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Abstract
Background Immune traits are considered to serve as potential biomarkers for pig’s health. Medium to high 
heritabilities have been observed for some of the immune traits suggesting genetic variability of these phenotypes. 
Consideration of previously established genetic correlations between immune traits can be used to identify 
pleiotropic genetic markers. Therefore, genome-wide association study (GWAS) approaches are required to explore 
the joint genetic foundation for health biomarkers. Usually, GWAS explores phenotypes in a univariate (uv), trait-by-
trait manner. Besides two uv GWAS methods, four multivariate (mv) GWAS approaches were applied on combinations 
out of 22 immune traits for Landrace (LR) and Large White (LW) pig lines.

Results In total 433 (LR: 351, LW: 82) associations were identified with the uv approach implemented in PLINK and 
a Bayesian linear regression uv approach (BIMBAM) software. Single Nucleotide Polymorphisms (SNPs) that were 
identified with both uv approaches (n = 32) were mostly associated with immune traits such as haptoglobin, red 
blood cell characteristics and cytokines, and were located in protein-coding genes. Mv GWAS approaches detected 
647 associations for different mv immune trait combinations which were summarized to 133 Quantitative Trait Loci 
(QTL). SNPs for different trait combinations (n = 66) were detected with more than one mv method. Most of these 
SNPs are associated with red blood cell related immune trait combinations. Functional annotation of these QTL 
revealed 453 immune-relevant protein-coding genes. With uv methods shared markers were not observed between 
the breeds, whereas mv approaches were able to detect two conjoint SNPs for LR and LW. Due to unmapped 
positions for these markers, their functional annotation was not clarified.

Conclusions This study evaluated the joint genetic background of immune traits in LR and LW piglets through the 
application of various uv and mv GWAS approaches. In comparison to uv methods, mv methodologies identified 
more significant associations, which might reflect the pleiotropic background of the immune system more accurately. 
In genetic research of complex traits, the SNP effects are generally small. Furthermore, one genetic variant can 
affect several correlated immune traits at the same time, termed pleiotropy. As mv GWAS methods consider strong 
dependencies among traits, the power to detect SNPs can be boosted. Both methods revealed immune-relevant 
potential candidate genes. Our results indicate that one single test is not able to detect all the different types of 
genetic effects in the most powerful manner and therefore, the methods should be applied complementary.
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Background
In modern swine breeding, the time around birth is one 
main critical period for piglet survival [1, 2]. Develop-
ment of breeding programs to increase general immu-
nocompetence in order to improve piglet survival are 
desired. Enhancing the piglet’s immune capacity can 
result in further beneficial animal welfare and productiv-
ity of pigs. The immune system plays an essential role in 
the immunocompetence of piglets [3]. For the progress of 
selection strategies, basic knowledge of the genetic foun-
dation for phenotypes associated with global immuno-
competence is required.

Medium to high heritabilities (h2 0.4–0.8) have been 
estimated for several immune traits suggesting exceeding 
potential of the genetic impact [4–6]. GWAS and QTL 
mapping can be used to explore the genetic background 
of immune phenotypes. Several QTL studies revealed 
markers throughout all chromosomes for immune traits 
related to red and white blood cells [7–13] as well as 
cytokines [14]. Previous GWAS successfully identified 
numerous genetic markers associated with different phe-
notypes such as hematological, leucocyte-related traits 
[15–22] and cytokines like interferone (IFN) and inter-
leukins (IL-10) [17, 23].

Usually, GWAS addresses phenotypes in a univari-
ate (uv) trait manner. However, a variety of multivariate 
(mv) methods were introduced to analyze multiple traits 
jointly [24]. The utilization of mv methods is recom-
mended to increase the statistical power to detect asso-
ciations [16, 25, 26]. Previous results show moderate to 
high genetic correlations (rg 0.4–0.8) between immune 
traits [27]. Consideration of rg between multiple immune 
traits can be used to identify pleiotropic genetic markers. 
So far, Bovo et al. [21] reported uv and mv results for the 
largest number of 30 hematological and clinical biochem-
ical traits in slaughtered pigs. In these studies, pleiotropic 
QTL and significant tag haplotypes with effects on multi-
ple blood parameters were detected with mv analysis e.g., 
a mv Bayesian approach.

The aim of this study was to identify genetic markers 
associated with immune traits. Besides uv GWAS the 
following mv statistical approaches have been applied 
and the results have been compared: Principal com-
ponent analysis (PCA), Canonical correlation analysis 
(CCA), Meta-analysis (TATES) and one mv Bayesian 
linear regression approach (mvBIMBAM). Preliminary 
estimated rg [27] and the construction of biological net-
work assisted the detection of pleiotropic QTL regions. 
Therefore, a LR and a LW population were investigated in 

order to identify biologically relevant pleiotropic markers 
related to health and immunity.

Results
An overview of the investigated data sets, animals and 
immune traits can be found in Dauben et al. [23] and 
Roth et al. [27]. In brief, piglets of LR and LW were phe-
notyped for the complete and differential blood count (15 
traits), eight cytokines and haptoglobin. The experiment 
was conducted under mostly practical, but high hygienic 
conditions and without challenging the animals [23]. For 
the uv and mv analyses performed in this study, data sets 
of 522 LR and 461 LW piglets comprising 47,292 and 
43,730 SNP markers, respectively, were used.

Genetic markers identified with uv GWAS approaches
Linear and Bayesian linear regression-based approaches 
were applied to obtain uv GWAS results (Additional 
Table S1). In total 401 significant associations were 
identified with PLINK (LR: 324, LW: 77; adjusted 
p-value < 0.05). For uv BIMBAM 32 associations were 
detected in total (LR: 27, LW: 5; BF > 3.02). All SNPs 
observed with the uv Bayesian approach were also 
detected by the linear regression approach as imple-
mented in PLINK. These results were mostly associated 
with immune traits related to red blood cells (RBC), 
cytokines, and haptoglobin (HAP). The identification of 
pleiotropic SNPs with uv GWAS is possible when genetic 
markers are detected across various traits. In total, 75 
SNPs (PLINK: 70, BIMBAM: 5) were detected for mul-
tiple traits like RBC (RBC, HMG, HMT) and cytokines 
(IL1b, IL-4, IL-6, IL-10, Tumor Necrosis Factor-α (TNF)) 
within uv GWAS. Additionally, the uv GWAS results 
were compared across the investigated breeds, however, 
no overlapping markers were observed between the 
breeds (Additional Figure S1).

