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Abstract 

Background  Cocaine use (CU) is associated with psychiatric and medical diseases. Little is known about the mecha-
nisms of CU-related comorbidities. Findings from preclinical and clinical studies have suggested that CU is associated 
with aberrant DNA methylation (DNAm) that may be influenced by genetic variants [i.e., methylation quantitative trait 
loci (meQTLs)]. In this study, we mapped cis-meQTLs for CU-associated DNAm sites (CpGs) in an HIV-positive cohort 
(Ntotal = 811) and extended the meQTLs to multiple traits.

Results  We conducted cis-meQTL analysis for 224 candidate CpGs selected for their association with CU in blood. 
We identified 7,101 significant meQTLs [false discovery rate (FDR) < 0.05], which mostly mapped to genes involved 
in immunological functions and were enriched in immune pathways. We followed up the meQTLs using phenome-
wide association study and trait enrichment analyses, which revealed 9 significant traits. We tested for causal effects 
of CU on these 9 traits using Mendelian Randomization and found evidence that CU plays a causal role in increasing 
hypertension (p-value = 2.35E-08) and decreasing heel bone mineral density (p-value = 1.92E-19).

Conclusions  These findings suggest that genetic variants for CU-associated DNAm have pleiotropic effects on other 
relevant traits and provide new insights into the causal relationships between cocaine use and these complex traits.

Keywords  Cocaine use, Cis-methylation quantitative trait loci (cis-meQTL), Epigenome-wide association study 
(EWAS), Mendelian randomization, Complex trait

Background
Cocaine is one of the most commonly used illicit drugs 
in the United States [1], and cocaine use (CU) leads to a 
tremendous burden on public health and socioeconomic 
systems [2]. Cocaine dependence is a psychiatric disorder 
and also has comorbidity with numerous other psychi-
atric and clinical diseases [3]. CU affects the cardiovas-
cular system and can cause palpitations, hypertension, 
and reduced left ventricular function, which may lead to 
the development of myocardial ischemia [1]. CU is also 
linked to pulmonary complications, including acute res-
piratory symptoms, airway injury, asthma, pulmonary 
edema, “crack lung,” and eosinophilic lung diseases [4].  
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Moreover, CU compromises immune function and 
increases the incidence of infectious diseases [5, 6]. Evi-
dence shows that CU affects metabolism and is associ-
ated with underweight [7] and lower body mass index 
(BMI) [8]. The co-occurrence of CU and psychiatric dis-
orders, such as bipolar disorder and psychosis, has been 
well documented [9, 10]. Although adverse consequences 
are widely reported, the association between genetic 
variation and CU’s health effects need to be better 
understood. While most of the genetics research on CU 
has focused on investigating predisposition to addictive 
behavior, using genetics to better understand the under-
lying causes of the effects of CU on complex traits is 
important for preventing cocaine-related comorbidities.

Previous studies have shown that cocaine administra-
tion regulates epigenetic modifications in brain and in 
blood [11, 12], which further regulate gene expression 
and cellular functions that may contribute to CU-asso-
ciated complex traits. Among these epigenetic modifi-
cations, DNA methylation (DNAm) is one of the most 
widely studied mechanisms that capture the cumulative 
effects of environmental risks and heritable effects. A 
preclinical study by Cannella et  al. showed that cocaine 
administration alters histone modifications and DNAm 
in the central nervous system in animals [13]. Shu et al. 
identified multiple CpG sites associated with persistent 
CU in human and showed that CU-associated DNAm 
is predictive of disease outcomes such as frailty in HIV 
infection [14]. Vaillancourt et  al. found that CU-related 
hypomethylation of the IRXA gene cluster contributes 
to the development of cocaine dependence by modifying 
the 3D chromatin structure in the caudate nucleus [15]. 
Poisel et al. has recently reported several CU-associated 
differentially methylated regions (DMRs) and stressed 
the important role of genes Neuropeptide FF Receptor 2 
(NPFFR2) and Kalirin RhoGEF Kinase (KALRN) [16]. The 
collective evidence highlights an important relationship 
between CU and DNAm.

Aberrant DNAm associated with CU can either be 
a consequence of cocaine exposure or be influenced by 
genetic variants [17]. A recent study showed that approx-
imately 45% of DNAm sites in the human methylome are 
influenced by genetic variants [18]. Single nucleotide pol-
ymorphisms (SNPs) associated with DNAm are known 
as methylation quantitative trait loci (meQTLs) [19–22], 
which represent the interplay between the genome and 
the methylome. In recent years, genome-wide meQTL 
mapping has been conducted to deepen our understand-
ing of the mechanisms of cardiovascular disease [23], 
smoking [24],, schizophrenia [25], and birthweight [26] 
However, meQTLs have not been explicitly examined for 
CU-associated DNAm loci and their potential role in the 
comorbidities linked to CU.

In this study, we aimed to identify meQTLs in blood 
for CU-associated DNAm and then to examine the pleio-
tropic effects of those meQTLs on other complex traits, 
especially CU-related traits. Using participants from the 
Veterans Aging Cohort Study Biomarker Cohort (VACS-
BC) (N = 811), we first selected candidate CpG sites for 
CU and then conducted a cis-meQTL analysis on the 
candidate CpG sites within a 1-mega-base (Mb) flank-
ing region. We performed phenome-wide association 
study (PheWAS) and meQTL trait enrichment analy-
ses to examine the pleiotropic effects of the identified 
meQTLs on other traits. Finally, we conducted Mende-
lian Randomization (MR) to further dissect the causal 
relationships between CU and other complex traits. The 
overall study design is presented in Fig. 1. In addition, we 
conducted a secondary analysis using frequency of CU to 
explore the impacts of different CU patterns on DNAm 
and associated cis-meQTLs.

Results
Participant characteristics
Study participants were from the Veteran Aging Cohort 
Study (VACS), a multicenter, longitudinal cohort study 
of the impact of substance use on HIV infection and 
outcomes. Instead of using socially constructed race 
categories, we classified a total of 2,244 participants in 
VACS-BC based on global ancestral information, using 
individuals from African (AFR), East Asian (EAS), Euro-
pean (EUR), and South Asian (SAS) ancestry in the 1,000 
Genomes Project as our reference panel (methods)(Sup-
plementary Fig.  1). The majority (1,622 out of 2,244, 
72.3%) were estimated to be of AFR ancestry (Supple-
mentary Fig. 2).

