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Abstract 

Background  Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular 
differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably 
methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, 
HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, 
a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data 
further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell 
type and spatial HMR patterns are functionally informative of gene regulation.

Results  To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse 
human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised cluster-
ing of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported 
by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development 
from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differ-
entiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs 
that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation 
of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS sum-
mary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability 
is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing 
HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function.

Conclusions  Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-
specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these 
data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell’s 
journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.
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Background
Among the twenty-eight million CpG dinucleotides in 
the human genome, the majority (80–85%) of cytosines 
undergo constant DNA methylation (DNAme) in most 
cellular contexts [1–5]. However, a subset of sites forms 
discrete regions containing stretches of CpGs that are 
not covalently modified by methylation and are thus 
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considered “hypomethylated”. The majority of these 
hypomethylated regions (HMRs) are non-coding and 
coincide with putative gene regulatory elements includ-
ing promoters and enhancers [5–9].

DNAme has long been tied to transcriptional control; 
however, apart from a very small subset of developmen-
tally regulated genes, promoters are stably hypomethyl-
ated and largely invariant across cell types, regardless 
of gene transcriptional status [10–13]. Thus, promoter 
HMRs poorly predict transcriptional programs that 
ultimately determine cellular phenotypes. By contrast, 
enhancer HMRs vary considerably between cell types, 
which results from their context-dependent demethyla-
tion [14–22]. While enhancer HMRs are more predictive 
of nearby gene activity than promoter HMRs [8], how 
these HMRs are established or maintained and their rela-
tionship to cell identity is not well understood.

We previously showed that non-coding HMRs rep-
resent an exclusive subset of chromatin accessible sites 
[8]. More recently, we showed that, while HMRs corre-
late with chromatin accessibility and other indicators of 
permissive chromatin, the temporal dynamics of HMR 
formation is distinct from chromatin remodeling changes 
[20, 23]. Importantly, HMRs can persist long after chro-
matin remodeling changes during cell fate transitions 
in terminally differentiating hematopoietic cells [20, 
23]. Similarly, in the mammary gland, gene regulatory 
changes during the first pregnancy result in demethyla-
tion of pregnancy-responsive gene enhancers. The main-
tenance of these enhancer HMRs is long-lasting, even 
after pregnancy signals dissipate [24]. These studies indi-
cate that HMRs capture both active and previously active 
gene regulatory elements in a manner not reflected by 
other common enhancer-associated chromatin states.

Despite these observations, very few studies have con-
sidered the combinatorial and temporal significance of 
HMR patterns in a genome-wide manner across devel-
opmentally diverse datasets. For example, “super-enhanc-
ers”, a class of enhancers that are defined by high levels of 
histone H3 lysine 27 acetylation (H3K27ac) and Mediator 
binding, are often comprised of multiple enhancers units 
[25, 26]. Both selective and persistent hypomethylation of 
individual enhancer units within super-enhancers have 
been observed in mouse embryonic stem cells (ESCs) 
during exit from naïve pluripotency [27, 28]. These com-
binations of HMR patterns suggest that coordinated 
hypomethylation of enhancers through cell fate transi-
tions serves to uphold specific cellular states. Altogether, 
this argues that HMRs are established and maintained as 
a memory of gene regulatory activity; thus, consideration 
of how HMRs are shared within and between cell types 
may inform critical epigenetic patterns that secure cellu-
lar phenotypes. However, this hypothesis and its link to 

phenotypic outcomes remains to be tested across diverse 
tissues and developmental timepoints in a genome-wide 
manner.

Here, we performed a comparative analysis of whole-
genome methylation data from diverse tissues represent-
ing distinct organ systems and developmental timepoints. 
Unlike previous studies that emphasize pairwise differen-
tial methylation or locus-specific changes during limited 
differentiation time courses, we comprehensively charac-
terize HMR relationships both within and between cell 
types to understand the functional significance of combi-
natorial HMR patterns. By analyzing methylomes across 
diverse cell types, both distant and related, we show that 
hierarchical conservation of HMRs across tissues can 
identify enhancer HMRs established in developmentally 
distinct contexts. We further demonstrate that HMRs 
established at distinct timepoints partition the genome 
in a way that is highly predictive of complex trait herit-
ability, which highlights the significance of these HMR 
patterns to the underlying genome sequence. Ultimately, 
these data provide novel insights into how DNA hypo-
methylation informs genome function by providing a 
map that traces the developmental histories underlying 
cellular states.

Results
Shared HMR patterns among diverse cell types reveal 
common functional and developmental histories
Studies aiming to understand the relationship between 
DNA methylation patterns and phenotypic outcomes 
have focused largely on individual differentially meth-
ylated regions without consideration of combinato-
rial changes that drive phenotypes. To understand the 
functional significance of complex HMR patterns, we 
determined the correspondence of HMRs across diverse 
human cell types and developmental timepoints. We 
hypothesized that shared HMR patterns among diverse 
cell types could reveal common functional and develop-
mental histories. To illustrate this idea, genome browser 
tracks of methylation data are displayed for datasets rep-
resenting diverse lineages and developmental timepoints 
at a B cell enhancer cluster upstream of the CD27 gene 
(Fig.  1A). This locus contains a group of HMRs with 
varying levels of HMR specificity that are surrounded 
by genes involved in lymphoid development and signal-
ing including CD27, LTBR, and TAPBPL. A comparison 
of HMRs reveals different levels of both cell-type and 
lineage specificity, including HMRs conserved in all sam-
ples (developmentally constitutive); HMRs shared exclu-
sively among lineage-related samples (e.g., hematopoietic 
cells); and HMRs present only in B cells. The lympho-
cyte-specific expression of CD27 highlights a potentially 
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important role for the combination of shared and cell 
specific HMRs observed at this locus.

To investigate the extent to which these HMR patterns 
can be observed globally, we determined a set of high-confi-
dence HMRs using publicly available whole genome bisulfite 
sequencing (WGBS) data from ten different cell types and 
tissues, including embryonic stem cells (H1 ESCs), hemat-
opoietic stem & progenitor cells (HSPCs), fetal heart, fetal 
spinal cord, liver, adrenal gland, macrophages, neutrophils, 
T cells, and B cells (see Methods). As the resolution of HMR 
specificity is contingent on the quantity and interrelated-
ness of cell types included in the analysis, we maximized 
comparative potential by including datasets representing a 
diversity of organ systems and developmental stages.

HMRs were determined for each dataset using Meth-
Pipe  [31, 32], which employs a computational model 
originally described in Molaro et al. 2011 [18] to detect 
adjacent clustering of unmethylated CpG sites in the 
genome. Specifically, a 2-state hidden Markov model 
(HMM) with Beta-Binomial emission distributions 
allowed high and low methylation states to be trained 
separately on each individual WGBS dataset [31, 32]. This 
modeling approach is robust to sequence coverage differ-
ences both within and between WGBS datasets. This is 
important given that sequence coverage is not uniformly 
distributed across the genome. Therefore, we required a 
minimum mean sequence read coverage of 10x at sym-
metric CpG sites for any HMR dataset to be included in 
our analysis. Of the ten datasets included, eight achieve 
CpG read coverage > 25x, while the B cell and neutrophil 
datasets reach nearly 12x (Table S1) [31]. This resulted in 
a total set of 126,104 unique non-coding HMRs with an 
average length of ~ 866  bp (Fig. S1). Those HMRs span-
ning transcriptional start sites (TSS; -2000/ + 1000  bp) 
and exons were excluded from the analysis in order to 
focus on non-coding HMRs harboring putative enhanc-
ers (Table S2). By excluding the substantial number of 

constitutive HMRs overlapping gene promoters, we 
achieve better resolution to detect non-promoter HMR 
patterns that contribute to cellular states.

Hierarchical clustering applied to these datasets was 
sufficient to recapitulate both related and distant cell type 
relationships, demonstrating the quality and specificity of 
HMR calls (Fig. S2). Next, we utilized k-means clustering 
to group HMR methylation levels across the 10 differ-
ent cell types and tissues in an unsupervised manner. We 
used the elbow method to determine an optimal number 
of k-means clusters (n = 10, Fig. S3).

The resultant heatmap revealed groups of HMRs highly 
stratified by both group function and developmental stage 
(Fig.  1B). We manually classified each k-means group 
according to cell types displaying average HMR methyla-
tion ≤ 50% for each group. For example, in the “Hemat-
opoietic” HMR group, blood cells uniquely display low 
methylation levels, whereas the “Early Developmental” 
HMR group is dominated by H1 ESCs. Likewise, a group 
of HMRs is specific to the “Fetal” developmental state 
compared to stem and adult cells. Using this analysis, we 
achieve remarkable resolution to distinguish HMRs that 
are unique between highly related cell types such as mac-
rophage and neutrophil cells; further, we identify a more 
specific group of exclusive T and B cell HMRs.

