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Abstract 

Background Expression quantitative trait loci (eQTL) studies provide insights into regulatory mechanisms underly-
ing disease risk. Expanding studies of gene regulation to underexplored populations and to medically relevant tissues 
offers potential to reveal yet unknown regulatory variants and to better understand disease mechanisms. Here, we 
performed eQTL mapping in subcutaneous (S) and visceral (V) adipose tissue from 106 Greek individuals (Greek Meta-
bolic study, GM) and compared our findings to those from the Genotype-Tissue Expression (GTEx) resource.

Results We identified 1,930 and 1,515 eGenes in S and V respectively, over 13% of which are not observed in GTEx 
adipose tissue, and that do not arise due to different ancestry. We report additional context-specific regulatory 
effects in genes of clinical interest (e.g. oncogene ST7) and in genes regulating responses to environmental stimuli 
(e.g. MIR21, SNX33). We suggest that a fraction of the reported differences across populations is due to environmen-
tal effects on gene expression, driving context-specific eQTLs, and suggest that environmental effects can deter-
mine the penetrance of disease variants thus shaping disease risk. We report that over half of GM eQTLs colocalize 
with GWAS SNPs and of these colocalizations 41% are not detected in GTEx. We also highlight the clinical relevance 
of S adipose tissue by revealing that inflammatory processes are upregulated in individuals with obesity, not only in V, 
but also in S tissue.

Conclusions By focusing on an understudied population, our results provide further candidate genes for investiga-
tion regarding their role in adipose tissue biology and their contribution to disease risk and pathogenesis.
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Background
Adipose tissue is a medically relevant tissue and con-
tributes to the pathogenesis of multiple diseases, 
including type 2 diabetes, cardiovascular disease and 
cancer [1]. Moreover, it is a tissue of extreme plasticity, 
responding to environmental cues, such as excess nutri-
ent intake, energy overload, changes in temperature 
and air pollution [2, 3]. White adipose tissue represents 
the majority of adipose tissue mass in humans and con-
sists of two main types: subcutaneous (S) and visceral 
(V) fat. Although S and V fat share a large proportion 
of their biology, there are important functional differ-
ences, including inflammatory and metabolic functions 
(e.g. lipolysis rate, insulin sensitivity, adipokine secre-
tion) [4, 5]. A fraction of these differences arise from 
differences in patterns of gene expression [6, 7], an 
intermediate phenotype that is shaped by genetic, epi-
genetic and environmental factors. Genetic factors that 
influence gene expression have been shown to play a 
key role in shaping complex traits and determining risk 
for disease [8]. Expression quantitative trait loci (eQTL) 
studies to date have identified regulatory variants that 
are active across tissues [9–12], and have highlighted 
that eQTLs are enriched among disease genome-wide 
association study (GWAS) signals [9]. Adipose tissue 
eQTLs, for example, are enriched among cardiometa-
bolic (e.g. body mass index (BMI), waist-to-hip ratio 
(WHR), circulating lipid levels) [13–16] and neurologi-
cal (e.g. schizophrenia) [17] traits. Furthermore, studies 
of epigenetic traits such as chromatin accessibility pro-
filing (e.g. Assay for Transposase-Accessible Chromatin 
using sequencing (ATAC-Seq)) in adipose tissue have 
revealed regulatory genomic regions with functional 
roles in cardiometabolic disease [18]. Thus, linking reg-
ulatory variation to GWAS findings contributes to our 
understanding of disease mechanisms by highlighting 
specific genes in specific tissues as likely mediators of 
the disease associations.

The Genotype-Tissue Expression Project (GTEx) is 
a key resource that has added to our understanding of 
the action of regulatory variants across human tissues 
[9]. GTEx participants are mainly of Central and North-
ern European descent, with ~ 14% of participants being 
individuals of African-American or Asian-American 
ancestry, who live in the US. In addition to genetic ances-
try [19], gene expression is affected by environmental 
exposures which can modulate regulatory associations 
between variants and phenotypes [20–23]. Expand-
ing studies of gene regulation to include underexplored 
populations and populations living in different environ-
mental conditions therefore is a strategy that is expected 
to reveal additional, context-specific regulatory variants, 
building on resources such as GTEx.

In the present study we explored adipose tissue gene 
expression in Greek individuals living in Central and 
Southern Greece. We performed eQTL mapping in S and 
V tissues from 106 individuals and compared findings to 
GTEx. We report tissue and population differences in 
the regulatory landscape underlying disease risk and we 
argue that such differences may arise due to variation in 
gene expression that is driven in part, by different envi-
ronmental exposures.

Results
GM individuals map close to Italian and Spanish 
populations
Principal component analysis (PCA) revealed that GM 
individuals map close to the Tuscan (TSI) and Iberian 
(IBS) 1000 Genomes (1  KG) populations (Additional 
File 1: Supplementary Figure S1). This finding is in line 
with our previous work on coding variants [24] and with 
results from studies reporting genetic similarity between 
Greek and Italian subpopulations [25, 26].

eQTL identification in GM and GTEx
In GM, association of ~ 6  M single nucleotide poly-
morphism (SNP) genotypes (minor allele frequency; 
MAF ≥ 0.05) with expression levels of 20,618 (S) and 
21,322 (V) genes yielded 1,930 and 1,515 eGenes (genes 
with at least one cis-eQTL) in S and V respectively (1,047 
shared) (Table 1, Fig. 1, Additional File 2: Supplementary 
Table S1). Seven out of the top ten eGenes were identified 
in both tissues (Table 2).

Over 70% of eGenes detected are protein-coding, 
eQTLs cluster around the transcription start site (TSS), 
and show consistent allelic direction across tissues (Addi-
tional File 1: Supplementary Figure S2A-C). Despite 
modest sample size, conditional analysis in GM revealed 
76 and 45 eGenes with a secondary, independent eQTL 
in S and V respectively. Secondary eQTLs tend to be 
located more distal to the TSSs of associated genes com-
pared to primary eQTLs (Additional File 1: Supplemen-
tary Figure S2D).