Principal component analysis of the immune traits
Details of the analysis of the PCs within the breeds can 
be found in the study of Roth et al. [27]. In brief, within 
BFN red blood cells (RBC), PC1 RBC explains ~ 37% of 
the variation in both breeds (LR: 37.23%, LW: 37.49%). 
This PC is mainly influenced by RBC characteristics of 
haemoglobin, haematocrit and RBC. On the contrary, 
PC2 RBC (LR: 22.43%, LW: 22.84%) is mainly influenced 
by the calculated ratio of mean corpuscular haemoglobin 
(MCH) and mean corpuscular volume (MCV) (only in 
LR). Within PC3 RBC and PC4 RBC which also explain 
more than 10% of the variation, mean corpuscular hae-
moglobin concentration (MCHC) and haptoglobin are 
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the main actors. Within the BFN cells, PC1 Cell (LW: 
35.96%, LR: 35.49%) is dominated by neutrophils and 
lymphocytes, which were known to be negatively cor-
related and influenced by the time point of blood sam-
pling. On the contrary, PC2 Cell can be characterized 
by the percentages of eosinophils and white blood cells 
(WBC) (only in LW). In BFN cytokines (Cyto), PC1 Cyto 
explains most of the phenotypic variation (LR: 68.13%, 
LW: 60.13%). This PC is similarly influenced by exam-
ined cytokines. Apart from that, the chemokines IL-12 
and Il-8 have less impact on PC1 Cyto but dominate 
PC2 Cyto in LW piglets. PCs of the two breeds cannot 
be compared in general because their composition based 
on loading values differs from breed to breed. In contrast, 
we assumed that the variance components of the first 
PCs of each BFN (PC1 Cell, PC1 RBC and PC1 Cyto) are 
comparable between the breeds due to similarities in the 
contribution based on their loading values.

Structural multivariate trait combinations
The identification of causal relationships among immune 
traits before performing mv GWAS helps to reduce 
extensive computation effort impaired by the realization 
of all possible mv combinations for all available immune 
phenotypes. Immune trait combinations of interest were 
created by performing Bayesian Network (BN) analyses 
based on the hill-climbing algorithm [28] for all immune 
traits in LR and LW data sets.

The dependencies among the variables of the structural 
BN model strings are illustrated in Fig.  1 and are pre-
sented in Table 1. In total 22 combinations were detected 
for LR and LW, respectively. In Table  1 the structure of 
the identified BN is displayed: a local structure is pre-
sented in square brackets [] with the first string iden-
tifying a node. There are two types of nodes: parents 
and children. The state input variables, or parents of 
the node, are listed after a vertical bar “|”, separated by 
colons “:“. Children of the node represent the interac-
tion determined by the conditional probability, derived 
from two or more parent nodes. One trait combination 
[HMT|HMG:Mean Corpuscular Hemoglobin Concen-
tration (MCHC)] was identified in both breed-specific 
networks allowing investigations for trait combinations 
within as well as across the breeds.

The causal relationships among the phenotypes are also 
displayed in Fig.  1. Each of the nodes (e.g. RBC, white 
blood cells (WBC), IL10) represents the measured phe-
notypes. A directed arrow from one node to another 
means a direct causal effect. For example, in LR, HAP has 
a direct causal effect on the variable WBC, which in turn 
affects neutrophils (NEU) and IL1B. To accentuate func-
tional biological networks of phenotypes, nodes are illus-
trated in different colors. Node frames are highlighted in 
red when variables are conditionally independent (HAP 
in LW and LR, PLT in LR). Additionally, colors are used 
for arrows to indicate parental relationships of the nodes 
in the structured model learned from the data sets.

Table 1 Resulting structural model learned from a causal network
Breed Conditional 

independent
Conditional dependent 
with one parent

Conditional dependent 
with two parents

Conditional dependent 
with multiple parents

LR [MCHC] [BAS|MON] [HMG|MCHC:IL10] [RBC|HMG:HMT:MCV:MCH]

[PLT] [EOS|PLT] [HMT|HMG:MCHC] [MCV|HMG:HMT:PLT]

[MON] [IL8|TNF] [MCH|MCV:MCHC] [WBC|HMT:EOS:HAP:IL8]

[HAP] [IL12|IFN] [IL6|IL10:IL1b] [LYM|NEU:MON:EOS:BAS: TNF]

[IFN] [IL10|IFN:IL12] [NEU|RBC:WBC:MON:BAS]

[TNF|IFN:IL10] [IL1b|WBC:EOS:IL10:IL12]

[IL4|EOS:IL10:IL1b:TNF]

LW [MON] [IL12|HAP] [MCV|IL12:IL6] [RBC|HMG:HMT:MCV:MCH:MCHC]

[HAP] [HMG|MCH] [HMT|HMG:MCHC] [WBC|RBC:HAP:IL1b]

[IFN] [MCHC|MCV] [MCH|MCV:MCHC] [NEU|HMT:MON:HAP:IFN: IL8]

[PLT|RBC:WBC] [LYM|NEU:MON:EOS:BAS]

[BAS|WBC:NEU] [EOS|MCV:PLT:WBC:IL8]

[IL1b|IL10:IL12] [IL10|HAP:IFN:IL12]

[IL8|HMT:WBC] [IL4|IL10:IL1b:IL6]

[IL6|IFN:IL10:IL1b]

[TNF|MON:IFN:IL12:IL6]
LR = Landrace, LW = Large White, RBC = Red blood cells, HMG = Hemoglobin, HMT = Hematocrit, MCV = Mean Corpuscular Volume, MCH = Mean Corpuscular 
Hemoglobin, MCHC = Mean Corpuscular Hemoglobin Concentration, PLT = Platelets, WBC = White blood cells, NEU = Neutrophils, LYM = Lymphocytes, 
MON = Monocytes, EOS = Eosinophils, BAS = Basophils, HAP = Haptoglobin, IFN-γ = Interferon-γ, IL = Interleukin, TNF-α = Tumor Necrosis Factor-α. Conditional 
dependencies are indicated as straight line. Local structure is presented in square brackets [] with the first string identifying a node. Parents of the node are listed 
after “|” and are separated by colons “:”. Children of the node represent the interaction determined by the conditional probability, derived from two or more parent 
nodes. These parental relationships are also indicated in different colors for arrows in Fig. 1. The causal network model was assigned in three categories for more 
comprehensive understanding of the model structure. Conditionally dependent traits identified by the network structure given in [] were used as trait combinations 
for multivariate genome-wide association study.
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Although BNs do not serve as biological patterns, 
causal relationships between immune traits mostly repre-
sent biological functional subsets. Combinations mainly 
based of WBC, RBC, and cytokine-related clusters. The 
identified conditionally dependent traits by the network 
structure were used as mv trait combinations for mv 
GWAS.

Genetic markers identified with mv GWAS approaches
Applying uv GWAS, the identification of pleiotropic 
genomic region is limited, especially in the situation of 
polygenic inherited traits. Therefore, the following four 
different mv approaches were applied on immune trait 
combinations for LR and LW in order to increase the 
detection power for pleiotropic SNP: PCA, CCA, TATES 
and mvBIMBAM. In total, 647 significant associated 
SNPs were detected with mv methods and can be found 
in the Additional Table S2.

PCA was able to detect 98 (9 genome-wide and 89 
chromosome-wide significant) and 26 (5 genome-wide 
and 21 chromosome-wide significant) SNPs associated 
with the phenotypes for LR and LW, respectively.

CCA revealed a variety of associated SNPs: 416 for 
LR and 151 for LW. For LR, 72 were genome-wide and 
344 were chromosome-wide significant. For LW, 37 

were genome-wide and 144 were chromosome-wide 
significant.

Twenty-eight genome-wide significant markers were 
determined with TATES for LR while 3 genome-wide sig-
nificant genetic variants were characterized as significant 
for LW.

mvBIMBAM detected 8 and 23 genome-wide signifi-
cant SNPs for LR and LW, respectively.