Since transcription factors (TFs) govern the func-
tional progression and specialization of cell types, we 
performed TF motif enrichment analysis to understand 
the gene regulatory significance of each k-means group. 
Top motifs stratify strongly by k-means group (Fig. 1C). 
Furthermore, representative TFs from top results show 
k-means group-specific enrichment of canonical TFs 
indicative of their respective cell types. For example, 
the ubiquitous CTCF is enriched in the All group [33]; 
pluripotency factors OCT4-Sox2-Nanog are primar-
ily in the Early Developmental k-means group [34]; 
CEBP, a factor important for myeloid development, is 

Fig. 1  Levels of HMR specificity recapitulate developmental relationships through accumulation and maintenance. A Multiple alignment 
of WGBS methylation and HMR tracks across 10 cell types: H1 ESC, fetal spinal cord, fetal heart, adrenal gland, liver, hematopoietic stem 
and progenitor cells, neutrophil, macrophage, B cell, and T cell. Methylation tracks are represented by orange vertical bars showing methylation 
value per CpG site. Methylation fraction is calculated as the fraction of reads containing a methyl-C over the total number reads covering a CpG 
site. HMR calls are shown by dark blue horizontal bars. Developmentally constitutive, lineage-specific, and cell specific HMRs are highlighted 
by blue and green dotted bars, respectively. The plotgardener R package was used to generate the genome browser snapshot [29]. B Heatmap 
of average methylation per HMR across cell types. Non-coding HMRs were k-means clustered based on their average CpG methylation values 
across 10 cell types represented in (A). A k-means of 10, assessed by the elbow method, was used to cluster HMRs into groups that are consistent 
with the biological relationships of their cell types. Groups are manually labeled to reflect their biological relationships. C The transcription factor 
(TF) motif enrichment of each k-means group reflects biological relationships captured in (B). Representative TFs were selected from the top 
significant hits ranked by natural log adjusted p-value for each k-means group. The top ranked TFs are shown unless the top TF(s) for that group 
were redundant; the second top ranked TF is shown for the group, “Myeloid + HSPC,” and the third ranked TF is shown for the group, “Differentiated.” 
Fold enrichment values are normalized from 0 to 1 across TFs. The background comparison file comprises HMRs across all represented cell types. 
D Bar graph of the total number HMRs for each cell type, arranged by developmental progression. E Bar graph measuring the presence of HMRs 
established in either H1 ESCs (top; green) or HSPCs (bottom; grey) in developmentally progressive cell types. The software Bedtools intersect was used 
to determine overlap between cell type HMR datasets using default settings [30]. Overlap was defined as a 1 bp minimum

(See figure on next page.)
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enriched exclusively in macrophages and neutrophils 
(myeloid cells) [35]; and early B cell factor EBF2 is in 
the highly specific B cell group [36]. Similarly, the reti-
noic acid receptor alpha (RARα) motif is highly enriched 

exclusively in the liver/adrenal-specific Endocrine group. 
The enrichment of cell specific transcription factors in 
cell specific HMRs confirmed expectations of our HMR 
group annotation strategy and highlights the ability to 

Fig. 1  (See legend on previous page.)
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observe shared HMR patterns that reflect not only sub-
sets of cell types but also developmental periods.

Given the specificity of the TF enrichment analy-
sis supporting cell- and lineage-specific functions, we 
considered whether associated genes displayed similar 
biological specificity. We used GREAT ontology enrich-
ment analysis to analyze sets of genes neighboring HMR 
groups defined by k-means clusters shown in Fig. 1B [37]. 
We show enrichment of distinct biological processes rep-
resentative of the cell type and developmental stage asso-
ciated with HMR groups (Fig. S4). Interestingly, the least 
differentiated HMR group of Early development enriched 
for early morphogenic specification ontologies, while the 
intermediate HMR group defined by sharing between the 
blood cell types and stem and progenitor cells enriches 
for blood-related signaling ontologies. Additionally, the 
myeloid-specific enrichments show myeloid lineage spec-
ificity, whereas B cell-specific ontologies are enriched in 
the B cell group; this highlights the ability of HMRs to 
distinguish not only disparate lineages and developmen-
tal stages, but also highly related cell types. Together 
these data show that HMRs alone can recapitulate func-
tional relationships between cell types. Furthermore, by 
comparing HMRs within and across lineages, we dis-
covered that levels of HMR specificity can reflect deep 
developmental roots of gene regulation, capturing time 
point-specific branchpoints of development (Fig.  1 and 
S2). For example, the hematopoietic k-means cluster con-
tains a group of HMRs that are shared between stem and 
progenitor cells as well as derived cell types (B cell, T cell, 
neutrophil, and macrophage), but not others. This data 
suggests that HMRs established at specific, early develop-
mental timepoints are maintained in subsequent cellular 
states. We explore this in further detail below.

HMRs accumulate and persist through subsequent 
developmental transitions
Terminally differentiated cells exhibit between ~ 2–3.5 
times the number of non-coding HMRs compared to 
embryonic stem cells (Fig.  1D). While a minor subset 
of H1 ESC HMRs are cell type-specific, most H1 ESC 
HMRs are highly shared across the cell types analyzed 
(Fig.  1B, 14,223 merged HMRs that are shared among 
“All” cell types; of 18,235 H1 ESC non-coding HMRs, 
2,616 are cell specific while 15,619 are shared with at least 
one other cell type, a 5.97-fold difference). Our compara-
tive analysis further reveals specific HMR groups defined 
by developmental stage (fetal vs. adult, differentiated vs. 
undifferentiated), lineage, and cell type (Fig.  1B). These 
data suggest a model whereby H1 ESCs supply a base 
HMR set to which additional HMRs are added at distinct 
lineage commitments through cell development. This 
is important because it suggests that a developmental 

hierarchy exists among HMRs and that HMRs accumu-
late as cells differentiate.

To determine whether progressive HMR establishment 
can be traced in developmentally derived cell types, we 
used pluripotent H1 ESCs, multipotent HSPCs, and ter-
minally differentiated myeloid (macrophages) and lym-
phoid (B cells) lineage cells to construct a pseudo-time 
course (Fig. 1D). In general, we observe that non-coding 
HMRs increase in number with increasing cell matu-
rity. An increase of total HMRs could be explained by 1) 
a simple accumulation of additional HMRs, or 2) a net 
increase with high turnover of HMRs. To differentiate 
between these two modes of HMR expansion, we meas-
ured HMR overlap between either embryonic stem cells 
or hematopoietic stem cells and mature hematopoietic 
cell types. Of 18,235 HMRs observed in H1 ESCs, 11,959 
(65.58%) were represented by HMRs in the total multi-
potent HSPC dataset. Of these 11,959 HMRs that were 
observed in both H1 ESCs and HSPCs, 11,310 (62.02%) 
and 10,285 (56.40%) were represented by HMRs in the 
macrophage and B cell datasets, respectively (Fig.  1E). 
Next, of 34,605 HMRs established in HSPCs but absent 
in H1 ESCs, 27,312 (78.93%) and 15,185 (44.23%) were 
represented by HMRs in the macrophage and B cell data-
sets, respectively (Fig. 1E).

These data show that a majority of the HMRs observed 
in differentiated cells (~ 60%) are established at early 
developmental stages and suggest a pattern of HMR 
accumulation in relation to developmental progression. 
In addition to acquiring new HMRs, macrophages retain 
a majority of HMRs established in HSPCs, whereas B 
cells retain half as many HSPC-derived HMRs and fewer 
total HMRs compared to macrophages. This observa-
tion is consistent with previous studies demonstrat-
ing that lymphoid commitment and myeloid restriction 
requires re-methylation of specific early hematopoi-
etic regulatory elements in parallel to demethylation of 
lymphoid-specific elements [38–40]. Failure to remeth-
ylate these regions can result in a lineage priming imbal-
ance favoring myeloid differentiation; thus, fewer HMRs 
are retained from HSPCs in B cells compared to mac-
rophages. Despite this B cell remethylation of a subset 
of HSPC HMRs, we observe a general increase in HMRs 
across the hematopoietic lineage that supports a model 
where new HMRs are progressively established through 
successive developmental stages and persist through later 
stages of cell differentiation.

HMRs are non‑randomly established into spatially 
organized clusters
Locus-specific analysis of individual WGBS datasets indi-
cates that multiple distinct HMRs are frequently located 
near one another, rather than being randomly distributed 
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across linear genomic space (Fig.  1A). Moreover, these 
HMR groups appear to be spatially organized with HMRs 
that are present in varying degrees of cell types and tis-
sues, from developmentally constitutive to B cell specific. 
The example locus shown in Fig.  1A depicts a group of 
adjacent HMRs near the CD27 gene. CD27 and several 
other genes surrounding the locus play a key role in B 
cell function [41–43]. To quantify this HMR grouping 
phenomenon genome-wide, we calculated observed and 
expected distributions of inter-HMR distances utilizing 
the cell types represented in Fig. 1. Expected distributions 
were simulated by random shuffling (n = 10,000) HMRs 
across the genome for each dataset, excluding a blacklist 
of protein coding RefSeq TSSs (-2000/ + 1000  bp) and 
exons. HMR distances are significantly closer to each 
other than expected by random chance (Fig.  2A, Wil-
coxon rank sum, p-value < 2.2e−16). Interestingly, differ-
entiated cell types consistently show lower expected and 
observed distances (~ 40–50 kb and ~ 12 kb, respectively) 
compared to those of H1 ESCs, which feature the largest 
inter-HMR distances; this is consistent with having fewer 
HMRs overall, supporting its role as a basal HMR set.