DNAm was profiled for a subset of those genetically 
defined AFR samples (NDNAm = 811) by using either the 
Illumina Infinium Human Methylation 450K BeadChip 
(N450K = 423) or the EPIC BeadChip (NEPIC = 388) due to 
differing commercial availability at two different times. 
All 811 samples were included in the analyses. All partici-
pants were HIV-positive and were on antiretroviral ther-
apy. Cocaine users showed higher rates for cigarette use 
and alcohol use than nonusers (controls) in both 450K 
dataset (p = 3.03E-12, 0.0050, respectively) and EPIC 
dataset (p = 2.47E-12, 6.91E-05, respectively) (Table  1). 
Combining cocaine users and controls, no significant 
differences in demographic or clinical variables were 
observed between 450K and EPIC datasets except for age 
(p = 0.01) (Table 1).

Selection of candidate CpGs associated with CU
To avoid batch effects, the selection of candidate CpGs 
for CU was performed in the samples profiled by the 
450K or EPIC arrays separately, and a meta-analysis of 



Page 3 of 14Cheng et al. BMC Genomics          (2023) 24:556 	

the two subsets of samples was performed to select can-
didate CpG sites at a meta p value < 0.0001.

A total of 224 candidate CpG sites for CU were selected 
(genomic inflation λ = 1.196) (Supplementary Fig.  3) 

(Supplementary Table  1). Among the 224 CpGs that 
were differentially methylated between CU and non-
CU, 176 (78.6%) were hypomethylated, and 48 (21.4%) 
were hypermethylated. The 224 CpGs were mapped 

Fig. 1  Overall study design. A Flowchart for the analyses performed. Selection of CU-related CpGs and meQTL identification were performed in 423 
samples with DNAm profiled by 450K arrays (blue) and 388 samples with DNAm profiled by EPIC arrays (green), separately. Meta-analyses were 
followed to combine results (grey). Downstream analyses were conducted based on the identified meQTLs. B Paths involved in the analyses. After 
selection of candidate CpGs associated with CU (Step 1) and meQTL identification (Step 2), downstream analyses including PheWAS and meQTL 
trait enrichment were performed to investigate the pleiotropic effects of the meQTLs on other traits. Mendelian randomization was then performed 
to build causal paths. CU: cocaine use; PheWAS: phenome-wide association study; meQTL: methylation quantitative trait loci

Table 1  Population characteristics of the HIV-positive VACS-BC participants with genotype-derived AFR ancestry

Mean ± SD for continuous variables and n (%) for categorical variables
*  Pvalues were reported for the comparison between cocaine users and non-users (controls)
**  Pvalues were reported for the comparison between overall 450K samples and overall EPIC samples

Characteristic 450K (N = 423) EPIC (N = 388) Pvalues for 
comparison 
between 450K 
and EPIC**

Cocaine 
user 
(N = 165)

Controls 
(N = 258)

Overall Pvalue* Cocaine user 
(N = 128)

Controls 
(N = 260)

Overall Pvalue*

HIV-positive (%) 165 (100%) 258 (100%) 423 (100%) 1.0000 128 (100%) 260 (100%) 388 (100%) 1.0000 1.0000

Genotype derived 
ancestry-AFR (%)

165 (100%) 258 (100%) 423 (100%) 1.0000 128 (100%) 260 (100%) 388 (100%) 1.0000 1.0000

Sex-male (%) 165 (100%) 258 (100%) 423 (100%) 1.0000 128 (100%) 260 (100%) 388 (100%) 1.0000 1.0000

Age 49.2 ± 6.13 49.4 ± 8.19 49.3 ± 7.45 0.7785 48.2 ± 5.99 47.8 ± 8.88 47.9 ± 8.04 0.6229 0.0108

log10 viral load 2.70 ± 1.51 2.43 ± 1.28 2.54 ± 1.38 0.0591 2.66 ± 1.52 2.50 ± 1.22 2.56 ± 1.33 0.2975 0.8413

Antiviral medication 
adherence (%)

120 (73.6%) 204 (81.3%) 324 (76.6%) 0.0849 82 (66.7%) 208 (80.6%) 290 (74.7%) 0.0043 0.5941

Cigarette smoking (%) 132 (81.5%) 119 (46.7%) 251 (59.3%) 3.03E-12 99 (81.8%) 111 (42.8%) 210 (54.1%) 2.47E-12 0.1537

Alcohol use (%) 86 (52.4%) 94 (37.9%) 180 (42.6%) 0.0050 66 (53.6%) 76 (31.5%) 142(36.6%) 6.91E-05 0.0970
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to their 152 nearest genes. Of them, 72 CpG sites were 
in promoter regions, 74 CpG sites were in gene bodies, 
and 12 CpG sites were in 3’UTRs. In addition, 18.8% of 
CpGs were in CpG islands, 10.3% were in shelves, and 
19.2% were in shores. The top 2 out of the 224 CpG sites 
reached the epigenome-wide significance level (p < 1.23e-
07). The top-ranked CpG, cg25508319, was mapped to 
the 5’UTR of KCNJ5, in which CU showed lower meth-
ylation levels than non-CU (p value = 4.41E-10). KCNJ5 
encodes inward-rectifier potassium channel proteins 
and could be related to exposure to cocaine via potas-
sium channel signaling [27]. The second-ranked CpG 
site, cg11202380, is located on the 3’UTR of AK2 (p 
value = 9.96E-08), which encodes adenylate kinases and 
is involved in regulating the adenine nucleotide composi-
tion within a cell [28].

Identification of meQTLs for CU‑associated CpG sites
We performed a cis-meQTL analysis in the 450K and 
EPIC samples separately, to identify genetic variants 
associated with the 224 candidate CU-associated CpG 
sites. For each CpG site, we included SNPs to those 
within 500 kb upstream and 500 kb downstream (overall 
1 Mb flanking regions). After a meta-analysis to combine 
results and FDR correction, clumping was performed to 
group correlated meQTLs (LD > 0.1) into one clumped 
region for each CpG site, and the most statistically sig-
nificant meQTL for each region was selected as the index 
meQTL.