In GTEx-am, association of ~ 9 M SNP genotypes with 
20,966 (S) and 21,331 (V) genes yielded 8,638 and 6,151 
eGenes in S and V respectively (4,743 shared) (Table 1). 
Direction of allelic effects was consistent across GM and 
GTEx-am for each tissue (Additional File 1: Supplemen-
tary Figure S3). Similar numbers of eGenes were also 
detected for the GTEx-size-matched (GTEx-sm) sam-
ple (Supplementary Material 1: Supplementary Table S2, 
Supplementary Text S1).

To identify regulatory effects linked to obesity and to 
sex, we performed eQTL mapping in GM, using a lin-
ear model with an interaction term (Genotype × Obe-
sity and Genotype × Sex). We detected 117 and 77 
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Genotype × Obesity (Additional File 2: Supplementary 
Table  S3) and 114 and 92 Genotype × Sex (Additional 
File 2: Supplementary Table  S4) regulatory interactions 
in S and V respectively, with nominal P < 0.05, but none 
survived false discovery rate (FDR) < 5%. In GM S for 
example, genotypes at rs3731818, an eQTL for IMMT 
(Inner Membrane Mitochondrial Protein), showed inter-
action with sex  (PGenotype×Sex = 8.58e-04) (Additional File 
1: Supplementary Figure S4). Rs3731818 is also associ-
ated with systolic blood pressure [27]. In adipose tissue, 
mitochondrial dysfunction has been linked to inflamma-
tion and metabolic disease, including hypertension [28]. 
This potential, subtle effect of sex on disease risk through 
IMMT expression regulation comprises an angle worth 
investigating in future studies. When obesity status was 
included as a covariate in our eQTL analysis, we repli-
cated ~ 97% of our discoveries (Additional File 2: Supple-
mentary Table S5).

To further explore cis effects on gene regulation in 
GM, we tested for allele-specific expression (ASE). We 
detected 110 and 115 ASE SNPs (77 shared) mapping 
in 112 and 118 genes (87 shared) in S and V respec-
tively. Functional characterisation of ASE sites revealed 
ten missense, likely pathogenic SNPs in each tissue (five 
shared) (Additional File 2: Supplementary Table  S6), 
including SNPs in FMO2 (Flavin Containing Dimethy-
laniline Monoxygenase 2) and SULT1A2 (Sulfotrans-
ferase Family 1A Member 2), genes involved in drug and 
xenobiotic metabolism. FMO2 belongs to a family of 

Table 1 Comparison of eQTL mapping results from GM and 
GTEx-am

Number of eQTLs detected in each tissue is lower than the number of eQTL-
eGene pairs as an eQTL may be associated with more than one gene

GM Greek Metabolic study, GTEx Genotype-Tissue Expression, GTEx-am GTEx-
ancestry matched sample, eQTL expression quantitative trait locus, eGene gene 
with at least one cis-eQTL

Across tissues (S vs. V)
GM eGenes eQTLs eQTL-eGene pairs
S 1,930 1,847 1,930

V 1,515 1,448 1,515

overlapping 1,047 237 232

GTEx-am eGenes eQTLs eQTL-eGene pairs
S 8,638 8,158 8,638

V 6,151 5,809 6,151

overlapping 4,743 853 854

Across populations (GM vs. GTEx)
S eGenes eQTLs eQTL-eGene pairs
GM 1,930 1,847 1,930

GTEx-am 8,638 8,158 8,638

overlapping 1,673 190 178

V eGenes eQTLs eQTL-eGene pairs
GM 1,515 1,448 1,515

GTEx-am 6,151 5,809 6,151

overlapping 1,283 133 123

GTEx-ancestry matched 
(GTEx-am) individuals

(n=391)

snoitalupoP
tupnI

Genotype data
(Illumina 

HumanOmni2.5 
array)

Expression data
(RNA-Seq, 

Illumina 
HiSeq2000)

gnissecorperP
sesylanA

Greek Metabolic study
(GM) individuals

(n=106)

Sample & SNPs QC 

(1,158,987 variants)

QC, 
Alignment, 

Quantification 

S: 9,813,898 variants
V: 9,027,965 variants

Gene filtering: (RPKM>0.5 

S: 20,966; V: 21,331

Genotype data
(sequencing); VCF file 

was already passed QC 
checks from GTEx

Expression 
data

(RNA-Seq, 
BAM files)

MAC>10

Imputation
(6,324,904 
variants)

Gene filtering:(RPKM>0.5 

S: 20,618; V: 21,322

cis-eQTL 
mapping

Differential expression
ASE

cis-eQTL 
mapping Differential expression

S: 95 samples
V: 93 samples

S: 102 samples
V: 99 samples

S: 313 samples
V: 264 samples

GxObesity and G Sex eQTLs e.g. IMMT/rs3731818 in GM S (G Sex)
Conditional eQTLs e.g. modifying effects of independent regulatory eQTLs (THNSL2 in GM S)
Tissue and population specificity of eQTLs

- Context-specific regulatory effects for clinically relevant genes (e.g. oncogenes SET, ECT2 and ST7)
- Different expression patterns for eGenes detected in GM only (e.g. SNX33)

Overlap of eQTLs with adipose functional annotations (RoadMap epigenome, ENCODE, ReMap2)
GWAS colocalization analysis (RTC)

- eGene-traits unique to GM, distinct expression patterns of corresponding eGenes
- Colocalizing GWAS SNPs unique to GM S, medical importance of S tissue

Transcriptomic differences across tissues and populations
- Upregulation of inflammatory processes in S tissue of individuals with obesity

GTEx-size matched 
(GTEx-sm) individuals

(n=158)

Genotype data
(sequencing); VCF file 

was already passed QC 
checks from GTEx

Expression 
data

(RNA-Seq, 
BAM files)