These data suggest that clustered HMRs play a distinct 
regulatory role compared to their unclustered counter-
parts. To characterize the features that distinguish “clus-
tered” and “unclustered” HMRs we first determined a set 
of heuristic criteria to define clusters (Fig. 2B). We plot-
ted per-cell type distributions for non-coding inter-HMR 
distances and measured distance quantiles. From this, 
we analyzed "end-to-end" cluster lengths based on three 
maximum linking values: the ≤ 12.5 kb stitching distance 
commonly used in ChIP-seq-based super-enhancer stud-
ies [25, 26, 44–46]; the approximate mean inter-HMR 
distance of 11 kb and ≤ 6 kb which represents the median 
inter-HMR distance after filtering for values under 50 kb 
(Table S3). Previous studies that have characterized 

clustered super-enhancers have used a common linking 
distance threshold of 12.5  kb. This distance was report-
edly selected for its ability to qualitatively link high sig-
nal regions together while avoiding inclusion of lower 
signal peaks. Thus, the super-enhancer definition is reli-
ant upon signal intensity and distribution. However, 
HMRs are defined by a bimodal methylation signal dis-
tribution, and such a distance applied to methylation data 
results in extraneously long stitched regions, the biologi-
cal function of which is difficult to assign; some exceed 
1  Mb, which can result from HMRs spread across gene 
deserts, or large topological domains with low meth-
ylation levels or CpG frequency. By comparison, a link-
ing distance of 6  kb results in stitched regions with an 
overall mean length of ~ 10  kb, which is consistent with 
other clustered enhancer annotations such as stretch and 
super-enhancers (Table S4, Fig. S5) [26, 47]. Using a link-
ing distance of 6 kb, we determined the fraction of HMRs 
that are clustered or unclustered for a subset of cell types, 
including H1 ESC, HSPC, B cell and Liver (Fig. 2C). To 
avoid confounding contributions of promoter character-
istics to our analysis, clusters were not allowed to cross 
TSSs or exons. At a 6 kb threshold, non-TSS/exon HMR 
groupings that exist as pairs or as clusters of 3 or more 
constitute ~ 35% of all HMRs. For the rest of this paper, 
“clusters” refer to clusters with 3 or more HMRs (see 
annotation strategy in Fig. S6).

As demonstrated in Fig.  1A a typical cluster con-
sists of multiple HMRs with different levels of cell type 
specificity between them—broadly shared (developmen-
tally constitutive), lineage-shared or cell-specific. This 
means that a cluster identified in one cell type may not 
exist across all cell types. As the formation of clusters 
is contingent on the addition of new HMRs near exist-
ing HMRs, most HMR clusters (~ 35–40%) contain at 
least one lineage- and/or cell type-specific HMR. Given 

(See figure on next page.)
Fig. 2  HMRs cluster more than expected. A Distribution plots of inter-HMR distances by cell type. The green distributions represent observed 
values from HMR datasets per cell type. Vertical navy bars show median values. Grey distributions show expected values by random shuffling 
across the non-coding genome. For each cell type, the expected and observed distributions were determined to be significantly different 
by the Wilcoxon rank sum test. All p-values were reported as zero (p < 2e-16) with a range of Χ2 values from 1.4337 × 108–4.4508 × 108. B Diagram 
of HMR clustering and cell specificity workflow. HMRs are annotated for clustering behavior and/or cell specificity. Non-coding HMR datasets 
are defined by HMRs that do not overlap RefSeq protein-coding TSSs (TSS -2000/ + 1000) and exons. Clustering refers to groups of HMRs 
in a cell type that are located a maximum of 6 kb end-to-end from the next HMR, linking 3 or more HMRs; clusters cannot cross TSSs or exons. 
Unclustered HMRs are defined as non-coding HMRs that are not within 6 kb of any other non-coding or TSS/exon-overlapping HMR. Cell specificity 
is also defined, with any base pair overlap between HMRs constituting overlap. C Bar graph of HMR clustering annotations discussed in (B) and Fig. 
S6 as percentages of total HMRs by cell type. Selected cell types represent members of the hematopoietic and hepatic lineages. Colors reflect cell 
types representing different developmental stages and lineages. D Bar graph of proportion of cell type HMRs that are clustered HMRs (3 + HMRs) vs 
unclustered. Total values are calculated as [#unclustered + #clustered]. E Sankey diagram showing the flow of B cell HMRs. B cell HMRs are divided 
on the right of the panel into clustering groups. The left shows HSPC HMRs that overlap B cell HMRs, and are hierarchically categorized as clustered 
HSPC HMR, unclustered HSPC HMR, shared, or cell specific. To define cell specificity, B cell HMRs were compared to datasets from adrenal gland, H1 
ESC, HSPC, fetal spinal, fetal heart, liver, macrophage, neutrophil, and T cell. F The bar graph shows the top biological process gene ontology results 
for the Sankey group of HMRs that progress from HSPC unclustered to B cell clustered (indicated in red). Results from GREAT Gene Ontology using 
default background and gene assignment settings are represented by bars showing binomial q-value [37]



Page 7 of 23Scott et al. BMC Genomics          (2023) 24:623 	

that HMRs accumulate over developmental timelines, 
this observation raises the possibility that, as cells dif-
ferentiate, HMRs are preferentially added to clusters in 

a lineage-specific manner. Indeed, we observe a posi-
tive correlation between clustering and developmental 
state. Clustering percentage increases as development 

Fig. 2  (See legend on previous page.)
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progresses (Fig.  2D, H1 ESC to HSPC & HSPC to Mac-
rophage: p < 2.2 × 10–16), and this is accompanied by a 
relative decrease in unclustered HMRs. Tracking these 
HMRs temporally for each pseudo-timepoint reveals that 
a substantial fraction of early-established HMRs is joined 
by additional HMRs in subsequent developmental states. 
The establishment of new HMRs near existing HMRs can 
lead to clustering, where an HMR may be classified as 
unclustered at an early timepoint but become clustered 
in a differentiated cell type (Fig. 2E). These growing clus-
ters of HMRs are often in proximity to lineage-specific 
genes, as suggested by gene ontology analysis (Fig.  2F). 
Altogether, these data show that HMRs can be broadly 
distinguished by 1) the number of cell types that share 
them—a corollary of temporal establishment or devel-
opmental time—and 2) their clustering behavior, which 
may reflect a collective and unique developmental func-
tion that distinguishes clustered HMRs from other types 
of genomic regions.

Clustered HMRs are functionally distinct from unclustered 
HMRs
Sequencing approaches have enabled the discovery of 
many spatially clustered regulatory elements genome-
wide using chromatin accessibility [47], histone modifica-
tions [48–53], and transcription factor binding [25, 26]. 
More recently, clustering of enhancers has been com-
monly associated with concepts such as super-enhancers 
(SEs) [26], stretch enhancers [47], shadow enhancers 
[54, 55] and locus control regions (LCR) [56], which are 
thought to provide regulatory additivity, synergy, and 
redundancy to their target genes in a tissue-specific 
manner.

Comparison of clustered B cell HMRs with histone 
H3K27ac-defined B cell super-enhancers shows that, 
while the majority of super-enhancers coincide with 
HMRs (both clustered and unclustered), only 1.5% of 
clustered HMRs overlap super-enhancers (Fig. 3A) [26]. 
This discrepancy may be explained by the observa-
tion that only a fraction of SEs exists as clusters in lin-
ear genomic space. Indeed, 15% of SEs from Whyte et al. 
are singletons and only 196 of 1,355 stitched murine 
ESC enhancers are SEs [25, 57]. Thus, super-enhancers 
do not exclusively consist of clustered enhancers, and 
ChIP-seq defined enhancer clusters are not exclusively 
SEs. Clustered HMRs are more frequent than SEs, and 
their existence raises the question of whether they repre-
sent distinct functional characteristics compared to their 
unclustered HMR counterparts.

To address this question, we used ChromHMM anno-
tations to functionally categorize HMRs based on clus-
tering behavior in B cells (Fig.  3B) [48, 49]. Notably, 
clustered HMRs are enriched for “strong enhancers” 

(X2 = 316.66, p = 7.725 × 10–71) while unclustered 
HMRs show higher enrichment of “heterochroma-
tin” (X2 = 432.37, p = 8.159 × 10–96) and “insulators” 
(X2 = 329.57, p = 1.191 × 10–73). This suggests clustered 
HMRs are enriched for active regulatory regions while 
unclustered HMRs tag elements involved in three-
dimensional chromatin structure. This result is corrobo-
rated by the strong enrichment of the CTCF motif in 
unclustered HMRs, while both clustered and unclustered 
B cell HMRs show comparable enrichment of lymphoid-
relevant transcription factors, including PU.1, SpiB, and 
ETS family members (Fig. 3C).

Given the enrichment of strong enhancer annotations 
in clustered HMRs, we investigated their transcriptional 
regulatory activity by comparing with our recently pub-
lished ATAC-STARR-seq data for immortalized B cells 
(Fig.  4A) [58]. ATAC-STARR-seq is a massively parallel 
reporter assay that uses Tn5 transposase to selectively 
clone accessible DNA from native chromatin into a plas-
mid-based reporter to test accessible chromatin regions 
for active and silent regulatory activity [58, 59]. Since a 
majority of B cell HMRs overlap accessible chromatin 
regions in lymphoblastoid cells (Fig. S7), we measured 
the proportion of HMRs that contain an activator or 
silencer (Fig.  4A). Despite being fewer in number, clus-
tered HMRs contain a significantly higher proportion of 
transcriptional regulators, including both activators and 
silencers (p = 2.39 × 10–13 and 0.0106, respectively), than 
unclustered HMRs.