A total of 7,101 SNP-CpG pairs surpassed the signifi-
cance threshold (FDR < 0.05). After grouping the highly 
correlated meQTLs based on LD, we identified 448 index 
meQTLs for 124 CpG sites associated with CU (Fig.  2) 
(Supplementary Table  2), suggesting that approximately 
55% of CU-associated CpGs were influenced by genetic 
variants. Index meQTLs were found on each of the 22 
autosomal chromosomes and were mapped to their 250 
nearest genes. Most index meQTLs were in intergenic 
(199 out of 448, 44.42%) or intronic (168 out of 448, 
37.50%) regions of their corresponding genes. Among 
the 448 index meQTLs, 222 (49.6%) were associated 
with increased methylation at the corresponding CpG 
site, while 226 (50.4%) were associated with decreased 
methylation at the CpG. Supplementary Fig.  4 displays 
two SNP-CpG pairs as examples. For the rs13233191-
cg17914838 pair near ASB4 on chromosome 7, the effect 
allele (G) of the SNP decreased the methylation level of 
cg17914838 (FDR = 5.33E-155) (Supplementary Fig. 4A). 
For the rs7834638-cg21175976 pair on BLK, the effect 
allele (C) of the SNP increased the methylation level at 
cg21175976 on chromosome 8 (FDR = 1.6341E-36) (Sup-
plementary Fig. 4B).

The top index meQTL was rs13233191 (FDR = 5.33E-
155), located near ASB4, a gene involved in the innate 
immune system and class I MHC-mediated antigen 
processing and presentation. There were 35 additional 
meQTLs in the MHC region, including HLA-A, HLA-
B, HLA-G, HLA-DQB2, and HLA-DMB. The top CpG 
for CU (cg25508319 in KCNJ5) was significantly associ-
ated with the rs582823 variant (FDR = 0.036), while the 
second-ranked significant CpG site (cg11202380 in AK2) 
was not associated with any variant. The results suggest 
that genetic variants impact more than half of CU-associ-
ated methylation sites, while a proportion of CU-associ-
ated CpG sites likely could result from cocaine exposure.

Pathway‑enrichment analyses based on identified meQTLs
Using QIAGEN Ingenuity Pathway Analysis (IPA) to 
perform pathway enrichment analyses on genes mapped 
by the identified meQTLs [29], we identified 9 ingenu-
ity canonical pathways (FDR < 0.05) (Supplementary 
Table  3). The top pathways were (1) antigen presenta-
tion (FDR = 2.03E-05), which included HLA-A, HLA-B, 
HLA-C, HLA-DMB, HLA-DOB, HLA-DQB2, HLA-G, 
and PSMB5; (2) PD-1/PD-L1 cancer immunotherapy 
(FDR = 4.13E-04); (3) the xenobiotic metabolism AHR 
signaling pathway, which included genes for smoking 
(AHRR), alcohol metabolism (ALDH16A1) and his-
tone modification (HDAC4); and (4) crosstalk between 
dendritic cells and natural killer cells (FDR = 3.75E-03), 
which included genes for immunity (HLA family) and 
inflammation (TNF). These significant pathways are 
involved in immunity-related functions and activities.

PheWAS analysis of meQTLs for CU‑associated CpG sites
To investigate pleiotropic effects, we performed a 
PheWAS on the top 62 meQTLs (meta p value < 5E-8) 
for CU-associated CpGs (Methods). Using the GWAS 
Atlas database consisting of SNP-trait association 
results from 4,756 genome-wide association stud-
ies (GWASs) [30], PheWAS identified 36 significant 
traits (pBonferroni < 0.05) (Supplementary Table  4). The 
36 significant traits were in the following functional 
domains (Fig.  3): immunological (10 traits), metabolic 
(6 traits), nutritional (4 traits), skeletal (3 traits), car-
diovascular (3 traits), psychiatric (2 traits), reproduc-
tion (2 traits), activities (2 traits), ophthalmological (1 
trait), dermatological (1 trait), respiratory (1 trait), and 
environment (1 trait). In the immunological domain, 
meQTLs for CU-associated CpGs were implicated 
for eosinophil count (rs1034867 near CLC, p = 2.92E-
12) and hemoglobin concentration (rs10740731 in 
BICC1, p = 5.64E-09). In the category of cardiovas-
cular disease, the meQTL rs10740731 in BICC1 was 
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previously implicated in hypertension (p = 2.8E-08) 
[31]. Two meQTLs, rs4785958 (near TFAP4, p = 2.1E-
12) and rs56218021 (in DLC1, p = 3.2E-08), were asso-
ciated with resting heart rate [31]. In the metabolic 
domain, several meQTLs were previously associated 
with BMI (rs7834638 in BLK, p = 1.7E-13; rs1078763 
near FAM110C, p = 3.1E-09; rs9952447 near SKOR2, 
p = 9.22E-09) [32–34]. Of note, one of the top-ranked 
significant meQTLs, rs7834638 in BLK, was pre-
viously associated with multiple cocaine-related 
phenotypes, such as BMI (p = 1.7E-13) [32, 33], neurot-
icism (p = 4.62E-11) [35, 36] and bone mineral density 
(p = 4.5E-27) [37–39]. Our PheWAS results identified 

variants with pleiotropic effects on both CU-associated 
DNAm and other phenotypes relevant to CU.

MeQTL trait enrichment
PheWAS analysis identified traits that were associ-
ated with the index meQTL by examining one variant 
at a time. To systematically reveal the pleiotropic effects 
of meQTLs, we performed an enrichment analysis to 
identify traits whose risk variants were enriched with 
meQTLs for CU-associated CpGs (Methods). Using 
data from the GWAS Catalog (https://​www.​ebi.​ac.​uk/​
gwas/) and Fisher’s exact test to declare statistical signifi-
cance [40], we observed that the meQTLs were enriched 
for 16 traits (p value < 0.05) (Fig. 4A). The top two traits 

Fig. 2  Cis-meQTLs identified for cocaine use-associated CpG sites. A Manhattan plots of meQTL results following meta-analysis. The red 
line indicated the FDR-corrected 0.05 level (p-value = 8.9e-4). The top SNP (index meQTL) in the most significant meQTL clumps was marked 
with the corresponding CpG site and gene. B The top 11 index meQTLs marked in (A). meQTL: methylation quantitative trait loci

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
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were BMI-adjusted hip circumference (OR = 2.73, p 
value = 1.01E-4) and uric acid measurement (OR = 8.47, p 
value = 5.28E-4) (Supplementary Table 5).