S: 6,263,547 variants
V: 6,227,535 variants

Gene filtering: (RPKM>0.5 

S: 20,966; V: 21,331

MAC>10

cis-eQTL 
mapping Differential expression

S: 95 samples
V: 93 samples

Match to GM by age, 
sex ratio, % obesity

Fig. 1 Flowchart outlining the study design and analysis. ASE: allele-specific expression. MAC: minor allele count. MAF: minor allele frequency. eQTL: 
expression quantitative trait locus. RTC: Regulatory Trait Concordance. RPKM: Reads Per Kilobase Million. S: subcutaneous; V: visceral
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xenobiotic-metabolizing enzymes that improve resist-
ance to a broad range of environmental stressors, such 
as chemicals and drugs [29]. The FMO2 ASE SNPs 
rs2020862 and rs2020870 encode deleterious amino acid 
substitutions (S195L and D36G respectively) suggesting 
that distinct FMO2 isoforms exist at different levels in S. 
Disentangling the mechanics of gene regulation in similar 
cases will aid our understanding of complex phenomena 
such as disease penetrance where the effect of a coding 
variant may be modified by co-existing regulatory effects.

Properties and functional characterisation of eQTLs
To test whether differences in eQTLs across populations 
arise from differences in allele frequencies, we calcu-
lated fixation index (Fst) for all GM-detected eQTLs. We 
detected no prominent differentiation in allele frequen-
cies (mean Fst in S and V ~ 0.0044) (Fig. 2A), suggesting 
that eQTLs detected only in GM are not driven by allele 
frequency differences between GM and GTEx. Indeed, 
no differences in MAF distribution of eQTLs across GM 
and GTEx-am were found (P = 0.33; M-W test, Fig. 2B).

To characterise the functional impact of GM eQTLs, 
we tested their overlap with functional annotations in 

adipose tissue from RoadMap Epigenomics, ENCODE, 
Remap2 and from ATAC-Seq publications [18, 30]. 
We found that eQTLs were significantly enriched in 
transcriptionally active histone marks (H3K4me3, 
P = 8.65e-15 in S and P = 1.86e-11 in V and H3K27ac, 
P = 1.38e-10 in S and P = 9.01e-09 in V, Fisher’s exact test) 
and significantly depleted from repressive histone marks 
(H3K27me3, P = 3.07e-04 in S and P = 6.18e-03, Fish-
er’s exact test) (Fig. 2C). GM eQTLs were also enriched 
in GM ATAC-Seq peaks for S (P = 5.43e-07, Fisher’s 
exact test) and V (P = 2.82e-03, Fisher’s exact test) tis-
sue (Fig.  2D). Similarly to GM, GTEx-am eQTLs were 
enriched in functional annotations (Additional File 1: 
Supplementary Figure S5).

Genetic regulatory effects across tissues and populations: 
eQTL sharing and specificity
Across tissues
Given that the FDR-based comparisons shown in 
Table  1 likely underestimate the extent of shared 
effects (54–69% overlap with 1,047 shared eGenes 
across tissues), we used p-value enrichment analysis 

Table 2 Top 10 cis-eQTLs in GM S and V tissues

All cis-eQTL results are provided in S Table 1

Chr chromosome, MA minor allele, MAF minor allele frequency, P-value significance in beta permutation (fastQTL), Q-value false discovery rate, GM Greek Metabolic, 
S subcutaneous, V visceral

GM S
eQTL Chr MA MAF P-value Q-value GeneID Gene name
rs3965185 19 T 0.489474 3.87E-36 5.00E-32 ENSG00000233927.4 RPS28

rs7308368 12 T 0.415789 2.98E-30 1.93E-26 ENSG00000013573.12 DDX11

rs59212603 7 C 0.236842 9.30E-27 4.00E-23 ENSG00000226278.1 PSPHP1

rs10096524 8 G 0.415789 2.16E-26 6.96E-23 ENSG00000071894.10 CPSF1

rs2687969 4 T 0.321053 9.99E-26 2.58E-22 ENSG00000163682.11 RPL9

rs12366 2 T 0.484211 7.02E-25 1.51E-21 ENSG00000204792.2 AC104135.3

rs1729660 2 T 0.363158 1.18E-24 2.17E-21 ENSG00000237651.2 C2orf74

rs393329 16 T 0.4 7.55E-24 1.22E-20 ENSG00000234719.4 RP11-166B2.1

rs2927608 5 A 0.326316 1.36E-23 1.95E-20 ENSG00000164308.12 ERAP2

rs35725606 6 T 0.478947 2.32E-23 3.00E-20 ENSG00000203875.6 SNHG5

GM V
eQTL Chr MA MAF P-value Q-value GeneID Gene name
rs2687969 4 T 0.322581 5.21E-30 7.35E-26 ENSG00000163682.11 RPL9