Based on the finding that clustered HMRs are enriched 
for both strong enhancer annotations and “activators” 
defined by ATAC-STARR-seq (Fig.  4A), we hypothe-
sized that clustered HMRs are more likely to be associ-
ated with active genes compared to unclustered HMRs. 
To address this question, we defined pairs of HMRs and 
their nearest neighbor genes, measuring the proportion 
of cell-specific clustered and unclustered HMRs that tag 
the nearest “active” (TPM > 0) gene at different threshold 
HMR-TSS distances (Fig.  4B). To pair HMRs with their 
nearest neighbor active gene, we used a gene assignment 
strategy that identifies the nearest expressed neighbor-
ing gene within a topologically associated domain (TAD) 
containing both the gene and the HMR(s). A recent study 
showed that a combination of nearest neighbor assign-
ment in conjunction with a minimum expression thresh-
old increased associated-gene prediction accuracy above 
several gene assignment methods, including the com-
monly utilized simple nearest neighbor [60]. Using this 
assignment strategy, we paired HMR groups with lymph-
oblastoid RNA-seq (GM12878) data from ENCODE as a 
proxy for B cells [61]. Focusing on B cell specific HMRs, 
we observed a significantly higher proportion of clus-
tered HMRs near active genes compared to unclustered 
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HMRs at all observed distance thresholds (Fig.  4B; all 
p-values < 8.42e-10). While our unclustered definition 
omits HMRs that are within 6 kb of TSSs or exons, these 
observations remain consistent when TSS/Exon proxi-
mal HMRs are included (Fig. S8A; all p-values < 1.96e-5). 
Similar results were obtained for the same analysis per-
formed on liver HMRs (Fig. S8B).

We further reasoned that target genes of clustered 
HMRs display increased transcriptional output com-
pared to those of unclustered HMRs. To define puta-
tive HMR target genes, we used a similar approach 
to the gene assignment strategy discussed above 
that incorporates both a TAD and expression filter 
(TPM > 0); due to uncertainty that the nearest gene is 

Fig. 3  Clustered HMRs show distinct enhancer-associated characteristics compared to unclustered HMRs. A Venn diagram showing partially 
overlapping sets between three region datasets: All B cell HMRs (blue circle); clustered B cell HMRs (green circle; subset of All); and GM12878 
super-enhancers (red circle) [26]. GM12878 is a tier 1 ENCODE lymphoblastoid cell line derived from EBV immortalized B cells. B Bar graph of HMR 
overlap with selected ChromHMM annotations: strong enhancer, weak enhancer, heterochromatin, repressed, insulator, weak transcription. The height 
of the bars represents the fraction of clustered and unclustered HMRs that overlap each annotation. Z-test of proportion p-values are shown, 
comparing HMR group proportion values for each ChromHMM annotation. C TF motif enrichment in clustered (left; green) and unclustered 
(right; blue) HMRs. Results are plotted as -log10p-value by fold enrichment, measured as percentage of target regions containing motif divided 
by the percentage of background regions. Background represents all clustered and unclustered HMRs
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a true positive, we considered two nearest neighbors 
for gene assignment. Using this approach, we observe 
that genes assigned to clustered B cell HMRs show a 
significantly higher distribution of transcript levels 
compared to those near unclustered HMRs (p = 0.007; 
Fig.  4C) [61]. However, when these comparisons are 
binned by HMR-gene distance, we do not observe 
significant differences in gene expression across bins, 
except in the most distal (≥ 100  kb) HMR-gene dis-
tance bin (Fig. S8C). We performed the same analysis 
for liver clustered HMR target genes, finding the pat-
tern is consistent across cell types (Fig. S8D, E). These 
observations suggest that the functional distinction of 
clustered HMRs compared to unclustered HMRs is a 
general phenomenon.

Given the relationship between clustered HMRs 
and gene activity, we considered whether the appear-
ance of clustered HMRs in differentiated cells accom-
panies changes in chromatin conformation. We 
used publicly available Hi-C data to compare long 
range chromatin contacts around the CD27 locus 
between embryonic stem cells and differentiated 
B cells (Fig.  4D). This locus provides a representa-
tive example of a cluster of HMRs that accumulates 
HMRs with increasing developmental specificity. 
Here, we observe that the accumulation of immune 
cell specific HMRs coincides with chromatin confor-
mation changes as indicated by increased frequency 
of Hi-C interactions (Fig.  4D). As the region accu-
mulates clustered HMRs through cell development, 
new chromatin contacts are created around the newly 
established HMRs [62, 63], indicating the functional 
importance of the spatial proximity of clustered 
HMRs. Altogether, these results argue that combina-
torial HMR establishment and HMR history relates to 
chromatin conformation changes that accompany cell 
differentiation (see Discussion).

Non‑coding HMR patterns are highly enriched for genetic 
variants linked to specific clinical phenotypes
Genome-wide associations studies (GWAS) have demon-
strated that a substantial portion of human phenotype-
associated single nucleotide polymorphisms (SNPs) is 
located in functional regulatory elements [64–67]. Inte-
gration of GWAS with functional genomic data reveals 
that disease risk variants also localize primarily within 
cell type-specific enhancers of disease-relevant tissues 
[68]. Studies examining the relationships between disease 
loci and molecular phenotypes such as gene expression, 
chromatin accessibility or the DNAme status of cis-acting 
enhancers have identified a strong connection between 
non-coding genetic variants and epigenetic regulation 
[69–71]. Based on these previous studies, we expected a 
SNP enrichment among HMR patterns that would asso-
ciate with various traits. We therefore asked whether 
specific HMR patterns harbor genetic variants linked to 
distinct clinical phenotypes, and, in turn, whether these 
relationships can inform the functional significance of 
different HMR patterns.

We reasoned that GWAS SNPs could be leveraged to 
reveal genetic variants in HMRs of critical importance to 
normal cell development and function. As in Fig. 1D-E, 
we defined B cell HMRs that are H1 ESC-derived (devel-
opmentally constitutive), HSPC-derived (lineage-shared) 
or B cell-specific. GWAS SNPs not only reflect trait-
associated genetic variation, but also GWAS summary 
statistics can be used to estimate partitioned genetic her-
itability of traits assigned to subsets of the genome, based 
on the assumption that regions with higher quantities of 
SNPs in high linkage disequilibrium (LD) are more likely 
to capture a causative variant. We used stratified LD 
score regression (S-LDSC) to perform partitioned herita-
bility analysis from GWAS summary statistics of 79 traits 
and clinical lab values representing a range of organ sys-
tems ([72] Table S5). We found significant enrichment of 

(See figure on next page.)
Fig. 4  Clustered HMRs are enriched for active regulatory elements compared to unclustered HMRs. A Boxplot of ATAC-STARR-seq regulatory 
element overlap by clustered and unclustered HMRs. Overlap is measured at the unit of HMRs, and values depict fraction of total HMRs that contain 
a regulatory element. A Wilcoxon rank sum test was used to determine statistical significance. B Point and line graph of the proportion of HMRs 
near an expressed gene at different TSS distances. HMRs are grouped by HMR clusters that contain a cell specific HMR and unclustered cell 
specific HMRs. Denominators for the HMR clusters and unclustered HMR groups are 444 and 1621, respectively. Counts below the graph 
represent the cumulative amount of genes below each threshold per HMR group. p-values are derived from a z-test of proportions to test 
the fraction of HMRs represented by HMR-single nearest neighbor gene pairs below each threshold distance. C Boxplot of TPM values (derived 
from GM12878 cell line data) of nearest neighbor RefSeq protein-coding genes to clustered and unclustered HMRs. Two nearest neighbor genes 
(with TPM > 0) per HMR were filtered for TAD boundary crossing. Statistical significance was measured by a Wilcoxon rank sum test in R using 
the wilcox.test() function. D Multiple alignment of region around the CD27 locus showing methylation and HMR tracks across 6 cell types: H1 ESC, 
hematopoietic stem and progenitor cells, macrophage, neutrophil, B cell, and T cell. Methylation tracks are represented by orange vertical bars 
showing methylation value per CpG site. HMRs are shown by dark blue horizontal bars. Below the multiple alignment, Hi-C interaction score data 
is represented by heatmap triangles representing interaction matrices for GM12878s and H9 ESC cells. Values for the Hi-C data are derived from .hic 
interaction matrix files. The plotgardener R package was used to generate the genome browser snapshot [29]
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trait heritability within lineage- and cell-specific HMRs 
(Fig. 5A).

More specifically, we found that trait specificity not 
only stratifies by but also increases with HMR specific-
ity. For example, H1 ESC-derived B cell HMRs are nomi-
nally enriched for traits not immediately attributable to 
B cell function, such as cardiomyopathy and morning 

person. This is unsurprising due to the pleiotropy of gene 
regulation and the shared genetic architecture between 
many complex traits. However, HSPC-derived HMRs are 
enriched for genetic heritability of general hematopoi-
etic traits including white blood cell, platelet, and neutro-
phil counts. In highly B cell-specific HMRs, we identify 
a notable enrichment of specific immune-related clinical 

Fig. 4  (See legend on previous page.)
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traits and lab values, several of which achieve significance 
after multiple testing correction (p < Bonferroni, n = 79). 
These observations hold true for S-LDSC analysis in 
H1 ESC-derived, and cell specific liver HMRs (Fig. S9), 
reinforcing the notion that cell stage-derived HMRs are 
indicative of stage-relevant gene regulatory needs.

HMRs stratified solely by clustering behavior also 
demonstrate heritability enrichment patterns associated 
with specific lymphoid traits (Fig. 5B). In fact, compared 
to clustered HMRs, unclustered HMRs show no statis-
tically significant trait enrichment above significance 
thresholds, suggesting that results in Fig. 5A are powered 
predominantly by clustered HMRs. Accordingly, these 
trends were observed in gene-based disease enrichment 
analyses (disease ontology) applied to the same HMR 
groups analyzed by S-LDSC (Fig. S10) [73, 74]. For exam-
ple, the top disease ontology enrichments for H1 ESC-
derived HMRs include morphogenic ontologies such as 
craniofacial abnormalities, and the top ontologies for B 
cell-specific HMRs include multiple lymphoid- and leu-
kemia-related ontologies, reflecting the biological state 
associated with each HMR group. Together with the par-
titioned heritability results, these data suggest clustered 
cell specific HMRs are both near lineage-specific genes 
and enrich for cell specific trait heritability over that of 
unclustered HMRs.