Of the 16 significant meQTL-enriched traits, 9 over-
lapped with traits implicated from the PheWAS results: 
hip circumference (OR = 2.73, p-value = 1.01E-4), uric 
acid measurement (OR = 8.47, p-value = 5.28E-4), waist-
hip ratio (OR = 2.27, p-value = 1.46E-3), neuroticism 
(OR = 3.64, p-value = 4.28E-3), glaucoma (OR = 17.52, 
p-value = 0.0091), insomnia (OR = 17.52, p-value = 0.0091), 
hypertension (OR = 34.09, p-value = 0.0187), heel bone 
mineral density (OR = 2.87, p-value = 0.0221) and eosino-
phil count (OR = 2.54, p-value = 0.0247) (Fig. 4B). Of note, 
there has been accumulating evidence for the association 
between CU and sleep abnormalities [41, 42], hyperten-
sion [1, 43], and glaucoma [44]. Thus, the trait enrichment 
results, combined with the PheWAS results, further sug-
gest the pleiotropic effects of genetic variants on CU-asso-
ciated DNAm and other complex traits relevant to CU.

Mendelian randomization using MeQTLs as instrumental 
variables
To take a step further from pleiotropy to inferring causal 
relationships between CU and other traits, we per-
formed Mendelian randomization (MR) for the 9 traits 
identified by both PheWAS and meQTL trait enrich-
ment. We used meQTLs that were significantly associ-
ated with CU (p value < 0.05) as instrumental variables 
(referred to as IV-meQTLs) (Methods), CU as the expo-
sure, and other traits as outcomes. Summary statistics 
for the 9 traits from 13 publicly available GWASs were 

used for the MR analysis with inverse-variance weighted 
(IVW), weighted median (WM), and MR-PRESSO. Bon-
ferroni correction was applied to correct for different 
MR methods. We present the causal paths for statisti-
cally significant CU-trait pairs identified by at least one 
of the three MR methods.

We identified significant causal paths for 3 of the 9 
tested traits: hypertension, heel bone mineral density and 
neuroticism (Table  2). For example, IV-MeQTL-driven 
CU could cause hypertension (p value = 2.35E-08 in MR-
PRESSO). All the three MR methods also indicated that 
CU that driven by IV-MeQTLs decreased heel bone min-
eral density (p value = 4.78E-12 in IVW, p value = 2.79E-
11 in WM, and p value = 6.9E-19 in MR-PRESSO).

Assessment of frequency of CU among cocaine users
Intensity of drug use could have impacts on the DNAm 
alterations [45]. To better assess the effects of different 
CU patterns among our cocaine user group, we per-
formed a secondary analysis by comparing DNAm levels 
between high-frequency users (self-reported CU at least 
once a month) and low-frequency users (self-reported 
CU less than once a month) (methods). We found 141 
candidate CpGs (Supplementary Table 6) and 3,356 sig-
nificant meQTLs (FDR < 0.05), which were grouped 
into 146 index meQTLs based on LD (Supplementary 
Table 7). Subsequently, pathway analysis for the identified 
meQTLs did not reveal significant pathways at FDR < 0.05 
(Supplementary Table 8). The top pathway, PD-1/PD-L1 
cancer immunotherapy (FDR = 0.12), was identified in 
our main analysis for the CU phenotype (FDR = 4.13E-04) 

Fig. 3  Manhattan plot of the traits associated with the top index meQTLs in PheWAS analysis. The associations and classification of traits 
(domains) were obtained from 4,756 GWAS studies available on GWAS Atlas. The red dash line indicated the Bonferroni-corrected 0.05 level 
(p-value = 1.70E-07). PheWAS: phenome-wide association study; meQTL: methylation quantitative trait loci
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(Supplementary Table  3). The PheWAS analysis identi-
fied 4 significant traits: estimated glomerular filtration 
rate, Type 2 Diabetes, FVC, and age at menarche (Sup-
plementary Table  9), and the meQTL trait enrichment 
analysis identified 2 traits: susceptibility to plantar warts 
measurement and balding measurement (Supplementary 
Table 10). Of note, in our main analysis there were 9 traits 

identified by both PheWAS and meQTL trait enrichment 
and then MR models were built for them, but here the 
PheWAS and trait enrichment for CU-frequency did not 
have overlapped results. Overall, cis-meQTL identifica-
tion and downstream analyses resulted in fewer signals 
and did not reveal additional information than our main 
analysis contrasting CU with non-users.

Fig. 4  Results of meQTL trait enrichment analysis. A Dot plot for the 16 complex human traits which the meQTLs were enriched in (p-value < 0.05). 
B Venn plot to compare the 36 phenotypes identified by PheWAS and 16 human traits identified by meQTL trait enrichment. The 9 overlapped traits 
were marked in bold in (A). PheWAS: phenome-wide association study; meQTL: methylation quantitative trait loci
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Discussion
This study identified 224 CU-associated CpG sites and 
their corresponding cis-meQTLs in an African ancestry 
population. Our results showed that approximately 55% 
of CU-associated CpG sites in blood were influenced by 
nearby genetic variants. The set of meQTLs identified for 
CU-associated CpGs had pleiotropic effects on complex 
traits previously linked to CU, such as immunological, 
cardiovascular, metabolic, and psychiatric traits. Using 
meQTLs as instrumental variables, we further found 
causal relationships between CU and 3 traits. These find-
ings provide new insights into the underlying mecha-
nisms of CU and its relevant conditions.