rs1046456 12 T 0.413978 2.76E-29 1.95E-25 ENSG00000013573.12 DDX11

rs3965185 19 T 0.494624 1.40E-28 6.59E-25 ENSG00000233927.4 RPS28

rs2927608 5 A 0.327957 1.33E-25 4.60E-22 ENSG00000164308.12 ERAP2

rs9928222 16 C 0.456989 1.63E-25 4.60E-22 ENSG00000059122.12 FLYWCH1

rs12366 2 T 0.483871 5.20E-25 1.22E-21 ENSG00000204792.2 AC104135.3

rs11021552 11 T 0.241935 1.21E-24 2.44E-21 ENSG00000149231.7 CCDC82

rs59212603 7 C 0.236559 3.39E-24 5.97E-21 ENSG00000226278.1 PSPHP1

rs10406056 19 C 0.354839 1.08E-23 1.69E-20 ENSG00000174652.13 ZNF266

rs1729660 2 T 0.365591 1.57E-23 2.21E-20 ENSG00000237651.2 C2orf74
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(pi1 estimate for replication, [31]) to obtain a better 
understanding of sharing of eQTLs between S and V. 
We report a replication rate of ~ 93%, indicating highly 
shared mechanisms of gene regulation across tissues, 
in accordance with previous studies [32]. However, we 
detected 83 eQTL-eGene pairs only in S and 62 only in 
V, through lack of association in the replicating tissue 
(based on the 5% tail of association p-values) (Addi-
tional File 2: Supplementary Table  S7). We extended 
our investigation of tissue specific associations through 
a linear model incorporating a Genotype × Tissue inter-
action term, and we report 200 eQTL-eGene pairs (177 
eGenes) with a significant interaction term (FDR < 5%) 
(Additional File 2: Supplementary Table  S8). Thirty-
five eGenes (same number of eQTLs), were identified 
by both methods (Additional File 2: Supplementary 
Table  S9) further supporting tissue specific regulatory 
effects. Twenty-one of these eGenes were detected only 
in GM and include genes with a role in diseases such 
as cancer (e.g. LUZP6 [33] PCDHB13 [34]) and obesity 
(e.g. NTRK2 [35]), narrowing down the list of genes 
that constitute promising candidates for further study. 
Four of the above eQTLs were also detected through 
our GxObesity analysis (rs62015152-CLN6, rs3805695-
PCDHB13, rs12378391-CCDC183 and rs2516064-
SUCO). Notably rs12378391, an eQTL in GM S, 

colocalizes with GWAS SNP rs12380852, that is linked 
to waist circumference (adjusted for BMI).

Across populations
We applied the same approach to compare findings 
across populations. FDR-based comparisons of eGenes 
shown in Table  1 (GM vs GTEx-am) revealed an over-
lap of 85–87%, with 1,673 and 1,283 shared eGenes for 
S and V tissues respectively (Fig. 3A). Through pi1 analy-
sis, we detected replication rates of GM associations in 
GTEx-am ranging from 90% (V) to 96% (S), implying 
common mechanisms of gene regulation, in line with 
similar studies [16]. Despite high levels of replication, 
we detected 78 (S) and 61 (V) eQTL-eGene pairs in GM 
only (139 eGenes in total, of which 64 were not identi-
fied as eGenes in GTEx-am), given the lack of association 
in GTEx-am (based on the 5% tail of association p-val-
ues) (Additional File 2: Supplementary Table S10). Given 
low Fst values (mean Fst across populations for S and 
V ~ 0.0039), we argue that eQTLs detected in GM only, 
do not arise from differences in allele frequencies across 
populations. Although we did not detect enrichment 
of biological properties (through gene ontology (GO) 
terms) amongst associated eGenes, we report clinically 
relevant genes including oncogenes SET, ST7 and ECT2 
in GM only (Fig. 3B).

OR=2.19
P=2.82e-03

OR=3.08
P=5.43e-07

DA C

B

Fig. 2 Properties of GM detected eQTLs. A Violin plot of Fst values for GM detected eQTLs in each tissue compared to GTEx-am. B MAF histogram 
plots showing allele frequencies of eQTLs in GM and GTEx-am. Among 3,058 GM-detected eQTLs in both tissues, 2,939 were also available 
in GTEx-am dataset (of which, 2,610 had the same minor allele). MAF comparison across populations revealed no differences (P = 0.33; M-W test). 
C Enrichment of GM eQTLs in adipose tissue functional annotations is shown as estimated odds ratios and 95% confidence intervals on the x 
axis for each annotation category in the y axis. Odds ratios greater than 1 indicate an enrichment of eQTLs in the given functional annotations, 
while odds ratios less than 1 indicate a depletion. Significant odds ratios are shown as filled circles or squares (P < 0.05). Cannon et al. (ref 18), Allum 
et al. (ref 30). D Enrichment of GM eQTLs in GM ATAC-Seq peaks in S (upper panel) and V (bottom panel) tissue
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To further explore specificity at the population level, we 
focused on GM-detected eGenes. Of the 1,047 eGenes 
detected in both GM tissues, 32 were not identified in 
GTEx-am (Additional File 2: Supplementary Table S11), 
with corresponding eQTLs not displaying allele fre-
quency differences (mean Fst in S and V ~ 0.0046). Of 
these eGenes seven display very different patterns of gene 
expression across populations (but similar in both tissues 
for each population) that may arise in part due to envi-
ronmental factors (Additional File 1: Supplementary Fig-
ures S6, S7, S8). GM eGene SNX33 for example encodes 
a protein regulating cellular responses to environmental 
stimuli (including nutrient uptake), developmental regu-
lation and cell signaling [36, 37]. Given that sorting nexin 
(SNX) family proteins have a role in the pathophysiology 
of diseases such as cardiovascular and neurodegenerative 
disease [38, 39] we suggest that follow-up studies focus-
ing on the regulation of this gene may help elucidate its 
potential involvement in disease risk.

Across tissues and populations
Finally, we sought to identify eQTL-eGene pairs that 
were detected in a single tissue in GM only, and report 23 
and 20 such associations in GM S and V respectively. We 
investigated colocalization of these eQTLs with GWAS 
SNPs and report four instances of overlap in each tissue. 
We highlight rs35046541, an eQTL for SELPLG (Selectin 
P Ligand) detected in GM V only, that colocalizes with 
rs1895941, a SNP associated with BMI [40] (Fig.  4A). 
SELPLG is a gene with a role in immune cell trafficking 
during inflammation [41] and has been associated with 
adiposity and obesity [42]. For the above eQTL, no allele 
frequency differentiation between GM and GTEx-am 
was detected (Fst = -0.0027), while SELPLG displayed 
distinct expression patterns in V tissues (GM V, mean 
RPKM = 8.67; GTEx-am V, mean RPKM = 8.34, P = 0.086, 
M-W test). We suggest that expression differences may 
be linked to environmental factors that drive the action 
of context-specific regulatory variants.