To better contextualize the partitioned heritability 
enrichment results from B cell data, we compared results 
against other known functional genomic feature annota-
tions. We compared S-LDSC enrichment levels on a per-
trait basis for B cell and liver HMR annotations (those 
from Fig. 5A and Fig. S9) and other functional genomic 
annotations (Fig.  5C-D, Fig. S11A and B). For both 
immune-related clinical lab values and disease traits, we 
observe increasingly stronger enrichment from H1 ESC-
derived to HSPC-derived to B cell-specific HMRs. In 
contrast, both H1 ESC-derived and liver-specific HMRs 
show positive enrichment for ALT (alanine transaminase) 

compared to B cell HMRs, as expected. This shows that 
SNP-based trait enrichment is capable of distinguishing 
HMR patterns from both distant and highly related cell 
types. Across cell relevant traits, we observe SNP-based 
heritability enrichment values that surpass those of pro-
moters, expression quantitative loci (eQTLs), and his-
tone marks of open chromatin (H3K27ac) often used to 
approximate active regulatory regions. Enrichment val-
ues associated with cell specific HMRs are comparable 
to those of FANTOM5 enhancers, supporting the notion 
that developmentally specific HMRs mark enhanc-
ers important for cell identity. Altogether, this analysis 
highlights the functional significance of different HMR 
patterns, all of which are enriched for heritability at or 
above the levels measured for other enhancer definitions. 
These results further indicate a quantitative relationship 
between HMR patterns and complex trait heritability. 
Thus, the stratification of HMRs by “sharedness” between 
cell types provides important contextual information to 
predict genome-to-trait relationships.

Discussion
Here, we use comparative hypomethylation profiling to 
assess global hypomethylation patterns across cell types. 
This broader analysis reveals complex patterns of HMR 
establishment across a developmentally diverse dataset. 
By examining HMRs in a hematopoietic developmen-
tal context, we show that HMRs accumulate at distinct 
developmental stages and commonly persist through 
sequential lineage commitments.

These developmentally hypomethylated regions are 
associated with distinct, stage-appropriate transcription 
factors and gene pathways, leading to a model where 
H1 ESCs, with the fewest HMRs, present a basal set of 
HMRs to which additional regions are hypomethylated 
through development (Fig.  6). In fact, about two-thirds 
of HMRs established in H1 ESCs remain in HMR data-
sets of differentiated cell types, highlighting their early 

Fig. 5  S-LDSC identifies HMR annotation-specific trait enrichments. A Volcano-style plots of S-LDSC partitioned heritability results across 79 traits 
are shown for three B cell HMR groups: H1 ESC-derived, HSPC-derived, and cell specific. HMRs are ordered by the developmentally distinct cell type 
in which they were established. Each HMR group was tested for enrichment of genetic heritability with a standard set of 98 base annotations 
against traits that include both clinical diseases as well as clinical lab values. Negative enrichment values were clipped to the lowest positive 
enrichment value for each row of plots (A: 0.1174537; B: 0.25754925). The size of each point represents the -log10 p-value of the enrichment, 
and the color shows the log10 enrichment value. Points with a p-value <  = 0.05 or an enrichment > 10 are labeled by their trait name where available. 
B Further partitioned heritability analysis applied to B cell HMRs grouped only by clustering behavior is also represented. C Point and line plot 
of S-LDSC enrichment values by annotation group for “Lymphocyte Count”. These graphs include data from developmentally derived B cell 
HMRs compared against other enhancer-associated groups, including ancient human enhancer sequence age, FANTOM 5 enhancers, eQTLs, 
super-enhancers, and the H3K27ac histone mark. Genomic controls were also included, such as phastCons 46-way annotations as well as promoters 
and CTCF sites. The x-axis represents enrichment values, and the y-axis displays genomic annotations. Points show enrichment estimates and lines 
display 95% confidence intervals. The red line marks an enrichment score of 0. D Point and line plot of S-LDSC enrichment values by annotation 
group for “Crohn’s Disease”

(See figure on next page.)
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establishment and continuous hypomethylation across 
time. Consequently, most (~ 3/4) HMRs in B cells were 
traced back to either H1 ESCs or HSPCs, indicating that 
the majority of HMRs are established at early cellular 
states. This further implies that biological differences 

between these cell types are driven by the minority popu-
lation of differentially methylated HMRs. There are some 
exceptions to this general model, where a small subset 
of HMRs is “remethylated” between HSPCs and B cells. 
These regions are likely enhancers of genes involved in 

Fig. 5  (See legend on previous page.)
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myeloid specification, as indicated by their retention in 
macrophage cells.

Differentially methylated regions (DMRs) can be 
quantitatively identified and have been commonly 
used as a unit for studying DNA methylation [75–79]. 
However, our results demonstrate that consideration of 
HMRs that are shared among different degrees of devel-
opmentally related cell types can be highly informative 
for understanding the developmental history of the cell. 
The ability to distinguish unique HMRs between highly 
related cell types suggests that we can use combinato-
rial patterns of both shared and unique HMRs to distin-
guish or even predict cell types, although this remains 
to be tested.

We further show that new HMRs are preferentially 
established near existing HMRs, leading to the progres-
sive enrichment of HMR clusters in differentiated hemat-
opoietic cell types; however, it is unclear if these patterns 
extend to other developmental lineages. Notably, clus-
tered HMRs compose about 1/3 of all HMRs in differ-
entiated cells, compared to less than 1/6 in H1 ESCs, 
indicating clustering increases proportionally to devel-
opmental progression. These spatially correlated HMRs 

are enriched for unique stage-relevant gene ontologies, 
trait-associated genetic heritability, and ChromHMM 
annotations, implying distinct regulatory roles compared 
to their unclustered counterparts.

Previous investigations into enhancers describe sub-
sets of clustering enhancers, including super-enhanc-
ers and hub enhancers [26, 80]. Super-enhancers that 
have been defined by H3K27 acetylation levels or by TF 
binding often consist of enhancer clusters. Clustering 
alone does not designate SEs and only a fraction of SEs 
is comprised of multiple enhancers units. We wanted to 
understand how many B cell HMR clusters also overlap 
super-enhancers that have been defined by ChIP-seq 
approaches. Our main conclusion from this analysis is 
that most super-enhancers also overlap clustered HMRs, 
but there are many more clustered HMRs than super-
enhancers. One explanation for this broader phenom-
enon may be the finding that HMRs are often established 
near existing HMRs over developmental timescales. 
Thus, clustered HMRs can consist of regions represent-
ing both past and present enhancer activity (perhaps long 
after histone modifications and TF binding are lost). The 
establishment and maintenance of HMRs represents a 

Fig. 6  HMRs accumulate in clusters that record histories of cell development. The conceptual model diagram summarizes the observations of HMR 
accumulation into clusters that feature different levels of methylation specificity
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unique characteristic of DNA hypomethylation com-
pared to other more transient chromatin states. Another 
important consideration is that super-enhancers are 
defined by strength of TF binding or histone modifica-
tion, which is measured on a continuous scale, whereas 
methylation is measured on an absolute scale.

We note that HMR clusters show patterns of hierar-
chical establishment that logically follow developmen-
tal paths. However, it is unclear if HMRs that persist 
through cell states remain epigenetically active at later 
stages. Clusters may include a combination of active and 
decommissioned, inactive enhancers recorded in HMR 
patterns. Murine models of early development have high-
lighted contrasting dynamics between spatially and func-
tionally related enhancers during exit from pluripotency, 
where some require re-methylation while others retain 
hypomethylation [27, 28, 38, 39, 81]. These enhancers 
may serve to uphold cellular states during cell fate transi-
tions. Our lab has also observed ‘vestigial’ enhancers on 
shorter timescales by applying ATAC-Me-seq to a differ-
entiation time course, simultaneously measuring chro-
matin accessibility and DNA methylation [20, 23]; these 
analyses reveal a subset of regions that undergo chro-
matin closing while simultaneously maintaining hypo-
methylation levels. This is contrary to previous models 
of chromatin dynamics and DNA methylation that pre-
dicted methylation gain accompanies chromatin closing. 
These data suggest the uncoupling of chromatin accessi-
bility and DNA methylation dynamics in a way that leads 
to the persistence of HMRs in chromatin inaccessible 
regions.

Partitioned heritability analysis of B cell HMRs estab-
lished at three distinct developmental stages revealed 
enrichment of traits that reflect stage-relevant biology; 
in general, broadly shared HMRs were enriched for herit-
ability of broader phenotypes while B cell-specific HMRs 
were enriched for lymphocyte-relevant traits. Each B 
cell HMR subset likely suffers from power limitations, 
representing between 3,187,775 and 9,228,469  bp, or as 
low as ~ 0.1% of the genome. Despite this limitation, we 
observe a remarkable correspondence between heritabil-
ity enrichment and stage specific HMRs. This highlights 
the unique ability for hypo-methylation to capture infor-
mation from multiple developmental timepoints; we find 
highly shared, lineage-shared, and cell specific heritability 
enrichment all within the methylome of a differentiated 
cell type. The genome-wide combination of stage-specific 
heritability signals within clusters implies the informa-
tion is not only persistent through later cell stages, but 
also accumulated over time. The observation that DNA 
hypomethylation can persist through the closing of chro-
matin suggests that the use of H3K27ac to identify puta-
tive enhancers precludes the observation of many HMRs, 

a subset of which forms hierarchical clusters that record 
cell developmental histories.