All detected SNPs with mv methods were summarized 
to 190 QTLs, by assuming a 1 Mbp interval around sig-
nificant SNPs. Out of these QTLs, 133 were located 
within or close located to protein-coding genes. Func-
tional annotation of these QTLs revealed 453 protein-
coding genes (Additional Table S2).

Comparison across mv GWAS results
SNPs that are identified with multiple mv methods are of 
particular interest to characterizing pleiotropy. In total, 
66 SNPs were detected for different trait combinations 
with more than one mv method (Fig. 2). Thirty-seven of 
these SNPs are associated with RBC related immune trait 
combinations (e.g. [RBC|HMG:HMT:Mean Corpuscular 
Volume (MCV):Mean Corpuscular Hemoglobin (MCH), 
HMG|MCHC:IL10, HMT|HMG:MCHC]. Thirteen SNPs 
are associated with WBC subtypes and 12 with cytokines. 

Fig. 1 Bayesian Network for immune trait residuals
RBC = Red blood cells, HMG = Hemoglobin, HMT = Hematocrit, MCV = Mean Corpuscular Volume, MCH = Mean Corpuscular Hemoglobin, MCHC = Mean 
Corpuscular Hemoglobin Concentration, PLT = Platelets, WBC = White blood cells, NEU = Neutrophils, LYM = Lymphocytes, MON = Monocytes, EOS = Eo-
sinophils, BAS = Basophils, HAP = Haptoglobin, IFN = Interferon-γ, IL = Interleukin, TNF = Tumor Necrosis Factor-α. Functional biological networks of pheno-
types are illustrated as nodes in pale blue for WBC, light red for RBC, and yellow for cytokines. Node frames are highlighted in red to highlight conditionally 
independent variables. Colored arrows are used to indicate parental relationships of the nodes in the structured model learned from the data sets
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For example, SNP ALGA0073579 (rs81442304) was iden-
tified with three mv methods CCA, TATES, as well as 
mvBIMBAM. CCA and TATES associated this SNP with 
BAS|MON in LR, whereas mvBIMBAM detected this 
association for cytokines IL-4|IL-10:IL-1b:IL-6 in LW. 
Currently, this SNP remains unmapped for Sscrofa 11.1. 
SNPs ALGA0086892 (rs81454413, SSC 15: 116.13 Mbp), 
ASGA0070586 (rs80818610, SSC15: 120.11 Mbp), and 
ASGA0070620 (rs80883544, SSC 15: 120.35 Mbp) were 
detected by all four mv methods in LR for cytokines and 
a five immune trait combination of WBC, HMT, eosino-
phils (EOS), HAP, and IL-8. With PCA these SNPs were 
observed for the second PC in the biological functional 
network of cytokines (PC2 Cyto). According to the con-
tribution based on loading values, this PC mainly con-
tains cytokines IL-12 and IL-8 [27]. These SNPs are 
located on SSC 15 within an intron region of four Mbp 
(116.13 to 120.35 Mbp) (Fig. 2; Table 2).

In addition, 152 markers were identified for multiple 
mv trait combinations (Additional Table S2). Identi-
cal SNPs were mostly shared between immune traits 
related to functional biological immune trait subsets like 
RBC (e.g. [HMT|HMG:MCHC], MCH|MCV:MCHC], 
[RBC|HMG:HMT:MCV:MCH]), WBC subtypes (e.g. 
[NEU|RBC:WBC:Monocytes (MON):Basophils (BAS)], 

[Lymphocytes (LYM)|NEU:MON: EOS:BAS:TNF]) and 
cytokines (e.g. [IL1b|IL10:IL12], [IL4|IL10:IL1b:IL6], 
[IL6|IFN:IL10:IL1b]). These markers are distributed over 
all 18 chromosomes. Interestingly, 30% of identical mark-
ers are located on SSC 5 between 23.93 and 97.48 Mbp 
and cover 16 QTLs including 20 protein-coding genes 
(Fig. 3).

In addition, mv results were compared across the 
investigated breeds. In total, 469 markers were identi-
fied for LR, whereas 180 were detected for LW applying 
mv GWAS. Two SNPs, ALGA0073579 (rs81442304) and 
H3GA0016899 (rs80959576), were repeatedly observed 
in both breeds (Table  2). These markers were identified 
by applying mv methods (CCA, TATES, mvBIMBAM) as 
well as with uv methods.

Comparison between uv and mv GWAS results
In addition, a comparison of the uv and mv results 
revealed that 204 markers overlap across the methods 
(Fig. 4). All in all, these 204 markers are located near 125 
protein coding genes. Filtering the overlapping SNPs for 
the investigated breeds revealed four interesting genetic 
variants (ALGA0073579 (rs81442304), H3GA0016899 
(rs80959576), DRGA0006061 (rs81303269, SSC 5: 

Fig. 2 Venn diagram of different methods used to detect significant multivariate associations summerized for both breeds and significance types
PCA = Principal component analysis, CCA = Canonical correlation analysis, TATES = Trait-based Association Test that uses Extended Simes procedure, 
mvBIMBAM = multivariate Bayesian IMputation-Based Association Mapping. Multiple identical significant SNPs for different immune traits within a meth-
od are counted once
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79.02 Mbp), ALGA0113815 (rs81342648)) that overlap 
between uv and mv methods (Fig. 4).

CCA revealed, that ALGA0073579 (rs81442304) was 
significantly associated with [BAS|MON] in LR, whereas, 
applying mvBIMBAM, this SNPs was observed for cyto-
kines [IL-4|IL-10:IL-1b:IL-6] in LW. Additionally, this 

SNP was also identified for the trait basophils in LR 
within uv GWAS using PLINK.

H3GA0016899 (rs80959576) was significantly associ-
ated with PC4 Cell in LR. According to the loading value, 
PLT and HAP mostly contributed to PC4 Cell. Applying 
CCA allowed to detect this SNP for [PLT|RBC:WBC] in 

Table 2 Selected significant associated genetic markers identified with multivariate methods
Breed Trait SSC SNP Pos m/M MAF p-value/BF Method Gene
LR; LW BAS|MON, 