A recent study on genome-wide cis- and trans-
meQTLs reported that up to 45% of CpG sites in blood 
were influenced by genetic variants [46]. Similar to this 
report, we identified significant cis-meQTLs for 55% 
of candidate CpG sites for CU (124 out of 224 CpG 
sites). The top-ranked CpG, cg25508319 on KCNJ5, 
was significantly associated with the rs582823 vari-
ant (FDR = 0.036). Genetic variants in potassium chan-
nel signaling, such as KCNJ9, were previously linked to 
cocaine dependence [47]. Also, Bao et  al. has reported 
that KCNJ genes are involved in multiple pathways that 
contribute to the pathophysiology of major depressive 
disorder [48], which is a psychiatric disorder frequently 
comorbid with cocaine use disorders [49]. The second-
ranked CpG site, cg11202380 on AK2, was not influenced 
by any variant in our cis-meQTL mapping. A previous 
study showed that cocaine administration in rats upreg-
ulates AK2 expression in Drd2 DA receptor–positive 
medium spiny neurons [50]. Together, the evidence indi-
cates that half of the CU-associated DNAm sites could be 
affected by genetic variants (e.g., cg25508319 on KCNJ5). 
In contrast, the remaining CU-associated DNAm sites 
may reflect a biological consequence of cocaine expo-
sure (e.g., cg11202380 on AK2). Comparing our find-
ings with one previous study on the association between 

persistent CU and DNAm in human [14], we found that 
four of our CU-associated CpGs were also reported by 
them: cg23058613 on GANAB, cg12444450, cg09490603 
on CYP11A1, and cg15486123 on IVL. Of note, Marceau 
et al. has shown that the gene CYP11A1 was significantly 
associated with glucocorticoid action, which might 
further impair neurogenesis in the hippocampus and 
confer vulnerability to substance use [51]. Other CU-
associated CpGs worth noting includes cg09659661 on 
IRX6, which has been supported by other studies show-
ing that the hypomethylation of IRX genes contributes to 
the development of cocaine dependence [15]. Addition-
ally, cg09356524 on ZMYND8 has been identified as one 
of the top CpGs associated with drug injection intensity 
(heroin or cocaine) [45], and we also identified a nearby 
site cg03082779 on ZMYND8 as a CU-associated CpG.

MeQTL and pathway analyses highlighted loci related 
to immunological function. It has been well established 
that cocaine exposure compromises immune function 
and increases the risk of infectious disease. Cocaine 
exposure has significant effects on T, B, and natural killer 
cells through the interaction of dopamine receptors on 
immune cells that are involved in the regulation of cel-
lular processes such as apoptosis, proliferation, and dif-
ferentiation [52]. An increase in the proinflammatory 
cytokines IL6 and TNF and a decrease in anti-inflam-
matory cytokines have been reported in cocaine users 
[53]. Consistent with the immunosuppressive effects of 
cocaine administration, our meQTLs identified in or near 
immune genes may add more molecular targets to the 
list of developing or repurposing therapies for treating 
cocaine use disorder.

PheWAS suggested pleiotropic effects of meQTLs 
on several complex traits. For example, rs7834638 was 
found to be a risk variant influencing neuroticism [23], 
and a high neuroticism score was found to be indepen-
dently associated with the psychotic symptoms induced 
by cocaine [25]. Similarly, rs10740731 in BICC1, one of 

Table 2  Mendelian randomization (MR) results

Mendelian randomization (MR) analysis was performed with CU as exposure, 9 other traits as outcome, and meQTLs that were significantly associated with CU as 
instrumental variables (IV-meQTLs). For the 9 traits included, a total of 13 studies with available GWAS summary statistics were tested and each of them by 3 methods, 
resulting in a significance cutoff 0.05/13/3 = 1.28E-3

We marked significant causal paths identified by one of the three MR methods in yellow
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the top index meQTLs, was found to be associated with 
hypertension [30, 31] and open-angle glaucoma [54]. We 
found that 9 of 36 PheWAS-significant traits were con-
sistent with meQTL trait enrichment analysis, including 
hypertension, insomnia, heel bone mineral density, glau-
coma, neuroticism, eosinophil count, hip circumference, 
uric acid measurement, and waist-hip ratio. The results 
suggest that meQTLs for CU-associated CpGs have 
pleiotropic effects on these 9 phenotypes. We further 
investigated the causal relationships of CU on 9 traits 
using the meQTLs as instrumental variables. For exam-
ple, IV-MeQTLs showed that CU could lead to hyper-
tension, which is consistent with the clinical observation 
that cocaine is a powerful vasoconstrictor and that its 
vasotoxicity induces a variety of cardiovascular effects 
[55]. Together, these findings suggested that genetic vari-
ants for CU-associated DNAm not only have pleiotropic 
effects on other relevant traits but also could serve as 
instrumental variables to build the causal path from CU 
to complex traits, for example, cardiovascular disease as 
evidenced in this study.

Although our main interest was on the cocaine expo-
sure and we aimed to identify meQTLs for CU-associ-
ated DNAm, we also conducted a secondary analysis for 
the frequency of CU phenotype (high-frequency users 
versus low-frequency users). This was motivated by pre-
vious studies showing that frequency of drug use was 
associated with DNA methylation alterations [45]. Com-
pared to the main results contrasting CU versus non-CU, 
we found fewer candidate CpGs and meQTLs in the sec-
ondary analysis, and the downstream analyses also did 
not add more information. One potential reason is the 
reduced sample size from 811 (N450K = 423, NEPIC = 388) 
to 293 (N450K = 165, NEPIC = 128) by excluding non-users. 
Another explanation would be the potential errors asso-
ciated with self-reported data on usage frequency among 
cocaine users. In the future, applying biomarker to obtain 
more accurate measurements of usage frequency will 
help to better explore the CU frequency phenotype and 
increase the power for candidate CpGs and cis-meQTL 
identifications.