Fig. 3 Population sharing of GM detected eQTLs. A Overlap of eGenes detected in GM and GTEx-am in S and V. B eQTL plots for the oncogenes 
SET, ECT2 and ST7, showing population-specific regulatory effects. These eQTLs were found in GM only based on pi1 analysis. P-values represent 
association nominal p-values. GM: Greek Metabolic; GTEx-am: GTEx-ancestry-matched; S: subcutaneous; V: visceral
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Similarly, we report MIR21 (MicroRNA 21) and associ-
ated eQTL rs117352420 detected in GM S only (Fig. 4B, 
Additional File 2: Supplementary Tables S7, S10). MIR21 
displays distinct expression patterns in GM S vs. GTEx-
am S (GM S mean RPKM = 3.23; GTEx-am S mean 
RPKM = 0.69, P < 1e-05, M-W test, Fig.  4B) and is one 
of most frequently upregulated miRNAs in solid tumors 
[43]. We report that eQTL rs117352420 colocalizes with 
GWAS SNPs linked to pulse pressure, haematological 
traits and immune-related diseases including inflamma-
tory bowel disease (IBD) and multiple sclerosis (Addi-
tional File 2: Supplementary Table 12).

GWAS-eQTL colocalizations: similarities and differences 
across populations
To address how adipose tissue regulatory variation con-
tributes to complex traits and disease, we explored colo-
calization of GM-detected eQTLs with 99,655 GWAS 
SNPs. We found that approximately half of detected 
eQTLs (47.3% in S and 50.5% in V) colocalize with 
GWAS SNPs, highlighting potential causal genes and 
their tissue of action (Table  3, Additional File 2: Sup-
plementary Table  S12). Despite sample size differences, 
similar levels of GWAS-eQTL colocalization were 

observed for GTEx-am (~ 54%) (Table  3). Of note, over 
35% of eQTLs colocalize with GWAS SNPs linked to 117 
cardiometabolic traits (Supplementary Material 1: Sup-
plementary Table S13, Supplementary Text S3). Further-
more, following grouping of GWAS associated traits by 
experimental factor ontology (EFO) category, we found 
“body measurement” and “immune system disorder” as 
top terms for both GM tissues, followed by “neurologi-
cal”, “metabolic” and “cancer” associations (Fig. 5A). The 
prominence of these EFO categories likely reflects the 
presence of different cell types in adipose tissue and their 
differential contribution to complex phenotypes [44, 45]. 
Our findings are in line with studies from larger datasets 
(e.g. METSIM [16]) and highlight the use of modest-sized 
studies in understudied populations to help build on 
existing knowledge.

To uncover population differences in GWAS-eQTL 
colocalizations, we initially focused on eGene-trait pairs. 
Over half (57%) of eGene-traits were shared across pop-
ulations in both S and V. However, we report that 1,490 
(41%) and 1,338 (43%) eGene-trait pairs in GM S and V 
respectively were not replicated in GTEx-am, suggest-
ing population differences in gene regulatory mecha-
nisms underlying complex traits (Fig.  5B, Additional 

Fig. 4 Examples of GM detected eQTLs showing tissue and population specific regulatory effects. A SELPLG/rs35046541 eQTL, example 
of an eQTL detected in a single tissue (V) in GM only, that colocalizes with rs1895941, a GWAS SNP for BMI. Expression levels of SELPLG across GM 
and GTEx-am in V tissue are shown in the histogram (P-value from M-W test). B MIR21/rs117352420 eQTL, examples of an eQTL detected in GM S 
only and where expression patterns of the eGene differ across GM and GTEx-am (histogram, P-value from M-W test). GM: Greek Metabolic; GTEx-am: 
GTEx-ancestry-matched; S: subcutaneous; V: visceral
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File 2: Supplementary Table  S14). For these eGene-trait 
pairs detected in GM only, we explored expression pat-
terns of the corresponding eGenes (364 in S and 343 in 
V) across populations and we found that over 75% of 
genes exhibit significantly different expression patterns 
(Fig.  5C, Additional File 2: Supplementary Table  S15). 
These differences may reflect environmental effects that 
drive context-specific regulation of underlying traits (493 
associated in S and 243 in V) that map to EFO catego-
ries including “immune system disorder” (~ 24%), “body 
measurement” (~ 15%) and “cardiovascular” (~ 14%) 
(Fig.  5D). We also explored if colocalizing GWAS SNPs 
differ across populations and found that over 64% of 

GWAS SNPs were shared across GM and GTEx-am 
in both tissues (Additional File 1: Supplementary Fig-
ure S9A). GWAS associated traits map broadly to the 
same EFO categories in both tissues. However, for GM 
S specific GWAS SNPs only, we report an enrichment 
of ‘cardiovascular’ (P = 1.07e-02, OR = 1.65) or deple-
tion of ‘cancer’ (P = 8.60e-03, OR = 0.59) and ‘metabolic’ 
(P = 2.47e-02, OR = 0.53) EFO categories (Additional File 
1: Supplementary Figure S9B), highlighting the medical 
importance of S tissue. We hypothesize that GM specific 
GWAS SNPs colocalizations may partly reflect exposures 
that are particular to the living environment of the GM 
population sample. This is important as modulation of 

Table 3 Number of eQTLs colocalizing with GWAS SNPs in GM and GTEX-am

GM Greek Metabolic, GTEx-am GTEx-ancestry-matched, S subcutaneous, V visceral
a Regulatory trait concordance (RTC) ≥ 0.9 for colocalization
b Refers to the % of tested eQTLs colocalizing with GWAS SNPs

Population sample Input eQTLs Input genes Input GWAS-SNPs Tested eQTLs Colocalized 
 eQTLsa

Colocalized 
GWAS-SNPs

% of 
colocalized 
 eQTLsb

GM S 1,847 20,618 99,655 1,371 648 2,290 47.30%

GM V 1,448 21,322 99,655 1,092 552 1,955 50.50%

GTEx-am S 8,158 21,692 99,655 6,175 3,374 10,530 54.60%

GTEx-am V 5,809 22,058 99,655 4,404 2,313 7,706 52.50%

Fig. 5 Colocalization of eQTLs with GWAS signals in GM and GTEx. A EFO bar charts for eQTLs colocalizing with GWAS signals in GM and GTEx-am.  
B Population overlap of colocalized eGene-trait pairs, per tissue. C Histogram of M-W p-values from comparison of expression levels of 364 (of which 
16 were not expressed in GTEx-am S) and 343 (of which 18 were not expressed in GTEx-am V) eGenes corresponding to GM specific eGene-trait 
pairs. D Percentages of EFO categories for eGene-trait pairs detected only in GM. GM: Greek Metabolic; GTEx-am: GTEx-ancestry-matched; S: 
subcutaneous; V: visceral
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these associations through distinct expression patterns 
contributes to the effect of environmental factors to clini-
cal traits [20].