NEU|RBC:WBC:MON:BAS; 
IL-4|IL-10:IL-1b:IL-6

13* ALGA0073579 203.4* T/C 0.01 
and 
0.21

0.01/3.22 CCA, TATES, 
mvBIMBAM

LR; LW HMG|MCHC:IL-10, PC4Cell; 
PLT|RBC:WBC

5* H3GA0016899 80.1* T/C 0.04 
and 
0.16

0.04 CCA, PCA

LR IL-8|TNF, 
WBC|HMT:EOS:HAP:IL-8, 
PC2Cyto

15 ALGA0086892 120.1 T/C 0.50 0.04/3.5 CCA, PCA, 
TATES, 
mvBIMBAM

SPAG16

LR IL-8|TNF, 
WBC|HMT:EOS:HAP:IL-8, 
PC2Cyto

15 ASGA0070586 120.1 T/C 0.41 0.01/4.77 CCA, PCA, 
TATES, 
mvBIMBAM

TNS1, 
RUFY4, 
CXCR2, 
ARPC2, 
GPBAR1, 
AAMP, 
PNKD, 
TMBIM6

LR IL8|TNF, 
WBC|HMT:EOS:HAP:IL-8, 
PC2Cyto

15 ASGA0070620 120.3 T/C 0.39 0.03/4.04 CCA, PCA, 
TATES, 
mvBIMBAM

SSC = Sus scrofa chromosome, SNP = single nucleotide polymorphism, Pos = Position [Mbp] m/M allele = minor/major allele, MAF = minor allele frequency, 
p-value = adjusted p-value after correction for stratification and multiple testing, BF = Bayesian factor, Gene = selected nearest gene within a progressive number 
of QTL based on ± 1Mbp distance from a significant SNP, LR = Landrace, LW = Large White, BAS = Basophils, MON = Monocytes, IL = Interleukin, HMG = Hemoglobin, 
HMT = Hematocrit, NEU = Neutrophils, RBC = Red blood cells, WBC = White blood cells, PLT = Platelets, IFN = Interferon-γ, TNF = Tumor Necrosis Factor-α, PC = Principal 
component, Cell/Cyto = Biological functional networks within the PCA cell/cytokines, PCA = Principal component analysis, CCA = Canonical correlation analysis, 
TATES = Trait-based Association Test that uses Extended Simes procedure, mvBIMBAM = multivariate Bayesian IMputation-Based Association Mapping

* genome positions according to the assembly SScrofa 10.2

Fig. 3 Manhattan plot of SSC 5 for multivariate trait combinations a RBC|HMG: HMT:MCV:MCH in Landrace with CCA, b HMG|MCHC:IL10 in Landrace with 
CCA, and c WBC|RBC:HAP:IL1b in Large White with mvBIMBAM
RBC = Red blood cells, HMG = Hemoglobin, HMT = Hematocrit, MCV = Mean Corpuscular Volume, MCH = Mean Corpuscular Hemoglobin, MCHC = Mean 
Corpuscular Hemoglobin Concentration, IL = Interleukin, WBC = White blood cells, HAP = Haptoglobin, SNPs of interest are highlighted with green color (a 
DRGA0005609 (rs80847233), ASGA0025326 (rs80801793, SSC 5: 31.27 Mbp), ALGA0031690 (rs80785563, SSC 5: 33.95 Mbp), MARC0021861 (rs80948498), 
DRGA0005776 (rs336848545, SSC 5: 43.22 Mbp), b ALGA0031924 (rs80949260, SSC 5: 48.90 Mbp), MARC0001027 (rs81284886, SSC 5: 50.09 Mbp), 
ALGA0032074 (rs80787531, SSC 5: 58.60 Mbp), and c MARC0013873 (rs80911910)). Protein coding genes within annotated QTLs between 23.93 and 97.48 
Mbp are stated in the box
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LW. Furthermore, H3GA0016899 was also significantly 
associated with RBC in LW using an uv GWAS.

The genetic variant DRGA0006061 (rs81303269, SSC 5: 
79.02 Mbp) was identified for [IL4|EOS:IL10:IL1b:TNF] 
with CCA in LR, whereas PLINK detected this associa-
tion for RBC in LW. Currently, the SNP H3GA0016899 
is unmapped for Sscrofa 11.1, but was previously mapped 
on SSC 5.

On SSC 12, within and intron region of the Regulator of 
G-protein signalling 9 (RSG9) gene (12.0 Mbp), the SNP 
ALGA0113815 (rs81342648) was significantly associated 
with a PC2 Cyto (consisting of cytokines IFN-γ, IL-12, 
IL-8 specified by the loading value) by applying the PCA 
approach in LR, whereas PLINK identified this associa-
tion for IL-4 in LW (Additional Tables S1 and S2).

Discussion
The aim of this study was the detection of genetic mark-
ers associated with immune traits applying different 
approaches of uv and mv GWAS. In total, 401 and 647 
significant associations were identified with uv GWAS 
and mv GWAS, respectively. Of particular interest are 
the created immune networks using BN and PC analyses.

Conditional dependencies of immune networks
For mv analysis, 22 available immune phenotypes would 
result in multiple possible mv combinations, which 
would require high computational effort. The application 
of a BN approach allowed to identify conditional depen-
dencies among immune traits and to focus on relevant 
trait combinations. Usually, BNs do not reflect biologi-
cal patterns when causal statistical relationships between 
variables have been detected. However, identified combi-
nations can be classified into biological functional subsets 
of immune traits. For both pig lines, conditional relation-
ships were identified within RBC-related traits, WBC 
subtypes, and cytokines. These networks correspond 
to previous estimated rg results [27]. RBC were highly 
correlated with RBC characteristics, like HMT (LR: 
0.82 ± 0.05, LW: 0.90 ± 0.09) and HMG (LR: 0.81 ± 0.06, 
LW: 0.77 ± 0.10). As expected, among further RBC char-
acteristics, a high positive correlation was found between 
HMT and HMG (LR: 0.99 ± 0.00, LW: 0.97 ± 0.04), MCH, 
and MCV (LR: 0.99 ± 0.02, LW: 0.94 ± 0.03). Between 
cytokines such as IFN-γ, IL-10, IL-1β, IL-4, and IL-6 high 
positive rg were estimated in both investigated pig lines. 
Immune cells such as MON and EOS were positively 
correlated to cytokines like TNF-α in LR but showed a 
high negative correlation in LW. Ballester et al. [22] con-
structed a network based on phenotypic correlations 

Fig. 4 Genetic markers identified with GWAS approaches: Comparison of different association methods for both investigated breeds
Multiple identical significant SNPs for different immune traits within a method are counted a single time. mv = multivariate, uv = univariate, LR = Landrace, 
LW = Large White
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for immune traits in Duroc piglets. Although only 13 
immune parameters overlap between Ballester et al. [22] 
and our study, similar clusters that relied on RBC and 
WBC subtypes were identified. The detected close rela-
tionships in the previous and current studies [22, 23, 27, 
29] indicate the complexity of piglet’s immunity.

As discussed by Roth et al. [27] the PCA aims for a 
more powerful analysis of the immune traits by reducing 
the dimension of information, and therefore allowing the 
detection of key players in immunocompetence. In that 
study, PCA was shown to be an effective tool for con-
densing information based on a phenotypic covariance 
matrix. Using such a technique can reduce the number 
of dependent variables without compromising impor-
tant information [30]. Furthermore, PCAs provide an 
appropriate weighting of individual traits. In general, all 
observed phenotypic and genetic correlations as well as 
conditional dependencies among immune parameters, 
might be helpful to create well-balanced breeding selec-
tion strategies to improve the immunocompetence of 
pigs.

Comparison between uv and mv GWAS results and method 
performance
Beside one uv frequentist and one uv Bayesian approach, 
four mv approaches (PCA, CCA, meta-analysis, mv 
Bayesian linear regression) were applied on two maternal 
pig lines. Results were empirically compared within and 
across the methods.