Our findings highlight DNA hypo-methylation 
as a unique epigenetic mark compared to common 
enhancer-associated histone marks. We highlight the 
unique accumulation of HMRs through developmental 
progression into clusters, enriched for stage-relevant 
SNP-based heritability. Through this process, epige-
netic information can be maintained state to state. 
Thus, our results support that the methylome presents 
a historical documentation of developmental choices 
which could assist in the prioritization and inter-
pretation of SNP data associated with clinical traits 
and diseases. These conclusions may further assist in 
understanding the complex role of the methylome in 
development and epigenetic gene regulation.

Conclusions
Here, we characterize HMR relationships both within 
and between developmentally diverse cell types to 
understand the functional significance of complex 
HMR patterns. We show that levels of HMR specific-
ity across cell-types capture time point-specific branch-
points of development. Our analysis further reveals that 
HMRs form clusters in proximity to active genes that 
are important for cell identity. This is a wide-spread 
phenomenon and only a very small subset of HMR 
clusters is explained by overlapping super-enhancer 
annotations. Lastly, partitioned heritability revealed 
the functional significance of different HMR patterns 
linked to specific phenotypic outcomes and indicates 
a quantitative relationship between HMR patterns 
and complex trait heritability. Altogether, our find-
ings reveal that HMRs can predict cellular phenotypes 
by providing genetically distinct historical records of 
a cell’s journey through development, ultimately pro-
viding novel insights into how DNA hypo-methylation 
mediates genome function.

Methods
HMR selection/exclusion dataset
DNA HMRs were obtained through the MethBase DNA 
Methylation trackhub from the UCSC Genome Browser, 
which references data processed through the MethPipe 
software for processing whole genome bisulfite sequenc-
ing data [31, 32]. To achieve a high-confidence genome-
wide methylation dataset, cell types were included based 
on a minimum coverage of 10x [82]. This resulted in 
the selection of: adrenal, fetal heart, fetal spinal cord, 
liver, macrophage, neutrophil, and T cell from the NIH 
Roadmap Epigenomics Consortium [7]; H1 ESC from 
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Lister, et al. [4]; and B cell, neutrophil, and HSPC (listed 
as “HSC” on the Genome Browser) from Hodges, et  al. 
[17]. As a primary cleaning step, to focus on non-cod-
ing HMRs, we removed promoter- and exon-overlap-
ping HMRs (discussed below in section “Clustering 
annotation and percentage” and Fig. S6). To do this, we 
combined RefSeq exon and protein-coding gene TSSs 
(-2000, + 1000 bp) annotations to form an exclusion BED 
file. Next, we referenced this file to eliminate promoter- 
and exon-overlapping HMRs using the intersect function 
from the Bedtools package with option ‘-v’ [30]. Exclusion 
was defined by any basepair overlap. We required a mini-
mum of 50 bp for an HMR to be included in our analysis.

CD27 multiple alignment with Hi‑C
Plots were generated in reference to the hg19 genome 
build, showing the chromosome position: Chr 12: 
6,522,500 – 6,575,000. We used a page width of 7, while 
HMR and methylation elements had a height of 0.3 and 
1.0, respectively. The multiple alignment was constructed 
with the plotgardener R package [29], using the methyla-
tion and heatmap data represented in our HMR selec-
tion dataset. Hi-C interaction score data was visualized 
with the plotHicTriangle() function from the plotgardener 
R package [29]. Contact matrices for both samples were 
plotted at 10 kb resolution.

HMR dendrogram
This analysis was performed using the per-HMR average 
CpG numerical matrix as composed in the methylation 
heatmap analysis. To perform hierarchical clustering, we 
used the hclust() function with the method “ward.D2”. 
Colors were added using Adobe Illustrator.

Methylation heatmap
Heatmaps were generated in R with the package pheat-
map  [83]. Numerical matrices representing per-HMR 
DNA methylation per cell type were used as input. These 
were generated in bash using methylation bigWig files 
from the MethBase DNA Methylation trackhub hosted 
on the UCSC Genome Browser [31, 32, 82]. We used 
the KentUtils binary package to convert bigWig files to 
bedGraph files. bedGraph score columns were used to 
populate a numerical matrix representing the sample-
population methylation proportion at individual HMRs 
in rows. The HMR consensus set used here represented 
all HMRs, created by concatenating HMR files from all 
cell types and using Bedtools merge to combine over-
lapping features. The HMRs from each cell type were 
filtered for a minimum length of 50  bp and against the 
list of RefSeq TSSs (-2000/ + 1000) and exons described 
above. Heatmaps were generated using R package: pheat-
map using options: kmeans_k = 10, cluster_cols = FALSE, 

cuttree_rows = 10 [83]. We also used the option “set.
seed(86)” in R for reproducibility.

Transcription factor motif enrichment analysis
The HOMER perl package was used to calculate tran-
scription factor motif enrichment [84]. A background 
region was used to represent the merged HMR data-
sets of all cell types. Natural log transformed binomial 
p-values as reported by HOMER were used to rank 
motif enrichment output. Scaled fold enrichment was 
calculated by the quotient of two HOMER output val-
ues: [%target/ %background]. Top representative TFs are 
displayed in Fig. 1C. All TFs shown represent the top TF 
by rank unless the top TFs were redundant. The second 
ranked TF is shown for the group, “Myeloid + HSPC,” 
and the third ranked TF is shown for the group, “Dif-
ferentiated.” All data is represented in Fig. 3C to visual-
ize TF enrichment differences between clustered and 
unclustered HMRs. Data visualization is scaled by TF to 
show relative cell specific enrichment. Graphing was per-
formed in R using the ggplot2 package [85].

k‑means clustering gene ontology
Gene ontology was conducted using the web-based tool: 
GREAT [37]. Specifically, GREAT takes BED files as 
input and assigns gene pairs using regulatory domains 
around gene TSSs (extending to the nearest gene’s central 
domain up to a maximum extension distance). Here, we 
used the default gene annotation protocol from GREAT 
with a maximum extension of 1 Mb. For input, we sup-
plied BED files for each k-means cluster representing the 
HMRs in each group. Standard settings for maximum 
region-gene distance and gene assignment were used. 
Top results were downloaded from the web app using the 
“Shown ontology data as.tsv” selection. GREAT provided 
output for all k-means groups except for “Differentiated,” 
as this group includes > 20,000 HMRs and annotates to a 
large number of genes that prohibits the ability to detect 
gene ontology enrichment. Output files were filtered to 
exclude the top row before import to R. Top ranked bino-
mial test q-value results are displayed as bar plots using 
ggplot2 and geom_bar().

Inter‑HMR distances
To measure inter-HMR distances, we employed the Bed-
tools closest function with the ‘-io -d’ options to calculate 
the distance from each HMR to the nearest HMR per cell 
type [30]. Next, we extracted the output distance column 
to represent our observed distribution for graphing in R. 
To compare this distribution to random expectation, we 
used a script based on the process used for shuffling in 
Benton M.L., 2018 which uses Bedtools closest to calcu-
late distances between shuffled non-coding HMRs per 
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cell type [86, 87]. The Bedtools closest function takes two 
input files. For this analysis, the input dataset is submitted 
twice. A region blacklist was used to exclude placement 
of HMRs during the shuffle into coding space, defined by 
RefSeq TSSs and exons [88]; this file was also used in the 
HMR annotation step. We iterated the random shuffle-
closest procedure 10,000 times to create a null expecta-
tion of genomic positioning given random placement. 
Distances per shuffle-closest were summarized as means, 
yielding a distribution of average distances per shuffle. 
Distributions were plotted using the ggplot2 R package. 
Inter-HMR distance values were filtered for those at or 
less than 500,000 bp to allow for better resolution of the 
density plot. Statistical significance between expected 
and observed inter-HMR distance values for each cell 
type were calculated using the wilcox.test() function in R. 
Statistical tests were computed on the list of inter-HMR 
distance values less than or equal to 500 kb.

Clustering annotation and percentage
To assess the prevalence of clustering per cell type, we 
utilized the same procedures outlined in Fig. S6. Unclus-
tered HMRs (Fig. S6A) were defined as HMRs that are 
not within 6  kb of any other HMR. We used Bedtools 
merge with the options ‘-c’ and ‘-d 6000’ to link BED 
regions and output constituent counts. We then use 
those that have a count of one and filter against RefSeq 
TSSs and exons. Because this excludes promoter and 
exon-proximal (within 6 kb) non-coding HMRs, we also 
perform a more inclusive unclustered HMR annotation 
by filtering HMRs by RefSeq TSSs and exons before per-
forming a Bedtools merge step (‘-c’, ‘-d 6000’) to identify 
isolated HMRs (Fig. S6B), where Bedtools merge reports 
an input BED region that was not merged with any other 
HMR with a value of 1. By removing RefSeq TSS- and 
exon-overlapping HMRs before merging regions, we can 
find otherwise “unclustered” HMRs that are near a genic 
HMR. For Fig. 2C, we subtract the total of our working 
unclustered HMR definition (Fig. S6A) from this more 
inclusive definition to deduce the count of “TSS/exon-
proximal” unclustered HMRs. To find clustered HMRs 
that do not cross the boundaries of TSSs and exons, we 
first use Bedtools complement to generate a BED file of 
regions that do not overlap the RefSeq regions. We then 
use Bedtools intersect with the ‘-c’ and ‘-F 1.0 ‘ options to 
find a whitelist set of regions that contain two or more 
(for identifying clusters with exactly 2 HMRs) or 3 or 
more HMRs. We use Bedtools intersect again with the 
‘-lof ’ and ‘-F 1.0’ options to produce a file where each 
row contains two BED coordinates: one for the whitelist 
region and one for the individual HMR. We then use a 
bash script to process this file with the purpose of linking 
HMR regions that are within 6 kb of each other that are 

within the same whitelist region (without passing a TSS 
or exon boundary). The output includes the linked end-
to-end coordinates of clusters as well as the number of 
HMRs in each 6 kb-linked cluster. This can then be used 
to determine HMR clusters with exactly 2 (Fig. S6C) or 
3 or more HMRs (Fig. S6D). To find individual clustered 
HMRs, we used Bedtools intersect with the original file as 
the ‘-a’ file and merged cluster datasets as ‘-b’ files. For 
the analyses outside of Fig.  2C, the terms “clustered” 
and “clusters” refers to clusters of 3 or more HMRs. For 
Fig.  2D, data was compiled and binned into clustered 
(3 +) or unclustered HMRs. Denominators were defined 
as the total number of clustered and unclustered HMRs 
so that relative quantities in each cell type are visually 
comparable. Plots were generated with the ggplot2 R 
package.