GM study provides further knowledge on the fine-tuning 
of adipose gene regulation
For eGenes with secondary, independent eQTLs (76 in 
S and 45 in V), we evaluated colocalization of the sec-
ondary eQTL with GWAS SNPs. We report 13 and 10 
eQTL colocalizations in S and V respectively, with the 
secondary, but not the primary eQTL, implying a role 
for regulatory fine-tuning (Additional File 2: Supple-
mentary Table S16). In GM S for example, rs4246598, a 
GWAS SNP associated with C-reactive protein (CRP) 
levels [46], colocalizes with the secondary eQTL detected 
for THNSL2 (Threonine Synthase Like 2) (rs34185550; 
RTC = 0.919 and linkage disequilibrium (LD) D΄ = 0.911) 
(Additional File 1: Supplementary Figure S10). This gene 
encodes a threonine synthase-like protein that exacer-
bates inflammation during inflammatory conditions [47] 
and has been associated with obesity and fat mass [48]. 
These findings suggest that modifying effects of inde-
pendent regulatory effects can contribute to differential 
penetrance of disease variants. Of note, secondary eQTLs 
colocalize with GWAS SNPs, over half of which (57%) did 
not colocalize with any primary eQTLs (Additional File 
2: Supplementary Table S16). This suggests that second-
ary eQTLs capture additional biological pathways.

Transcriptomic and epigenetic analyses reveal known 
pathways of adipose biology and highlight the medical 
importance of S tissue
We compared expression levels across S and V and report 
2,979 and 5,320 differentially expressed genes (DEGs) in 
GM and GTEx-am respectively (Additional File 3: Sup-
plementary Table  S17). DEGs were involved chiefly in 
developmental, signalling and inflammatory/immune 
system-related processes (Additional File 4: Supplemen-
tary Figures  S11A-B). DEGs by tissue overlapped sig-
nificantly across populations (of the 2,979 GM-detected 
DEGs, 1,654 were also detected in GTEx-am, P = 1e-288, 
Fisher’s exact test), suggesting that a substantial fraction 
of gene expression differences across the two tissues can 
be captured through studies like GM. Amongst overlap-
ping DEGs, we report 151 instances (Additional File 3: 
Supplementary Table  S18) of discordant direction of 
gene expression levels. Notably, these genes were mostly 
involved in biological processes including oxygen trans-
port (e.g. hemoglobin genes HBB and HBG2) and other 
responses to environmental stimuli, such as nutrient-
sensing pathways (e.g. low-density lipoprotein receptor 
LDLR), suggesting that discordant effects may be at least 
in part due to environmental differences (Additional File 

4: Supplementary Figure S12). In GM, and within each 
tissue, we also interrogated expression differences by 
obesity status and sex. When comparing by obesity sta-
tus, we detected 1,054 and 429 DEGs in S and V respec-
tively (Additional File 3: Supplementary Table  S19). For 
individuals with obesity, we detected upregulation of 
genes involved in inflammatory processes, not only in V, 
but in S as well (Additional File 4: Supplementary Figure 
S13), highlighting the underappreciated clinical relevance 
of S adipose tissue. When investigating expression dif-
ferences by sex we found 131 and 40 DEGs in S and V 
respectively, but no significant enrichment of functions.

Comparison of gene expression levels across popula-
tions for each tissue revealed four times as many DEGs 
(Additional File 3: Supplementary Table  S20) highlight-
ing genes involved in developmental, inflammatory, and 
metabolic processes (Additional File 4: Supplementary 
Figures S11C-D).

To further characterise adipose tissue in GM, we pro-
filed chromatin accessibility through ATAC-Seq and 
identified 16,907 and 14,700 peaks of open chromatin in S 
and V respectively (7,123 shared) (Additional File 3: Sup-
plementary Table S21). In both tissues, genes assigned to 
peaks were mostly involved in metabolic processes (Addi-
tional File 4: Supplementary Figures S14A-B). To detect 
more general adipose tissue signatures, we pooled reads 
from all samples (S and V) and detected 121,673 peaks 
(Additional File 3: Supplementary Table  S21). Genes 
assigned to peaks were mostly involved in developmental 
and signalling processes (Additional File 4: Supplemen-
tary Figure S14C), similar to signatures revealed when 
comparing gene expression patterns across tissues.

Discussion
The genetic architecture of gene regulation differs across 
tissues and populations [10, 12, 19, 20]. These differences 
contribute to phenotypic variance in complex traits, and 
in disease risk and pathogenesis. In the present study, we 
performed eQTL mapping in S and V adipose tissue, in a 
Greek population sample and compared findings to those 
from GTEx.

Through the study of an underexplored population, 
we have uncovered context-specific regulatory variants 
in genes that shape complex traits and influence disease 
risk. Comparison of regulatory variants across popula-
tions revealed regulatory effects in GM only for genes 
implicated in cancer, including ST7 [49], SET [50] and 
ECT2 [51]. ST7, for example, is an eGene in GM V only. 
This gene has an important role in the development of a 
range of cancer types, including breast and prostate can-
cer. ST7-eQTL rs4730777 colocalizes with esophageal 
adenocarcinoma GWAS SNP (rs2188554), suggesting 
that regulation of ST7 in adipose tissue may be involved 
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in other cancer types. We also highlight context-specific 
regulatory effects for genes involved in metabolic (e.g. 
obesity, NTRK2, [35]) and neurological (e.g. schizophre-
nia, MAN2A1, [52]) diseases, and for genes with a role in 
biological processes such as adipogenesis (e.g. DEPTOR, 
[53]). Overall, our findings highlight regulatory effects 
on genes with key roles for human health, and add to a 
growing literature indicating the relatively high yield that 
can be provided by modest-sized studies on understudied 
populations [10, 12, 19].