Comparing the uv approaches, identical significant asso-
ciations were detected. The investigated data sets were also 
studied by Dauben et al. [23] using the GenABEL-package 
in R [31] and ASReml Software [32]. In total, Dauben et 
al. [23] identified 25 genome-wide and 452 chromosome-
wide significant SNPs (LR: 280, LW: 197) associated with 17 
immune relevant traits in both pig lines. Applying PLINK 
and uvBIMBAM it was possible to identify 433 (LR: 351, 
LW: 82) significant associations. Comparing the results 
of both studies, 159 and 15 associations were commonly 
detected for LR and LW, respectively.

One reason for the different number of significant SNP 
markers among the studies are caused by the require-
ment for the multivariate analyses. The number of phe-
notypes per animals have to be complete. Furthermore, 
the applied methods to correct for false positives and the 
determined threshold for genome-wide and chromo-
some-wide significance differ depending on the applied 
methodology.

Among the common associations in LR, 49 SNPs were 
also identified with mv methods in this study. Com-
mon results were mostly associated with immune traits 
related to RBC, cytokines, and HAP e.g. ASGA0070620 
(rs80883544, SSC 15: 120.35 Mbp). The SNP 
ASGA0070620 is located near protein-coding genes such 

as TMBIM1 (transmembrane BAX inhibitor motif con-
taining 1).

Generally, previous GWAS studies for immune traits 
focused mostly on uv statistical approaches. The applica-
tion of mv methods is recommended to increase the sta-
tistical power to detect associations [16, 21] even if the 
rg between the traits is expected to be weak (close to 0) 
[25, 26]. Consideration of previously published high rg 
( ≥ ± 0.4) results between multiple immune traits [27] was 
used to increase GWAS power to identify pleiotropic 
SNPs. In this study, mv methods revealed a higher num-
ber of significant associations compared to uv methods. 
Moreover, there was a substantial overlap of associations 
found by several mv methods which have different under-
lying statistical backgrounds. These results could be used 
as heuristic arguments, that mv-methods have a higher 
detection power. However, it should be considered that 
the number of approaches differs between the applied 
methods. For uv analysis, two different approaches were 
compared, whereas for mv analysis four different mv 
methods were utilized.

204 SNPs were identified with uv and mv methods. 
When SNPs are detected with multiple approaches, they 
provide more certainty for the GWAS results and con-
tribute to potential candidate genes. However, 443 asso-
ciations were exclusively identified with mv approaches. 
This underlines the importance of considering the corre-
lation among immune traits with mv methods. Common 
markers for comparable trait complexes were also iden-
tified between different mv approaches. Nevertheless, 
markers match incompletely and only to a small extent.

Application and comparison between multiple uv and 
mv approaches were addressed mostly on simulated data 
[25, 26], rather than on immune phenotypes. Recently, 
Bovo et al. [21, 29] reported uv and mv GWAS results 
for hematological and blood clinical-biochemical traits 
in LW pigs after slaughtering. Similarly, to our study, 
one frequentist and one Bayesian approach were applied. 
In general, the performance of different mv approaches 
is scenario-specific and sensitive to specific effects like 
allele frequency, the number of investigated traits, and 
underlying correlation structures among the traits [25, 
26]. Galesloot et al. [25] concluded that mv methods 
implemented in software like PLINK, SNPTEST, Mul-
tiPhen, and mvBIMBAM performed best in terms of 
detection power for the majority of scenarios, which is 
partly consistent with our results.

Furthermore, it has to be mention, that the possibil-
ity of chromosome-wide correction for multiple testing 
was not applied in every approach and was limited to 
methodology implemented in PLINK and R. For CCA, 
the highest number of associated SNPs was reported 
in our analysis. Similar to our results, Galesloot et al. 
[25] studied high power for almost all scenarios for the 
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same approach. These authors explain higher power was 
observed with increasing residual correlation in case of 
a single QTL trait and when two or all three traits were 
associated with the QTL with a negative genetic corre-
lation for methods including CCA. Due to trait correla-
tions, test statistic distributions are likely to have longer 
tails, and therefore a more conservative threshold is rec-
ommended to maintain the type I error at 5% [25]. As 
recommended by Galesloot et al. [25], we lowered the 
threshold within the CCA approach (5% default value 
to 1% lowered threshold) and compared the association 
results empirically once again (results not shown). The 
number of detected SNPs with CCA lowered to 184 (LR: 
144, LW: 40). However, the common three SNPs, which 
were detected with all four mv approaches, remained in 
the results for CCA after lowering the threshold.

Zhou et al. [33] developed an efficient linear mixed 
model algorithm for GWAS which is implemented in 
the software GEMMA and compared this algorithm to 
those implemented in WOMBAT [34] and GCTA [35]. 
Algorithms were applied to different numbers of phe-
notypes in simulated data as well as human and mouse 
data sets. Even though the authors reported exceeded 
improvements in computational time and power, they 
recommended considering the methods as complemen-
tary rather than competing. One single test is not able to 
detect all the many different types of genetic effects in the 
most powerful manner. Salinas et al. [36] described many 
of the mv methods aimed to detect genetic pleiotropy 
in an epidemiological context. In their study, specific 
method selection considering phenotype distribution 
type and data availability was developed. Therefore, our 
results contribute to a deeper understanding of the per-
formance power and selection of suitable mv methods.

Comparison of genetic markers between LR and LW
A comparison of results regarding breed differences 
was realized since GWAS methods were applied to the 
investigated breeds separately. With uv methods, no 
overlapping markers were observed, whereas mv meth-
ods were able to identify two SNPs shared between LR 
and LW. These two significant SNPs were currently 
unmapped. Using the older assembly 10.2 H3GA0016899 
(rs80959576) was located on SSC5 (80.17 Mbp) as an 
intergenic variant and ALGA0073579 (rs81442304) on 
SSC13 (203.44 Mbp) within the GRIK1 gene, which func-
tion has not been described so far. Thirty-eight SNP listed 
in Table  2 could not be allocated by current assembly 
SScrofa 11.1 but were mapped under SScrofa 10.2. There-
fore, these results should be considered with caution.

Several GWAS and QTL studies for immune com-
petence traits investigated cross-bred (White Duroc x 
Erthulin F2, LR x Duroc x Yorkshire, LW x Minzhu F2) 
and pure-bred (Chinese Sutai, LR, LW, Songliao Black, 

Yorkshire) pigs [7–21, 23]. Even though the results of 
these studies reported a few overlapping QTL regions, 
most of the markers were not shared between the stud-
ies. Genetic heterogeneity of the investigated pig popula-
tions, differences in the analyzed immune traits, variety 
of the experimental designs, and therefore, different envi-
ronmental effects considered in the statistical models 
during the analysis, might explain the discrepancies 
among the studies and between the breeds. In the cur-
rent study, further options for pre-selection of the breed-
specific mv trait combinations can be applied to enable 
appropriate comparison between the breeds within mv 
methods.

Identification of potential pleiotropic genetic variants
When a locus influences several traits at the same time, 
pleiotropy is responsible for genetic and phenotypic cor-
relations [37]. Human complex traits have been exten-
sively reviewed and discussed under different definitions 
of cross-phenotype association (biological, mediated, 
spurious) (e.g. [38, 39].). However, in a joint analysis of 
complex traits, autocorrelations suggest pleiotropic 
effects.