We acknowledge several limitations of our study. 
First, in the step of selecting candidate CpGs, our sam-
ple size limited the identification of a large number of 
epigenome-wide significant CpGs associated with CU. 
Instead, a liberal p-value cutoff was used to maintain a 
reasonable pool of candidate CpGs for further analysis, 
preventing an excessively small number of CpGs in the 
subsequent meQTL mapping [14]. As recommended [56, 
57], a dataset with larger sample size (over 1,000) and 
more balanced design (50% cases, 50% controls) can ben-
efit future studies with more CU-associated CpGs reach-
ing epigenome-wide significance. Second, although we 

combined 450K and EPIC cohorts using meta-analysis, 
an independent cohort will be helpful to further rep-
licate and validate our findings. Third, our significant 
results regarding pleiotropy were based on comparisons 
between meQTLs identified in an African ancestry pop-
ulation and other published GWASs that were mostly 
derived from European ancestry populations (due to 
the fact that the vast majority of available GWAS were 
performed in European ancestry populations [58, 59]). 
Although this might indicate the transferability and sta-
bility of our identified meQTLs, it is still worth verifying 
whether our findings could be replicated in European 
ancestry populations. It is also noted that the identified 
significant MR results served as suggestive evidence, and 
the causal relationships should be interpreted with cau-
tion. Although we tried to detect outliers of instrumental 
variables that may exert horizontal pleiotropic effects by 
MR-PRESSO and provide corrected estimates via out-
lier removal, further investigations using longitudinal 
designs in larger samples would be helpful to validate the 
causal relationships that we identified here [17, 39, 40]. 
Other than MR paths, it will also be interesting to use 
mediation models to investigate the mediation roles of 
DNAm in the future studies. Furthermore, we focused 
on the effects of cis-meQTLs on CU-related epigenetic 
regulation. The effects of trans-meQTLs should also be 
examined in future studies. Last, our analysis focusing 
on peripheral blood DNAm was not designed to inform 
brain mechanisms of cocaine addiction. However, given 
that Qi et  al. has reported that the genetic effects on 
DNAm between the blood and the brain are correlated 
[60], extending our findings from the blood to the brain 
could merit future study once more data are available on 
DNAm profiles in brain tissues.

Conclusions
In summary, the study identified meQTLs for CU-
associated DNAm in an African ancestry population 
with HIV positive status and suggested that leveraging 
epigenome-wide methylation data and genetic variants 
can help to establish potential causal paths from CU to 
other relevant complex traits. Further validation with 
larger and more diverse sample sizes will shed more 
light on the molecular mechanisms of genetic and epi-
genetic risks for CU.

Methods
Study samples and cocaine‑related traits
The Veterans Aging Cohort Study (VACS) was a prospec-
tive, observational cohort study to investigate substance 
use and HIV-related outcomes with electronic medi-
cal records and biospecimen data [61]. After the base-
line survey at enrollment, 5 follow-up visits occurred at 
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approximately 1-year intervals. Blood samples were col-
lected in the middle of the follow-up period for a subset 
of participants (VACS-BC) [14]. Ancestry estimation by 
genotype was carried out for a total of 2,244 participants 
in the VACS-BC. A total of 811 DNA samples from indi-
viduals of African ancestry with both genotyping and 
DNAm data available were used for this study. The CU 
group was defined based on self-reported CU within the 
12  months preceding blood sample collection, and the 
nonuser group (control) was defined based on self-report 
of no cocaine exposure. The usage of other substances 
(tobacco and alcohol) was also assessed in the CU group 
and control group. Among CU users (N = 165 in the 450K 
dataset, and 128 in the EPIC dataset), we further defined 
individuals who self-reported using cocaine at least once 
a month as high-frequency users (N = 113 in the 450K 
dataset, and 88 in the EPIC dataset), while those who 
reported less frequent use were categorized as low-fre-
quency users (N = 52 in the 450K dataset, and 40 in the 
EPIC dataset).

Genotyping and quality control
The VACS samples were genotyped using the Illu-
mina HumanOmniExpress BeadChip. Imputation was 
performed using IMPUTE2 (ver 2.3.2) with the 1000 
Genomes Phase 3 as the reference panel [62], yield-
ing 18.5 million variants. Quality control (QC) was 
conducted by removing SNPs with a minor allele fre-
quency < 0.05, a missing rate > 0.05, an imputation qual-
ity r2 < 0.8, and those that deviated significantly from 
Hardy–Weinberg equilibrium (p < 1e-6). A total of 5.1 
million variants passed QC and were used for global 
ancestry estimation and meQTL identifications.

DNA methylation profiling
DNAm was profiled at different time frames using either 
the Illumina Infinium Human Methylation 450K Bead-
Chip (N450k = 423) or the Infinium Human Methyla-
tion EPIC BeadChip (NEPIC = 388) [14]. Two subsets of 
samples were processed in different periods but were 
processed using the same procedure at the Yale Center 
for Genomic Analysis [63]. We followed the procedure 
described in Lehne et  al. for methylation normaliza-
tion and batch effect adjustments [64]. We also removed 
the polymorphic CpG sites (the ones that overlay with 
SNPs) and CpG sites containing SNPs within 10 base pair 
(bp). Additionally, following the previous report [64], 
we removed CpG sites with detection p-value > 1e-12, a 
more stringent threshold than recommended by Illumina 
(p > 0.01). The use of a stringent detection p-value could 
more effectively filter out poor quality CpG sites and 
enhance the quality of DNAm array data [65]. A total of 
407,793 CpG sites covered by both 450K and EPIC arrays 

passed QC steps and were used in the analyses. We 
applied the method described by Houseman et al. to esti-
mate the cell type proportions for CD4 + T cells, CD8 + T 
cells, natural killer cells, B cells, monocytes, and granulo-
cytes [66, 67].