Notably, we demonstrate that our findings do not arise 
primarily from allele frequency differences across the two 
populations. Rather, we hypothesize that a fraction of 
regulatory variants detected arises through environmen-
tal effects on gene expression. For example, expression 
patterns for MIR21, the most commonly upregulated 
microRNA in solid tumors, differ significantly between 
GM and GTEx. We report an eQTL association in GM S 
only. MicroRNAs have been increasingly used in study-
ing environmental exposures and health effects [54] and 
are commonly deregulated by various types of environ-
mental pollutants, including airborne contaminants [55]. 
MIR21 is thought to act on small blood vessels, mediat-
ing the effects of air pollution that lead to endothelial 
dysfunction and to cardiac disease [56]. Studies in mice 
and humans have demonstrated its involvement in the 
development of heart disease [57], with higher MIR21 
levels detected in murine and human hearts [58]. MIR21 
is negatively affected by exposure to certain air pollutants 
(e.g. particulate matter PM2.5 and PM10, black carbon, 
organic carbon, and sulphates), as shown in human and 
animal-based studies [55, 56, 59]. Given this inverse asso-
ciation of MIR21 expression with exposure to air pollut-
ants, the higher MIR21 expression observed in GM S may 
arise due to exposure to lower levels or different types 
of airborne particulate matter compared to GTEx indi-
viduals. We report that the eQTL identified for MIR21 
colocalises with GWAS SNPs for pulse pressure, IBD, 
and multiple sclerosis (Additional File 2: Supplementary 
Table S12) traits that are influenced in part by air pollu-
tion [60–62]. Air pollution (airborne particulate matter) 
exerts negative effects on the human skin [63, 64] and has 
been linked with inflammation in subcutaneous adipose 
tissue [65]. In addition to respiratory uptake of air pol-
lutants, recent work suggests that there may be direct 
effects of particulate matter on S adipose tissue with air 
pollution particles reaching this tissue through hair fol-
licles in the human skin [64]. Such connections between 
gene regulation, environmental effects and disease risk 
are a first step towards unravelling mechanisms of patho-
genesis and the accompanying contribution of environ-
mental factors. Furthermore, such examples demonstrate 
the value of studying populations living in different 

environmental conditions. Such likely contributing fac-
tors are differences in air pollution levels (e.g. MIR21, 
[20]) or in dietary intake (e.g. LDLR, key regulator of 
cholesterol uptake, which showed discordant direction of 
gene expression levels between GM and GTEx-am, Addi-
tional File 3: Table S18).

We also report seven eGenes identified only in GM 
which display significant expression pattern differences 
across populations. SNX33, for example, belongs to the 
family of sorting nexins (SNXs), that modulate responses 
to environmental stimuli such as nutrient uptake, by 
shaping the sub-cellular localization of different nutri-
ent receptors [39]. SNXs have been implicated in neuro-
logical diseases including Alzheimer’s disease (AD) [39]. 
Recently SNX33 was found to be upregulated by the anti-
AD drug donepezil, positioning this gene as a promising 
therapeutic target for the disease [66]. In GM we report 
overall lower SNX33 expression levels in both tissues 
compared to GTEx. Understanding how environmental 
influences shape expression patterns of such drug target 
genes is critical, and studies such as the present one con-
tribute towards this direction.

We also report upregulation of inflammatory processes 
(e.g. cytokine production, phagocytosis) in S adipose tis-
sue of individuals with obesity (Additional File 4: Sup-
plementary Figure S13). Furthermore, we demonstrate 
colocalization of eQTLs detected in GM S with previ-
ously reported traits (e.g. BMI, WHR), but also with 
disease traits that according to our knowledge have not 
been reported as colocalizing to date, including stroke 
and Alzheimer disease (Additional File 2: Supplemen-
tary Table  S12). Recent study in obese mice receiving S 
tissue lipectomy reported neuroprotective effects of S tis-
sue against brain inflammation, a feature of dementia and 
stroke [67], highlighting the important role of S tissue in 
disease pathogenesis. Understanding further the mecha-
nisms of involvement of S tissue in disease risk is of inter-
est and our findings contribute towards this direction.

Although modest sample size is a limitation of the pre-
sent study, we demonstrate that studies of this size can 
reveal previously undetected regulatory variants. We 
report a replication rate of > 90% of our findings in the 
larger GTEx sample, but also record additional context-
specific regulatory effects. Similar studies have shown 
that population differences in eQTLs stem from dif-
ferences in allele frequencies [10, 12], while our study 
suggests that eQTL differences can also arise from envi-
ronmental effects on gene expression. A second limi-
tation of our study is that gene expression is from bulk 
adipose tissue, reflecting the overall biology of S and 
V adipose tissue. Given this, we cannot account for 
cell-type heterogeneity and its importance as a con-
founder in the interpretation of disease loci [45]. Cellular 
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heterogeneity is reflected by the prominence of disease 
categories including immune, metabolic, neurologi-
cal and developmental signals for detected DEGs, chro-
matin accessibility genomic regions and GWAS-eQTL 
colocalization instances. Finally, our study has inter-
rogated genetic variation through genotyping followed 
by imputation. As a result we have tested fewer variants 
than GTEx, which includes genetic variation data from 
DNA sequencing. Therefore, we have most likely missed 
an important fraction of causal variants [68] compared 
to GTEx. However, we were able to detect similar levels 
to GTEx of eQTL enrichment around, and in functional 
annotations.

Conclusions
By focusing on an understudied population, we have 
uncovered adipose tissue regulatory variants that likely 
arise due to differences in gene expression patterns 
across GM and GTEx and involve context-specific regu-
latory effects for clinically relevant genes. Uncovering 
these eQTLs highlights the utility of modest-sized studies 
in adding to our understanding of the molecular under-
pinnings of complex traits and to the identification of 
mechanisms that drive disease in specific tissues.