The mv GWAS provides a higher level of precision and 
detection power in mapping pleiotropic QTL than uv 
analyses [40–43]. In particular, this applies when study-
ing traits that are highly correlated or when heritability 
is low for the trait affected by the QTL [43]. Neverthe-
less, correlated traits may lead to correlated sampling 
errors [44]. A PC method has been described as a more 
powerful alternative to a single trait analysis [45, 46]. 
This approach condenses traits of interest into a number 
of uncorrelated PCs that reflect the underlying (co)vari-
ance matrix. According to Mähler et al. [47], it has been 
suggested to analyze only the first PC since it explains 
the majority of the variation. It has been demonstrated 
that the second PC and subsequent PCs can identify the 
highest phenotypic proportion that can be explained by 
genetic markers [48]. According to the authors, the sec-
ond and following PCs may contain a substantial propor-
tion of total genetic variation, which normally accounts 
for a small amount of variance in phenotypic traits. If the 
QTL effects oppose positively correlated traits, these PCs 
appear very powerful.

Using the first three PCs, this study determined that a 
significant portion of the total genetic association could 
be attributed to these PCs. However, genetic interpre-
tation of the identified association is impossible with 
this approach, despite higher statistical power. Due to 
unclear pleiotropy or high linkage between two regions, 
there is not yet a clear indication of true pleiotropy [40]. 
This analysis is generally considered a first step in iden-
tifying pleiotropic regions, which would require further 
investigation with more precise models, fine-mapping 
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or molecular experiments to confidently distinguish 
between the different scenarios.

Functional annotation and identification of potential 
candidate genes
Using different uv and mv GWAS approaches in this 
study it was possible to detect a plethora of genetic mark-
ers. SNPs were summarized into QTLs, based on their 
genetic distance of 1 Mbp downstream and upstream, to 
condense functional information. Annotation was per-
formed within the characterized QTLs in Sscrofa 11.1 
from the Ensembl database [49]. QTLs were located 
within numerous protein-coding genes (uv: 354, mv: 
453). 125 protein-coding genes were identified with both 
methods (uv and mv) and selected immune relevant 
genes are presented in Table 2 and Table S1 and S2. The 
SNP ASGA0070586 (rs80818610, SSC 15: 120.11 Mbp), 
located on SSC 15, was detected applying all four mul-
tivariate approaches. In the following, three out of eight 
candidate genes are discussed. AAMP (angio associated 
migratory cell protein) plays a positive role in angiogen-
esis, a physiological process through which new blood 
vessels are formed from pre-existing vessels [50]. PNDK 
(paroxysmal nonkinesiogenic dyskinesia domain con-
taining) protein is involved in the regulation of neu-
rotransmitter secretion and is associated with pancreatic, 
ovarian, and breast cancer in humans [51, 52]. In swine, 
a disruption of expression and pathway of PDNK in 
response to infection with Actinobacillus pleuropneu-
moniae bacteria was observed [53]. TMBIM1 (trans-
membrane BAX inhibitor motif containing 1) protein 
binds to a TNF receptor and thus regulates the degran-
ulation of neutrophils and the reorganization of blood 
vessels [54]. Five additional gene were located close to 
ASGA0070586 (rs80818610, SSC 15: 120.11 Mbp), but a 
functional immune relevant relationship have not been 
described yet.

On SSC 14 the marker MARC0013023 (rs80797218) 
was significantly associated for HMG and HMT using 
uv PLINK and BIMBAM. In addition, this SNP was also 
detected applying CCA for the traits HMT, HMG and 
MCHC applying CCA. Within this region the protein-
coding gene AGT (angiotensinogen) is located, that 
regulates the systemic arterial blood pressure by renin-
angiotensin [55]. According to their direct influence on 
immune traits these protein-coding genes represent 
potential candidate genes.

Some of the genetic markers detected in this study 
have been identified in previous association stud-
ies for hematological traits. Wang et al. [16] detected 
SNPs ALGA0123028 (rs81318039, SSC 3: 71.12 Mbp) 
and MARC0001946 (rs81288717, SSC 3: 72.97 Mbp) 
located on SSC 3 for mean thrombocyte volume. These 
SNPs were identified for immune trait combination 

[WBC|HMT:EOS:HAP:IL8] in LR. In the study of Lu et 
al. [17] MARC0039159 (rs81232385, SSC 5: 44.44 Mbp), 
located on SSC 5, was significantly associated with IL-10, 
which was identified in our study with CCA and PCA for 
[NEU|RBC:WBC:MON:BAS] and PC3 Cell (LYM, MON, 
BAS contribute to this PC according to the loading value), 
respectively. Luo et al. [15] identified ALGA0047813 
(rs81400288, SSC 8: 43.03 Mbp) and MARC0039159 
(rs81232385, SSC 5: 44.44 Mbp) on SSC 8 for MCV and 
MCH, which was observed in our study for the mv trait 
combination [RBC|HMG:HMT:MCV:MCH:MCHC] in 
LW with CCA. ALGA0047813 (rs81400288, SSC 8: 43.03 
Mbp), is located within the intron region of the protein-
coding gene TLL1 (tolloid like 1). Studies in mice suggest 
that TLL1 plays multiple roles in the development of the 
mammalian heart, and is essential for the formation of 
the interventricular septum. Allelic variants of this gene 
are associated with atrial septal defect type 6 [56]. Further 
investigations of this protein function in pigs are needed, 
to determine the potential as a candidate gene. Dauben 
et al. [23] detected associations for immune traits in the 
same pig population with a different uv GWAS approach. 
Identical markers have been identified between this and 
the current study (LR: 159, LW:15). Noteworthy, 49 SNPs 
identified in LR were observed with uv and mv methods. 
Therefore, in this study we were able to confirm associa-
tions with our previous results.

Conclusion
This study evaluated the joint genetic background of 
immune traits in LR and LW piglets through the applica-
tion of various uv and mv GWAS approaches. In general, 
mv GWAS approaches outperformed uv methods and 
detected genome-wide associations for immune traits. 
It should be considered that the number of significant 
associations differs between the applied methods and the 
possibility of chromosome-wide correction for multiple 
testing was only feasible in two approaches. When asso-
ciations were compared across the investigated breeds, 
no overlapping markers were observed with uv meth-
ods, indicating genetic breed differences. It was possible 
to detect two SNPs in both breeds applying mv GWAS. 
However, further options for pre-selection of the breed-
specific mv trait combinations and cross-validation 
should be considered to enable appropriate breed com-
parison. Our results support the observation that one 
single test is not able to detect all the many different types 
of genetic effects in the most powerful manner. These 
analyses are initial steps to detect pleiotropic regions in 
general. Beside the validation of our results with other 
data sets, it is necessary investigate the identified associa-
tions further applying fine-mapping approaches and the 
analyses of candidate genes.