Sankey diagram
HMR counts for each Sankey node and flow were deter-
mined using bash and the Bedtools suite. Nodes represent 
the total quantity of clustered and unclustered HMRs per 
cell type. Plots were generated in R using the package 
networkD3  [89]. To accurately represent the total quan-
tity of HMRs per cell type, additional nodes were input 
and later processed with Adobe Illustrator.

Sankey gene ontology
Gene ontology was conducted using the web-based tool: 
GREAT [37], as with the k-means clustering gene ontol-
ogy analysis. Here, we again used the default gene anno-
tation protocol from GREAT. For a background file, we 
used the default “Whole genome” option. Standard 
settings for maximum region-gene distance and gene 
assignment were used. Top results were downloaded 
from the web app using the “Shown ontology data as.tsv” 
selection. Output files were filtered to exclude the top 
row before import to R, and the preceding “#” is removed 
from the second row. Top results ranked by binomial 
q-value are displayed as a bar plot using ggplot2 and 
geom_bar.

Super‑enhancer annotation
GM12878 SEs were downloaded from the Hnisz et al. in 
hg19 as a BED file (of coordinates for both enhancers and 
super-enhancers) permitting comparison with clustered 
and all B cell HMR datasets using Bedtools intersect [26]. 
GM12878s are a well-studied Tier 1 ENCODE cell type 
derived from EBV-transformed B cells. SEs were selected 
from the “GM12878.bed” file. To use eulerr, input coor-
dinates between groups must match; to accomplish this, 
we concatenated the GM12878 SE, B cell clustered, and 
B cell unclustered files before using Bedtools to sort and 
merge the BED file. We then used Bedtools intersect 
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with the ‘-u’ option and the merged BED file as the ‘-a’ 
file to map each input BED file to the merged regions 
(representing a consensus list of HMRs). These were 
combined in R to generate a list of three BED files. Plot-
ting was performed using the R package, eulerr, with the 
option ‘shape = “ellipse”’ to maintain proportionally sized 
ellipses.

ChromHMM annotation
A ChromHMM 15-state annotation file was downloaded 
from the UCSC Genome Browser in hg19 as assayed in 
the GM12878 cell line [82]. Intersections were assessed 
using Bedtools intersect with the ‘-wo’ option and B cell 
HMRs as the ‘-a’ file with the ChromHMM BED file as 
the ‘-b’ file. Using R, HMR quantities per ChromHMM 
group were calculated as the number of HMRs that con-
tain at least one instance of that ChromHMM group. 
Denominators for calculation proportions were 5974 
and 17,185 for B cell clustered and unclustered HMRs, 
respectively. Statistical testing was performed using the 
z-test of proportions in R using prop.test(). Graphing was 
performed in R with the package, ggplot2.

ATAC‑STARR‑seq comparison
BED files for GM12878 ATAC-STARR-seq regulatory 
elements were obtained from Hansen & Hodges [58] 
(GSE181317). HMRs were converted to GRCh38 for 
comparison using liftOver (parameters: -bedPlus = 3). We 
determined the number of overlaps between the datasets 
with Bedtools intersect (default parameters) piped to a 
line count command (wc -l). The proportion of overlap-
ping HMRs was calculated as [#overlapping/#total] and 
then plotted with ggplot2 in R. We performed a two-
tailed, two-sample z-test of proportions with the prop.
test() function in R to obtain p-values.

Nearest‑neighbor RNA‑seq analyses
To determine if clustered HMRs are more likely to 
associate with active genes than unclustered HMRs, 
we measured the proportion of HMRs near “active” 
genes (TPM > 0) at different distances for the two HMR 
groups: HMR clusters that contain cell specific HMRs 
and unclustered cell specific HMRs. We defined coor-
dinates for the clustered HMR region from end-to-end 
including all HMR constituents. To assign the nearest 
HMR-gene pair, we downloaded two RNA-seq datasets 
acquired from the ENCODEv3 release. Here, we elected 
to use data for GM12878s, a lymphoblastoid cell line, 
to match B cells as closely as possible; and we used the 
ENCODE Tier 1 HepG2 dataset to as a proxy for liver. 
We first isolated the ENSEMBL gene ID and TPM col-
umns from each file before averaging between replicates 
for each cell type using the tidyverse package, merge(), 

and rowMeans() in R. We then used BioMart to convert 
ENSEMBL IDs to HUGO gene symbols to identify high-
confidence protein-coding genes  [90]. To provide the 
highest conversion rate using BioMart, we truncated the 
version number from the ENSEMBL IDs. We performed 
the conversion using the useMart() function to establish 
search parameters with options: biomart = “ENSEMBL_
MART_ENSEMBL,” host = "grch37.ensembl.org,” 
path = "/biomart/martservice,” and dataset = "hsapi-
ens_gene_ensembl.” This was used in conjunction with 
the getBM() function requesting the output “attrib-
utes” of “hgnc_symbol,” “strand,” “chromosome_name,” 
“start_position,” and “end_position.” We then filtered the 
output for rows that had a non-empty “hgnc_symbol” 
column value. This was then merged with the dataframe 
described above with ENSEMBL ID and averaged TPM 
values. We used the strand information provided from 
BioMart to elect a TSS from either the “start_position” or 
“end_position,” based on if the “strand” was “1″ or “-1″ 
respectively. This file was transformed into BED format 
using the TSS position to create a gene file with coordi-
nate, gene ID, and TPM information.

To find the nearest active gene to HMR clusters and 
unclustered HMRs, we employed a strategy to first find a 
large pool of surrounding genes, before filtering out pairs 
that cross TAD boundaries and identifying the near-
est gene. To do this, we assigned the surrounding gene 
landscape to each HMR by using Bedtools closest with 
the ‘-d’ distance option as well as the ‘-k 100’ option to 
output the nearest 100 genes to each HMR. We then fil-
tered the list of HMR-TSS pairs for TAD crossing using 
reference TAD BED files, for “GM12878” and “Liver,” 
as downloaded from the 3D Genome Browser [91]. We 
used Bedtools intersect with the ‘-f 1.0’ option to elimi-
nate HMR-TSS pairs that are not fully within a TAD 
BED coordinate range. Using R, we filtered the result-
ing list to represent the nearest gene to each HMR. We 
then determined the quantity of HMR-gene pairs under 
each distance threshold (10, 25, 50, 75, 100, and 150 kb) 
for each HMR group, separately, by filtering the single 
nearest neighbor dataset by the HMR-TSS distance col-
umn and counting rows. We calculated the denominator 
of these proportions as the total amount of HMRs input 
to the analysis for each HMR group for each cell type. 
We used the prop.test() function in R to compare the 
HMR proportions between HMR clusters that contain 
cell specific HMRs and unclustered cell specific HMRs at 
each threshold value. Output was plotted using ggplot2, 
geom_point(), and geom_line().

To measure the transcriptional output differences 
associated with clustered or unclustered HMRs, we uti-
lized the BED files of replicate-averaged TPM values 
and associated ENSEMBL IDs. We found the 2 nearest 
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neighboring genes to each HMR using Bedtools clos-
est with the ‘-d’ distance option to output HMR-TSS 
distances and the ‘-k 2’ option to limit output to the 
two nearest TSSs. We then filtered the list of HMR-
TSS pairs for TAD crossing using reference TAD BED 
files, for “GM12878” and “Liver,” as downloaded from 
the 3D Genome Browser [91]. We used Bedtools inter-
sect with the ‘-f 1.0’ option to eliminate HMR-TSS pairs 
not fully within a TAD BED coordinate range. We used 
R to eliminate gene redundancy within the clusters and 
unclustered datasets, separately. Statistical testing was 
performed using the wilcox.test() function in R. TPMs 
were plotted using ggplot2 and geom_boxplot().