Global ancestry estimation
To estimate the genotype-based global ancestral infor-
mation for VACS samples, 2,504 residents from the 
1000 Genomes Project were used as the reference geno-
type panel to infer membership in the superpopulations 
(AFR: African, EAS: East Asian, EUR: European, and 
SAS: South Asian ancestry) [68]. The overlapping SNPs 
between the VACS and the 1000 Genomes Project were 
kept in the analysis. Pruning was performed by PLINK 
with linkage disequilibrium (LD) measured r2 set to 
0.02, yielding 57,303 SNPs. Principal component analysis 
(PCA) and ADMIXTURE with the number of ancestral 
groups set to 4 were performed on this set of SNPs to 
visualize the VACS population structure and to estimate 
the individual-level global proportions for the 4 ancestral 
groups (AFR%, EUR%, EAS%, SAS%). We aimed to clus-
ter the admixed individuals into another special group 
with admixed ancestry information. By comparing the 
ADMIXTURE results and further calculating the individ-
ual-level minimal Euclidean distance to the 4 reference 
groups’ centroids of genotypes PC1 to PC3, we identified 
105 VACS samples with admixed genetic ancestral com-
positions (Supplementary Fig. 1B). To further map VACS 
samples to the reference ancestral groups, we applied 
the k-nearest neighbor (KNN) algorithm with k set to 
20. The following variables were included: genotypes 
PC1 to PC10 and proportions for the 4 ancestral groups 
from ADMIXTURE. The training set was the 4 reference 
groups plus 1 representative admixed group consisting 
of 20 samples randomly selected from the 105 admixed 
VACS samples. The testing set was the remaining VACS 
samples (2224). The estimated genotype-based global 
ancestry was used in all the downstream analyses.

Selection of candidate CpGs associated with CU
Cocaine-associated DNAm was identified in the 450K 
and EPIC subset cohorts (N450k = 423, NEPIC = 388) sepa-
rately. In each of the two cohorts, we first applied a linear 
regression on the methylation M-value against the fol-
lowing covariates: age, tobacco use, alcohol consumption, 
log10 of viral load, antiviral medication adherence, white 
blood count, estimated cell-type proportions, and the top 
20 PCs on DNA methylation levels measured at control 
probes. We then applied a second linear regression on 
the methylation M-value against the outcome variable of 
interest (CU), including all the above covariates and the 
top 5 PCs on residuals from the initial model to capture 
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the remaining batch effects [69]. We used M to represent 
the candidate CpG methylation M value, Y to represent 
CU (cocaine user vs. nonusers), and Ci to represent k 
covariates (i = 1, 2…k). The model used to identify candi-
date CU-associated CpGs, was as follows:

To combine results from the 450K and EPIC cohorts, 
we performed fixed-effects, inverse-variance weighted 
meta-analysis with METAL [70]. Candidate CpG sites 
were selected at a meta p value < 0.0001. We set a liberal 
selection threshold to ensure that there would be a suf-
ficient number of candidate CpGs for meQTL identifica-
tion [14].

We also selected candidate CpGs associated with CU 
frequency (high-frequency users versus low-frequency 
users). The procedure was the same and the results were 
summarized in Supplementary Table 6.

Identification of meQTLs for CU‑associated CpG sites
To identify genetic variants that influence DNAm lev-
els at CU-associated CpG sites, we mapped meQTLs 
in VACS samples profiled by the 450K and EPIC arrays 
separately. In each cohort, meQTLs were tested by con-
structing linear regression models of methylation M val-
ues at each candidate CpG site on SNP genotypes from 
500 kb upstream to 500 kb downstream, and analysis was 
performed using FastQTL [71]. We used M to represent 
the candidate CpG methylation M value, X to represent 
genotype, and Ci to represent k covariates (age, tobacco 
use, alcohol consumption, log10 of viral load, antiviral 
medication adherence, white blood count, estimated cell-
type proportions, and the top 20 PCs on DNA methyla-
tion levels of control probes). The meQTL model was as 
follows:

A fixed-effects, inverse-variance weighted meta-analy-
sis was conducted to combine results from the 450K and 
EPIC cohorts. After multiple test corrections with false 
discovery rate (FDR) [72], SNP-CpG pairs were selected 
at an FDR < 0.05. Considering the LD between variants, 
we performed clumping on the meQTLs identified for 
each CpG site. Highly correlated genetic variants were 
clustered into one clump with an LD r2 > 0.1, and the 
lead SNP was identified as the one with the smallest p 
values in a clump. The lead SNP in one clump was iden-
tified as the index meQTL for the corresponding CpG 
site. The same procedure was followed to identify genetic 
variants that influence DNAm levels associated with CU 
frequency.

M = α0 + α1Y +
k

i=1
αi+1Ci

M = β0 + β1X +

∑k

i=1
βi+1Ci

Pathway‑enrichment analyses based on identified meQTLs
We used ANNOVAR to map variants to their nearest 
gene, and for variants in intergenic regions, the closest 
gene was kept [73]. Using the 7,101 identified meQTLs 
(FDR < 0.05), we obtained a total of 410 genes. Pathway 
enrichment analyses were conducted with QIAGEN 
Ingenuity Pathway Analysis (IPA) (QIAGEN Inc., https://​
digit​alins​ights.​qiagen.​com/​IPA) [29]. We identified sig-
nificant pathways at FDR < 0.05. We also performed the 
same procedure on the 3,356 identified meQTLs for CU 
frequency associated CpG sites.

PheWAS analysis
Consistent with other studies that kept only genome-
wide significant, independent SNPs for PheWAS analy-
ses [74–76], we analyzed the phenotype associations of 
the top 62 index meQTLs (meta p value < 5E-8) using the 
available PheWAS database in the GWAS Atlas, which 
consists of 4,756 GWAS studies [30]. For each variant, 
the list of associated phenotypes (p < 0.05) was collected. 
With the candidate list of PheWAS hits compiled from all 
62 variants, the significant phenotypes associated with 
top index meQTLs were selected after Bonferroni correc-
tion (p < 0.05/62/4756 = 1.70E-07) [76, 77]. The same pro-
cedure was also applied on the top index meQTLs (meta 
p value < 5E-8) for CU frequency associated CpG sites.