Page 11 of 16Roth et al. BMC Genomics          (2023) 24:492 

Methods
Statistical analysis of immune traits
Data sets of purebred LR and LW populations were 
recorded from 2010 to 2017 and were provided by the 
German breeding organization BHZP GmbH. Animal 
care, phenotypic measurements, and consideration of 
environmental effects were described in Roth et al. [27]. 
In brief, a total of 611 piglets (♂152/♀307) of LR and 533 
piglets (♂134/♀257) of LW were analysed. Animals were 
a subset of two nucleus populations. From each litter, one 
male and one female piglet, were chosen for phenotype 
collection. Blood samples of piglets were collected on 
average around 45 days (32– 60) after birth by punctur-
ing the Vena jugularis and were collected in three 7.5 ml 
monovette containing ethylenediaminetetraacetic acid. 
Complete blood count was performed with an ADVIA® 
2120 Hematology system, a flow cytometry- based sys-
tem, and a pig- specific setting. Besides, serum haptoglo-
bin was measured in 0.5 ml serum. Peroxidase activity of 
the haptoglobin– haemoglobin complex was carried out 
by a spectrophotometric method. Cytokine levels (inter-
feron- γ, interleukin- 10, interleukin- 12, interleukin- 1β, 
interleukin- 4, interleukin- 6, interleukin- 8 and tumour 
necrosis factor- α) in serum samples were analysed with 
a Porcine Cytokine/Chemokine Multiplex Magnetic Bead 
Panel (Merck KGaA) enabling the simultaneous mea-
surement of multiple cytokines. Immunoassay of serum 
samples was performed using 22 plates according to the 
manufacturer´s protocol.

GWAS was performed for complete blood count (RBC, 
haemoglobin, haematocrit, MCV, MCH, MCHC, plate-
lets, WBC, neutrophils, lymphocytes, monocytes, eosin-
ophils, basophils, band and other remaining cells), HAP, 
and cytokines (interferon-γ, interleukin-10, interleu-
kin-12, interleukin-1β, interleukin-4, interleukin-6, inter-
leukin-8 and tumour necrosis factor-α) as immune traits 
of 1144 LR and LW piglets, corrected for environmental 
impacts within the breeds. A detailed description of all 
investigated immune traits, their summary statistics, and 
processing of the data set can be found in Roth et al. [27].

Genotyping and quality control of genomic markers
To study genetic associations between measured phe-
notypes animals were genotyped with a tissue sample 
via an Ilumina Porcine SNP60 v2 BeadChip (Illumina, 
San Diego, CA, USA) in an external laboratory (Gene-
Control GmbH, Poing). Only autosomal markers were 
used in the different GWAS approaches. Regardless of 
the selected association method, quality control of gen-
otype data was performed with PLINK [57]. Genetic 
markers and animals were excluded when they did not 
meet the following criteria: Call Rate ≥ 0.95, Minor allele 
frequency (MAF) ≤ 0.01, deviation from Hardy-Wein-
berg equilibrium (HWE) p-value = 0.0001, acceptable 

Identity-by-state (IBS) threshold ≤ 0.95. After quality 
control 47’292 and 43’730 markers, as well as 522 and 
461 animals, remained for GWAS for LR and LW, respec-
tively. The position in the genome and the base pair loca-
tion of each SNP is based on SScrofa 11.1. In total, 38 
markers show currently no location under this assembly. 
Using the assembly SScrofa 10.2 it was possible to report 
a chromosome number and a base pair position for 15 
markers. The remaining 22 markers revealed high link-
age disequilibrium to other significantly associated SNP 
(results not shown). The observed regions correspond to 
the positional information given in the manifest file of 
the manufacturer.

Correction for environmental effects
The correction for environmental effects was performed 
within a breed and included all relevant fixed effects: 
the class effects parity (1–4) and herd-year-season-
sex (1–12). Moreover, age and weight and interaction 
between age and weight at the time of sample collection 
were included in the model as covariates. Cytokine detec-
tion method requires the quantification of samples dis-
tributed among 22 analytical plates. Therefore, plate was 
included as a random term for cytokine immune traits. 
The effects of breed (LR or LW) or sex (boar or sow) were 
not included as main factors in the model because of the 
hierarchical classification of these effects within herd-
year-season-sex classes.

Univariate GWAS
After quality control, one frequentist and one Bayesian 
method were used to analyze immune traits for uv asso-
ciations with the genotype in a GWAS within each breed 
data set.

The starting point for both approaches is a mixed linear 
model:

 y = µ + Zα + e  (1)

where y  is a vector of phenotype measurement of ani-
mals, µ  is a vector of the phenotype means of animals 
carrying the reference genotype, Z is a matrix of geno-
type covariates (coded as 0, 1, or 2) for SNP markers, α  
is a vector of random regression coefficients of the SNPs 
(marker effects), and e  is a vector of residuals.

The frequentist association approach in PLINK [57] 
tests each marker for association with the trait of inter-
est since it performs a linear regression analysis with 
each SNP as a predictor. For Bayesian regression, prior 
distributions are specified for α  ande . For vector of 
residuals e , a prior conditional on the residual variance, 
σ2
e , a normal distribution with null mean and covariance 

matrix Rσ2
e , is used. In this case, R  is a diagonal matrix 

and σ2
e  is treated as an unknown with a scaled inverse χ2 
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prior [58]. Assuming that a SNP j  is a Quantitative Trait 
Locus, then its effect is dependent on two parameters: aj  
and dj = ajkj : the additive and dominance effect, respec-
tively. An additive effect is given by kj = 0, while kj = 1 
and kj = −1  represents a dominant effect. Bayesian lin-
ear regression carried out with BIMBAM uses two pri-
ors D1 and D2 to model this effects [59]. Bayesian Factors 
for observed associations were computed as posterior 
distributions for SNP effects using the prior D2 averag-
ing aj = 0.05,0.1,0.2,0.4 and dj = aj/4 . Further detailed 
information about the utilized uv GWAS approaches can 
be found in the original literature [57–59].

Principal component analysis
To condensate the estimated highly correlated immune 
network PCA was applied to immune observation resid-
uals. PCA proceedings steps and results are already pub-
lished and described in detail in Roth et al. [27]. Before 
the application of the PCA technique for each breed data 
set, we split the immune traits of our survey into three 
biological functional networks as (a) Cells, (b) RBC 
(including HAP) and (c) Cytokines. This classification 
was motivated by the strategy to maintain the greatest 
possible explained variance from the original variables in 
the constructed PCs. The number of PCs used to char-
acterize immune traits was based on the eigenvalues of 
their correlation matrix. In order to limit the number of 
PCs, PCs with eigenvalues lower than 1.0 were excluded 
[60]. As far as possible, loading values of PCs were used 
to label them roughly and to interpret PCs according to 
their summarizing biological composition. BFN-specific 
PCs were then used as new traits during a uv GWAS 
which was carried out with PLINK [57]. The output of the 
association analysis generates an asymptotic significance 
value (p-value). Received p-values were adjusted for pop-
ulation stratification and multiple testing on genome and 
chromosome levels.

Learning structures using bayesian network
The realization of all possible mv combinations for all 
available immune phenotypes is computationally exten-
sive. Networks, paths, and graphs can model interactiv-
ity between variables. BN describe conditional in- and 
dependence relationships among variables [61]. There-
fore, in this study, a BN approach was performed for each 
breed data set to reveal conditional dependencies among 
immune traits. Applying this approach, it was possible to 
set various combinations of immune traits for LR and LW 
regardless of the applied mv GWAS method.

