this study.

In this study, Dahe pigs were used, which are repre-
sentative of typical local breeds in Yunnan, China. Dahe 
black pigs are a crossbreed using the Duroc × Dahe 
breeding scheme through five generations of selection 
[58]. Both varieties have the advantages of tender meat 
and delicious taste [59]. However, Dahe pigs grow slower 
and have a lower lean meat percentage, compared to 
Dahe black pigs [60, 61]. This study revealed differences 
in the cell number between the liver tissue of Dahe pig 
and Dahe black pig. The number of endothelial cells 
in liver tissue of Dahe pig was higher than that of Dahe 
black pig, and the opposite was true for T cells. Liver tis-
sues of two pig breeds were analyzed by PAS staining. 
The numbers of endothelial cells were similar because the 
study observed the interior of hepatic lobules. Endothe-
lial cells were primarily concentrated in hepatic sinusoids 
and interlobular connective tissue. In this area, the study 
observed significant differences between Dahe pigs and 
Dahe black pigs. The results for hepatocytes and lympho-
cytes were consistent with the sequencing findings, indi-
cating that the number of hepatocytes in the liver was not 
significantly different, while the number of lymphocytes 
in Dahe black pigs was significantly higher than that in 
Dahe pigs.

The liver is a major metabolic organ, and its endothe-
lial cells play a role in clearance. Sinusoidal endothelial 
cells, one of the most endocytotic cells in humans, dis-
play multiple scavenger receptors on their cell surface 

[62]. Therefore, the clearance of extracellular material 
depends on the health of endothelial cells and the degree 
of endocytic function [63]. Hepatic endothelial cells also 
effectively regulate the exchange of substances between 
hepatic sinusoidal blood flow and surrounding tissues 
[4]. Recent studies have demonstrated that endothe-
lial cells and the immune environment was critical for 
hepatic homeostasis [64, 65]. This study provides a holis-
tic new perspective on the processes that endothelial cell 
function. Endothelial cells adherently senses exogenous 
substances, which are then endocytosed and absorbed 
into the cell. Subsequently, autophagy occurs through 
signal transduction pathways, facilitating growth, metab-
olism, and immunity functions. This study revealed that 
the number of endothelial cells in Dahe pig liver tissue 
was higher than in Dahe black pig. Among the 20 path-
ways enriched with differentially expressed genes in 
hepatic endothelial cells of Dahe pig liver and Dahe black 
pig liver, 3 pathways were up-regulated, and 10 path-
ways were down-regulated of Dahe black pig liver tissue 
compared to Dahe pig. This observation may indicate a 
positive correlation between cell number and functional 
diversity. This study indicates that changes in the number 
of hepatic cells were observed after pig hybridization.

The animal liver, an organ with multiple immune func-
tions, serves as a sentinel for the human immune system 
[66]. In recent years, the crosstalk between the liver and 
the immune system has been uncovered through the 
study of hepatic snRNA-seq [67, 68]. T cells play a central 
role in adaptive immunity, and their activation involves 
spatially and temporally coordinated signaling pro-
cesses across multiple time and length scales [69]. This 
study identified T cells in the livers of two pig breeds, 
with T cells constituting the second largest cell popula-
tion. Notably, the number of T cells in Dahe black pig 
liver tissue was higher than in Dahe pig the immune and 
endocrine functions of the liver of Dahe black pigs are 
potentially stronger. In the future, we need to do more 
research to prove this conclusion.

Hepatocytes are the major parenchymal cells of the 
liver. Hepatocytes play critical roles in liver homeostasis 
and disease development [70]. These cells are responsi-
ble for the majority of hepatic metabolic, biosynthetic, 
biodegradable, and secretory functions [71]. And hepato-
cytes are involved in biological processes ranging from 
protein synthesis and lipid metabolism to exogenous 
and endogenous detoxification [43]. Many functions of 
hepatocytes require close cooperation between cell adhe-
sion molecules, cell junctions, cytoskeleton, extracellular 
matrix, and intracellular trafficking machinery [72]. The 
study revealed only small differences in the number of 
hepatocytes in the liver tissue of Dahe pig and Dahe black 
pig. Among the 30 pathways enriched with significantly 
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different genes in hepatocytes of Dahe pig liver and Dahe 
black pig liver, 27 pathways were up-regulated, and 2 
pathways were down-regulated of Dahe black pig liver 
tissue compared to Dahe pig. These results indicated that 
hepatocytes of Dahe black pigs exhibited more abundant 
metabolic and biosynthetic functions, especially in pro-
tein metabolism, lipid metabolism, amino acid metabo-
lism, and carbohydrate metabolism. This is supported 
by a recent report demonstrating specificity in liver lipid 
metabolism between different pig breeds [73]. The find-
ings highlight breed differences in liver tissue between 
Dahe pigs (a Chinese indigenous breed) and Dahe black 
pigs (a crossbreed using the Duroc × Dahe breeding 
scheme through five generations of selection). Variations 
in the number of cell types were detected between the 
two pig breeds. Considering the functional enrichment 
of differentially expressed genes, it can be inferred that 
these cell types may exhibit mutual compensatory effects.

A limitation of this study is that the small number of 
liver samples sequenced. So, interpretations of some 
functions of the liver may not generalize. In essence, 
leveraging single-nucleus resolution and cost-effective 
UMI-based approaches to enhance throughput, the study 
findings also furnish foundational data for future inves-
tigations in this field. In the future, functional validation 
of target genes will be carried out, with the initial goal of 
conducting validation on cells.

Conclusions
In summary, this study establishes a comprehensive single-
nucleus atlas landscape and identifies potential new marker 
genes for each cell type. The number, gene expression level 
and functional characteristics of each cell type in pig liver  
tissue varied between breeds. These high-quality snRNA-seq 
data serve as a valuable resource for future studies on por-
cine hepatic function and may provide informative support 
for human hepatic health and immunity.
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