MeQTL trait enrichment
To systematically examine whether the identified 
meQTLs were enriched for other diseases/traits, espe-
cially those relevant to CU, we performed meQTL trait 
enrichment analysis using Fisher’s exact test [78, 79]. A 
2 × 2 contingency table was built as follows:

meQTLs Genome (non-meQTLs)  Total

Associated with trait D MR R - MR R

Not associated with trait D M – MR T - R - (M - MR) T - R

Total M T - M T

The total sum of the 2 × 2 contingency table (T) was the 
number of overall variants involved in the meQTL identi-
fication step. We used associations downloaded from the 
GWAS Catalog (https://​www.​ebi.​ac.​uk/​gwas/) to decide 
whether a variant belonged to the list of risk variants (R) 
that were associated with a certain trait or not (T—R) 
[40]. Variants with a meta-FDR < 0.05 in the meQTL 
identification step were defined as meQTLs (M), and the 
count of overlapped variants between the list of meQTLs 
and the list of risk variants was reflected in the upper-left 
category of the table (MR). The remaining 3 categories 
of the table were then calculated based on MR and the 
row/column sums. Based on the 2 × 2 contingency table, 
we tested whether the probability for the meQTLs to 

https://digitalinsights.qiagen.com/IPA
https://digitalinsights.qiagen.com/IPA
https://www.ebi.ac.uk/gwas/
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be associated with trait D was more often than random 
chance compared to the genome background. We used a 
Fisher’s exact test p value < 0.05 to conclude whether the 
meQTLs were associated (enriched) with the risk vari-
ants of trait D more often than random chance [80, 81].

Mendelian randomization using meQTLs as instrumental 
variables
We performed Mendelian randomization (MR) with CU as 
the exposure and the other traits identified by both PheWAS 
and meQTL trait enrichment as the outcomes, which con-
sisted of 9 traits with 13 publicly available GWASs. Sum-
mary statistics  were downloaded from the NHGRI-EBI 
GWAS Catalog [82] for the 13 studies [31, 33, 35–39, 54, 
83–87]. Among the 7,101 meQTLs (meta-FDR < 0.05), 
PLINK (v1.9) was employed to perform linear regression 
and test the association between them and CU [88], result-
ing in 503 meQTLs that were potential risk loci for CU (p 
value < 0.05). The instrumental variables were selected as 
those 503 variants (referred to as IV-meQTLs) to satisfy the 
MR assumptions. Three MR methods were used: IVW and 
WM implemented in MendelianRandomization (v0.4.2) 
and MR-PRESSO implemented in MR-PRESSO (v1.0) [89–
91]. MR-PRESSO was also employed to identify the outliers 
of instrumental variables with horizontal pleiotropic effects, 
and we reported causal estimates from MR-PRESSO after 
removing the outliers. Bonferroni correction was applied on 
the 13 pairs, each of which was tested by 3 methods. Thus, 
the final significance cutoff was 0.05/13/3 = 1.28E-3.
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Additional file 1: Supplementary Figure 1. Global ancestry estimates by 
ADMIXTURE. 2,504 residents with African (AFR), East Asian (EAS), European 
(EUR), and South Asian (SAS) ancestry from the 1000 Genomes Project 
were used as the reference genotype panel to infer the super populations 
membership. Results were plotted for (A) samples in the Veterans Aging 
Cohort Study (VACS) cohort (n = 2244) with respect to reference samples, 
(B) a subset of the VACS cohort with admixed ancestral information (n = 
105) with respect to reference samples. The reference and VACS samples 
were separated by the black line. Supplementary Figure 2. Inferred 
global ancestry of the VACS samples. Scatter plot of the genotype princi-
pal component analysis (PCA) results (PC1 and PC2) for the VACS cohort 
and 1000 Genome Project were plotted. The color indicated the super 
population of 1000 Genome reference samples (dots), and the inferred 
global ancestry of the VACS samples (triangles). Supplementary Figure 3. 
Selection of candidate CpGs associated with cocaine use in the Veterans 
Aging Cohort Study (VACS) samples. (A) Manhattan plot and (B) QQ plot 
(genomic inflation λ = 1.196) after meta-analysis to combine results 
from the 450K and EPIC cohorts. A total of 224 candidate CpG sites were 
identified. The red line indicates the p-value threshold used to identify 
candidate CU-associated CpG sites (p-value < 0.0001). Supplementary 
Figure 4. Two representative patterns of genetic effects by cocaine use 
for the meQTLs identified. (A-B): the distribution of methylation by the 
genotype among cocaine non-users and users. The patterns in the 450K 
cohort and EPIC cohort were plotted separately. (A) The genetic effect of 
rs13233191 on the methylation of cg17914838. (B) The genetic effect of 

rs7834638 on the methylation of cg21175976. CU: cocaine use; meQTL: 
methylation quantitative trait loci.

Additional file 2: Supplementary Table 1. Candidate CpG sites for 
cocaine use after meta-analysis to combine results for the 450K and EPIC 
cohorts (Ntotal = 811). Supplementary Table 2. Selected SNP-CpG pairs 
(FDR < 0.05) after meta-analysis to combine results for the 450K and EPIC 
cohorts (Ntotal = 811) and clumping. Supplementary Table 3. Enriched 
Ingenuity Canonical Pathways identified using genes mapped by the 
meQTLs for cocaine-related DNA methylations. Supplementary Table 4. 
Significant traits associated with the top index meQTLs. A total of 60 stud-
ies reached the significance level after bonferroni correction (p < 1.7e-7), 
which consisted of 36 phenotypes (phenotype number). Supplementary 
Table 5. meQTLs trait enrichment using associates downloaded from 
GWAS Catalog (https://​www.​ebi.​ac.​uk/​gwas/). MeQTLs for cocaine-related 
DNA methylations were used. Supplementary Table 6. Candidate CpG 
sites for cocaine use frequency (high frequency users VS low frequency 
users). Supplementary Table 7. MeQTLs (FDR < 0.05) for cocaine use 
frequency-related DNA methylations after meta-analysis to combine 
results for the 450K and EPIC cohorts (Ntotal = 293) and clumping. Sup‑
plementary Table 8.  Enriched Ingenuity Canonical Pathways identified 
using genes mapped by the meQTLs for cocaine use frequency-related 
DNA methylations. Supplementary Table 9. Significant traits associated 
with the top index meQTLs for cocaine use frequency-related DNA meth-
ylations. A total of 4 studies reached the significance level after bonferroni 
correction (p < 7.0e-7), which consisted of 4 phenotypes (phenotype 
number). Supplementary Table 10. meQTLs trait enrichment using asso-
ciates downloaded from GWAS Catalog (https://​www.​ebi.​ac.​uk/​gwas/). 
MeQTLs for cocaine use frequency-related DNA methylations were used.
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