Briefly, the BN is a graphical representation of a prob-
ability distribution over a set of variables [61–63]. The 
conditional independence (of the random variables) and 
graphical separation (of the corresponding nodes of the 
graph) have been stretched out to disjoint node subsets 

by Pearl (1988). Therefore, in the BN approach model 
selection algorithms were used to learn the graphical 
structure of the network and then estimate the param-
eters of the local distribution functions conditional on 
the learned structure. A hill-climbing algorithm [28] was 
applied to the immune data set in this study. This Score-
based structure learning algorithm is a general heuristic 
optimization technique to the problem of learning the 
structure of a BN. This algorithm attempts to maximize a 
score that measures how well that BN describes its good-
ness of fit to the data set, returning a graphical structure 
as output [63]. R package bnlearn [61] was used to obtain 
BNs for LR and LW immune trait residuals. Residuals 
of originally measured phenotypes were used to avoid 
a large number of solutions that need to be computed 
because of existing cross-classified effects. Resulting con-
ditional dependencies illustrated as parents of the nodes 
in the network structure were used as trait combinations 
for mv GWAS approaches.

Multivariate GWAS
GWAS is generally performed on a uv (trait-by-trait) 
basis by testing each variant at a time. Association analy-
ses that include multiple phenotypes may be more pow-
erful to identify QTL for complex traits, particularly 
in the case of causal variants that affect multiple corre-
lated traits [64]. In the following, principles and optional 
parameters of four selected mv GWAS approaches 
applied in this study within each breed data set are 
described briefly.

Canonical correlation analysis
In the same way that PCA is applied to one set of possibly 
correlated traits to extract a number of independent vari-
ables (PCs) that explain as much variance in the original 
data set, CCA is applied to two sets of variables to extract 
a number of independent pairs of variables that explain 
as much covariance between the two original sets [65]. 
Thus, CCA represents a mv generalization of the Pearson 
product-moment correlation [66]. CCA extracts the lin-
ear combination of traits that explain the largest possible 
amount of the covariation between the marker and all 
traits. This approach is applied to analyze the association 
between one SNP and multiple traits, as implemented in 
--mqfam --mult-pheno procedure for MV-PLINK [65]. 
The test implies Wilk’s lambda (λ) and the correspond-
ing F-approximation. Specifically, λ = 1−

′
ρ
2, where ′

ρ  
is the canonical correlation between the marker and the 
traits, calculated as the square root of the eigenvalue of 
the product of the marker variance (S11), trait covari-
ance matrix (S22), and covariance matrices between the 
marker and the traits (S12, S21); expressed as notation: 
S
−1/2
11 × S12 × S−1

22 × S
−1/2
11

 [65]. Similar to PCA, an 
asymptotic significance mv p-value is generated in the 
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CCA output. This p-value was subsequently adjusted 
for population stratification and multiple testing on the 
genome and chromosome levels.

Meta-analysis
Methodology development to increase the statisti-
cal power of GWAS is extremely important for study 
designs with heterogeneous traits and small sample sizes. 
Meta-analysis was carried out with the software TATES 
(Trait-based Association Test that uses Extended Simes 
procedure) [67]. TATES requires a phenotype correla-
tion matrix of immune traits and a list of p-values in 
an ascending order of the phenotypes for a given SNP 
obtained in a corresponding uv linear regression analy-
sis. During a meta-analysis uv GWAS was performed 
for each phenotype with PLINK [57]. Obtained p-val-
ues were adjusted to account for multiple testing and 
relationships between immune traits within the meta-
analysis on the genome level. TATES combines the phe-
notype-specific p-values to obtain one overall trait-based 
p-value (PT )  as PT = Min

mepj
mej

, where me  indicates the 
effective number of independent p-values of all phe-
notypes, and mej  is the effective number of p-values 
among the top p-values, and pj  is the jth p-value [67]. 
Based on the procedure developed by Li et al. [68], the 
effective number of p-values (mej is estimated through 
a correction based on eigenvalue decomposition of the 
correlation matrix between the p-values associated with 
the phenotypes. Briefly, TATES transforms the trait cor-
relation matrix into a corresponding SNP-p-value cor-
relation matrix. The eigen-decomposition of this p-value 
correlation matrix is used to weight uv p-values. Finally, 
the minimum of these weighted p-values is chosen as the 
corrected p-value for the joint association.

Bayesian multivariate regression
With the software mvBIMBAM (multivariate Bayesian 
IMputation-Based Association Mapping) [69] a Bayes-
ian multivariate regression test for association was 
conducted. Simultaneously the traits were subdivided 
according to their SNP effect and Bayes Factors were 
used to access the association between the groups of phe-
notypes and a genetic variant. The analysis is based on 
the mv regression model like model (1), but with a Y (n 
x d) matrix of d phenotypes measured on each of n indi-
viduals. The mvBIMBAM approach attempts to partition 
the response variables Y into three groups according to 
their statistical association with a genetic variant: undi-
rect (U), direct (D), and indirect (I). A set of models γ = 
(U, D, I) runs through partitions of the coordinates {1; 
…, d}. Under model γ an assumption is made that YU is 
independent of Z, and YI is conditionally independent of 
Z given YD. This gives

 Pγ = Pγ (YU)Pγ (YD ∨ YU, Z)Pγ (YI ∨ YU, YD)

These scenarios were accessed with the option mph 2 
within the mvBIMBAM software. The priors for the 
genetic effect were set at 0.1 and 0.2 according to the 
author’s recommendation [69]. Bayes Factor is computed 
as the support for partition γ compared with the global 
null hypothesis that all the phenotypes are unassociated 
with Z. It then summarizes the overall evidence against 
the null, as well as the posterior probability that each 
coordinate of Y is associated with Z:

 
BFγ =

Pγ (Y ∨ Z)

P0 (Y )

Obtained log10 Bayes Factors for each genetic variant 
evaluated the association between the SNP and the traits 
averaging over all possible partitions. Log10 Bayes Fac-
tors value ≥ 3 was characterized as a spurious association 
while values ≥ 6 as a solid association between a marker 
and a trait on genome level.

Controlling population stratification and false-positive 
results
Genomic Control [70] was realized to correct for exist-
ing population stratification through adjustment of the 
significance of the test statistic in R [71]. From GWAS 
obtained p-value was subsequently adjusted in the PCA 
and CCA. The inflation factor lambda was low to moder-
ate in the LR (0.80–1.26) and LW (0.86–1.23) data sets. 
After stratification correction, the lambda values were 
acceptable in a range of < 1.05.

To control the number of false-positive results False 
Discovery Rate (FDR) was applied [72] on genome and 
chromosome level for uv linear regression method, PCA, 
and CCA. The significance level q (p-values adjusted with 
FDR) for FDR was 0.05 to detect associations between 
marker and trait on genome and chromosome level in 
R [71]. Bayesian approaches express significance with a 
log10 Bayes Factor threshold. Absolute values of three 
and six are considered as spurious and solid significance 
for an association [32].

For uv and mv GWAS QTL regions were defined con-
sidering significant SNPs that mapped at least ± 1 Mbp 
from another significant SNP and functional annotation 
was performed retrieving all annotated genes within a 
QTL region in Sus scrofa11.1 from Ensembl database 
[49].
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