S‑LDSC
Stratified LD-score regression was performed with 
S-LDSC using the appropriate python scripts distrib-
uted by the Price lab (https://​github.​com/​bulik/​ldsc) 
[92]. Reference base annotation files were downloaded 
from the Price repository (Phase 3, version 2.2 annota-
tions). We used the appropriate reference files coordi-
nating with the 1000 Genomes baseline v2.2 scores and 
HapMap 3 SNPs (https://​alkes​group.​broad​insti​tute.​
org/​LDSCO​RE/). Summary statistics were collected 
from both the Price lab (https://​alkes​group.​broad​insti​
tute.​org/​LDSCO​RE/​indep​endent_​sumst​ats/) as well 
as the Neale lab heritability repository (https://​neale​
lab.​github.​io/​UKBB_​ldsc/​index.​html) [72]. Traits were 
obtained based on their determined relevance to either 
broad cell-agnostic etiology or to biology specifically 
relating to B cells or Liver. This provided us the abil-
ity to determine specificity of results associated with 
varying cell specificity of HMRs. In total, we assessed 
79 traits as described in Table S5. The primary S-LDSC 
program was run per HMR annotation per trait. Results 
for individual traits were tabularized per HMR anno-
tation. Results were visualized using ggplot in R with 
the functions geom_point and case_when for condi-
tional coloring. To determine B cell developmentally 
derived HMRs, we used Bedtools intersect to compare 
HMR files. H1 ESC-derived B cell HMRs were defined 
by B cell HMR coordinates and had to had overlap with 
HMRs from HSPC as well as H1 ESC, together. HSPC-
derived B cell HMRs had to have overlap with HSPC 
HMRs but not H1 ESC HMRs. B cell-specific HMRs had 
to have no overlap with any HMRs from the collection 
of adrenal gland, liver, fetal heart, fetal spinal cord, H1 
ESC, HSPC, macrophage, neutrophil, and T cell HMRs. 
In the clustering analysis, all clustered or all unclus-
tered HMRs were used. Liver HMRs were defined as H1 
ESC-derived based on any overlap with H1 ESC HMRs. 
Cell specific Liver HMRs were also defined against the 
same comparative cell type collection used with B cell 

for this specific analysis. Annotations used to compare 
against HMR groups were selected from those included 
in the “baselineLF_v2.2.UKB.tar.gz” from the Price lab 
LD-score website. Annotations were selected for their 
relevance to enhancers; CTCF, a ubiquitous transcrip-
tion factor, was included as a negative control for cell 
specific disease enrichment.

WebGestalt gene ontology analysis
Developmentally grouped B cell HMR BED files, as used 
in the S-LDSC analysis, were used as input in addition 
to BED files for all B cell clustered or all B cell unclus-
tered HMRs. GREAT input was used to identify nearest 
neighbor genes in hg19 [37]. We used the default gene 
assignment parameters under “Association rule settings” 
called “Basal plus extension,” which in most cases repli-
cates a two-nearest neighbor gene association strategy. 
In the web app, we downloaded the “Gene—> genomic 
region association table” file from the “genomic region-
gene associations” page. Gene symbols were extracted 
from the GREAT input downloaded files using the first 
column. These were input into the WebGestalt web app 
to perform an over-representation analysis on the dis-
ease functional database, GLAD4U [73, 74, 93]. For a 
reference gene set, we selected “genome protein-coding.” 
Results were downloaded, and the enrichment values file 
was used to plot enrichment ratio values for top diseases 
in R using ggplot2.
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Additional file 1: Figure S1. HMR lengths by cell type. Density plot of 
HMR lengths (in bp) by cell type. The x-axis of the plot is visually limited to 
the range of 0 to 5000 bp for visibility.

 Additional file 2: Figure S2. Hierarchical clustering of HMRs by average 
methylation per cell type. Dendrogram of average CpG methylation across 
HMRs per cell type. The input matrix used for the k-means clustering 
heatmap in Fig. 1 was used for input to the R program, ggdendro. Distance 
was measured with the “euclidean” option, and hierarchical clustering was 
performed with the ward.D2 method.
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 Additional file 3: Figure S3. Dotplot of elbow method to determine 
appropriate number of k-means for methylation heatmap. Figure displays 
within sum of squares estimates for clusters at each value of k-means 
group amount from 1 to 12. Estimates are derived from the kmeans() 
function in R.

 Additional file 4: Figure S4. Bargraph of GREAT gene ontology results by 
methylation heatmap k-means cluster. GREAT gene ontology enrichments 
are shown for cluster groups from the heatmap in Fig. 1B [37]. Results from 
the top 3 by hypergeometric FDR q-value are displayed. The x-axis shows 
the hypergeometric q-values. The cluster groups shown include (A) “Early 
developmental,” (B) “Fetal,” (C) “Liver,” (D) “Myeloid,” (E) “T cell-specific,” (F) “B 
cell-specific,” (G) “All,” (H) “Hematopoietic,” and (I) “Myeloid + HSPC.”

 Additional file 5: Figure S5. HMR cluster lengths are consistent across 
cell types. The graph shows the lengths of HMR clusters, end-to-end, 
per cell type. Data is represented by both a violin plot and boxplot. The 
boxplot shows the interquartile range, and the bold black line shows the 
median value per cell type. The red dotted line shows the value 10,000 
bp, which approximates the mean cluster length of 9764.59 bp, measured 
across the cell types: H1 ESC, fetal heart, fetal spinal cord, adrenal gland, 
liver, HSPC, macrophage, neutrophil, T cell, and B cell.

 Additional file 6: Figure S6. Schematic of HMR definitions and annota-
tion. Visual graphic of HMR definitions for groups: (A) unclustered, (B) 
unclustered:TSS/exon-proximal, (C) clusters of 2 HMRs, and (D) clusters of 
3+ HMRs. Gene tracks are not to scale.

 Additional file 7: Figure S7. Euler plot comparing B cell HMRs with 
open chromatin. Euler plot of all B cell HMRs and open chromatin defined 
by DNase I hypersensitivity sites in GM12878 cells. The DNase file was 
downloaded from the UCSC Genome Browser Table Browser using the 
following main settings: clade: “mammal”; genome: “human”; assembly: 
“Feb 2009 (GRCh37/hg19)”, group: “Regulation”, track: “Duke DNaseI HS”, 
table: “GM12878 Pk (wgEncodeOpenChromDnaseGm12878Pk)” [ENCODE 
file ID: ENCFF001UVC] [82]. The values, 13573 and 20497, represent count 
values for HMRs. The value 102228 represents a count for open chromatin 
regions.

 Additional file 8: Figure S8. HMR proportions near active genes and 
boxplots comparing gene expression and distance near clustered and 
unclustered HMRs. (A) Point and line graph of the percentage of HMRs 
that are found in HMR-gene single nearest neighbor pairs at different 
distances. HMRs are grouped by HMR clusters that contain a cell-specific 
HMR and unclustered cell-specific HMRs. Denominators for the HMR 
clusters, unclustered (including TSS/exon-proximal), and unclustered HMR 
groups are 444, 2040, and 1621, respectively. p-values are derived from a 
z-test of proportions to test the fraction of HMRs represented below each 
threshold distance. (B) Point and line graph of the percentage of HMRs 
that are found in HMR-Gene single nearest neighbor pairs at different 
distances. HMRs are grouped by HMR clusters that contain a cell-specific 
HMR and unclustered cell-specific HMRs. Denominators for the HMR clus-
ters and unclustered HMR groups are 798 and 5424, respectively. Counts 
below the graph represent the cumulative amount of genes below each 
threshold per HMR group. p-values are derived from a z-test of propor-
tions to test the fraction of HMRs represented below each threshold dis-
tance. (C) Boxplot of normalized read counts of nearest neighbor RefSeq 
protein-coding genes to clustered and unclustered Liver HMRs. Nearest 
neighbor genes were filtered for TAD boundary crossing. Results for liver 
are also displayed in (D) for all genes, but binned by distance between 
the HMR and nearest gene. Statistical significance was measured by a 
Wilcoxon rank sum test.

 Additional file 9: Figure S9. S-LDSC identifies Liver HMR annotation-
specific trait enrichments. Volcano-style plots of S-LDSC partitioned 
heritability results across 79 traits are shown for two liver HMR groups: H1 
ESC-derived and cell-specific. HMRs are ordered by the developmentally 
distinct cell type in which they were established. Each HMR group was 
tested for enrichment of genetic heritability with a standard set of 98 
base annotations against traits that include both clinical diseases as well 
as clinical lab values. Negative enrichment values were clipped to the 
lowest positive enrichment value for each row of plots (A: 0.02781896; 
B: 0.03787533). The size of each point represents the -log10p-value of the 

enrichment, and the color shows the log10enrichment value. Points with 
a p-value <= 0.05 or an enrichment > 10 are labeled by their trait name 
where available.

 Additional file 10: Figure S10. Disease ontology for developmentally 
specific and clustered B cell HMRs. Lollipop plots show top ten disease 
ontology enrichments as analyzed through WebGestalt with default 
parameters. The x-axis shows enrichment ratios, and the y-axis displays 
disease ontologies sourced from the GLAD4U disease database [93]. The 
y-axis is sorted by enrichment value. The color for each bar represents the 
p-value for that trait. Individual graphs show results from B cell HMR devel-
opmental and clustering groups: (A) H1 ESC-derived, (B) HSPC-derived, (C) 
cell-specific, (D) clustered and (E) unclustered.

 Additional file 11: Figure S11. S-LDSC B cell by trait across genomic 
annotations. Point and line plots of S-LDSC enrichment values by 
annotation group per trait. The x-axis represents enrichment values, and 
the y-axis displays genomic annotations. Points show enrichment point 
estimates and lines display 95% confidence intervals. The red dotted 
line marks an enrichment score of 0. Annotation groups include popular 
enhancer-associated genomic annotations such as ancient human 
enhancer sequence age, FANTOM 5 enhancers, eQTLs, super-enhancers, 
and the H3K27ac histone mark [72]. Genomic controls were also included, 
such as phastCons 46-way annotations as well as promoters and CTCF 
sites. These graphs include data from (A) developmentally derived B cell 
HMRs. (B) This graph shows S-LDSC results for alanine transaminase. The 
data includes the annotations from (A) in addition to developmentally 
derived Liver HMRs.

 Additional file 12: Table S1. Table of coverage values for WGBS datasets 
per cell type.

 Additional file 13: Table S2. Number of HMRs after preliminary filters.

 Additional file 14: Table S3. Inter-HMR lengths by cell type.

 Additional file 15: S4 Table. Clustering group region counts by cluster-
ing distance (bp).

 Additional file 16: Table S5. List of 79 summary statistic files used for 
S-LDSC analyses.

 Additional file 17: Table S6. Program and package versions.
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