Methods
Population samples
Greek Metabolic (GM) study
GM comprises 106 Greek individuals (54 females), aged 
18–85  years (mean age at 53.8yrs) with a BMI range 
18–64 kg/m2 (47% with obesity, defined as BMI ≥ 30 kg/
m2) (Supplementary Material 1: Supplementary 
Table  S22). GM participants were individuals who 
were admitted to Laiko General Hospital in Athens for 
abdominal surgery (e.g. cholecystectomy, weight reduc-
tion surgery). Among 50 individuals with obesity, thirty 
underwent bariatric surgery. Following informed con-
sent, paired samples of abdominal subcutaneous (S) and 
visceral (V) adipose tissue were collected. Samples were 
stored immediately in Allprotect Tissue Reagent (Qiagen, 
Hilden, Germany) and transferred to -80 °C. The project 
was approved by the Bioethics Committee of Harokopio 
University of Athens (38073/13–07/2012), based on the 
Helsinki Declaration.

GTEx samples
We downloaded GTEx (v7) genotype and S and V expres-
sion data (478 individuals). To match GM and GTEx for 
ancestry, we used PCA on GTEx genotypes and retained 
391 individuals of European ancestry (GTEx-ancestry-
matched sample; GTEx-am) (Supplementary Material 1: 
Supplementary Table S22). To match the sample size and 
phenotypic characteristics (age, sex ratio, % of individuals 

with obesity), we randomly sampled 158 GTEx-am indi-
viduals, defining the GTEx-size-matched sample (GTEx-
sm) (Fig.  1, Supplementary Material 1: Supplementary 
Text S1, Supplementary Table S22).

Genotypes, gene expression, open chromatin
GM data

Genotyping and imputation Genomic DNA was 
extracted from blood using the iPrep PureLink gDNA 
Blood kit and iPrep Purification Instrument (Invitrogen, 
Life Technologies, Carlsbad, California, USA). Extracted 
DNA was genotyped on the Illumina HumanOmni2.5 
array (Exome 8v1-A or 8v1-1_b). Sex check by PLINK 
[69] was performed to identify individuals with discord-
ant sex information. Duplicated samples, related individ-
uals and subjects that did not cluster with 1 KG European 
populations through PCA were removed. A total of seven 
individuals were excluded, leaving 99 individuals. Geno-
types were pre-phased with SHAPEIT [70] and imputed 
to the 1  KG Genomes Project Phase III reference panel 
[71] using IMPUTE 2 [72]. Following imputation, sin-
gle nucleotide polymorphisms (SNPs) were filtered for 
minor allele frequency MAF ≥ 0.05, imputation confi-
dence score INFO of > 0.4 and Hardy–Weinberg Equi-
librium (HWE) p > 1e-06, yielding ~ 6.3 million variants. 
PCA on genotypes was carried out using PLINK [69] to 
determine the extent of GM population structure and to 
compare GM to other European populations, including 
1KG_EUR and the GTEx population samples described 
above.

RNA‑Seq RNA was extracted from S and V samples 
using the RNeasy Lipid Tissue MiniKit (Qiagen, Hilden, 
Germany) and libraries were prepared with the Illumina 
TruSeq kit. Sequencing was performed on the Illumina 
HiSeq2000 platform at two centers (University of Geneva, 
paired-end 49 bp reads, 81 samples and Genome Quebec, 
paired-end 100 bp reads, 129 samples) to a median depth 
of 53.1 million reads (interquartile range 33–57 million 
reads). In order to detect known and hidden confound-
ers affecting gene expression, we performed linear mixed 
model regressions of available technical (e.g. GC content, 
insert size, sequencing center, RNA integrity number 
(RIN)) and biochemical (e.g. triglycerides, fasting glu-
cose) variables on gene expression using the lme4 R pack-
age [73]. We used the pi1 statistic [31] to detect covariates 
affecting a large number of genes. We selected the age, 
sex and BMI category (individuals with or without obe-
sity; BMI >  = 30  kg/m2) as the most informative covari-
ates to include in our differential expression analyses. To 
ensure data comparability, 100 bp reads were trimmed to 
49 bp and mapped to GRCh37 using GEM [74]. Libraries 
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with depth < 25 million reads were retained following 
diagnostic tests to ensure that the available RNA-Seq 
reads were adequate to detect genes in a homogeneous 
manner similarly to samples with more reads. To this end 
we used metaseqR [75] to assess the adequacy of libraries 
to detect genes (features and biotypes) by constructing 
sequential curves depicting the percentage of biological 
features detected when subsampling the total number of 
reads. Libraries with depth < 25 million reads did not dif-
fer in this manner from the rest of the samples and were 
thus retained. Importantly, Pearson correlation analysis 
between fold changes across two conditions (including or 
excluding samples with < 25 million reads) did not reveal 
substantial differences (Pearson’s R = 0.994). Gene-level 
quantification was performed on GENCODEv19 using 
QTLtools quan module [76]. We excluded outliers using 
PCA plot on RPKM (Reads Per Kilobase Million) values, 
leaving 102 samples in S and 99 in V. PCA revealed no 
batch effects (Supplementary Material 1: Supplementary 
Figure S15). Genes with RPKM ≥ 0.5 in at least 10% of 
individuals were taken forward to further analyses.

Open chromatin profiling (ATAC‑Seq) Chromatin was 
extracted from S and V samples as described in [77]. 
We performed ATAC-Seq on paired samples of S and 
V fat from nine individuals (18 samples) on the Illu-
mina HiSeq2000. All samples were initially single-end 
sequenced (50 bp). We also sequenced a subset of sam-
ples with paired-end 100  bp configuration. Reads of 
100 bp were trimmed to 50 bp and mapped to hg19 using 
BWA [78]. Following quality control, we retained 16 sam-
ples (from seven individuals with paired samples and two 
individuals with samples only from S) for further analy-
sis (Supplementary Material 1: Supplementary Figure 
S16, Supplementary Text S2). Experimental challenges of 
processing a tissue with high lipid content and cell type 
heterogeneity led to variable yields of chromatin and sub-
sequent sequencing depth. Given this variation, we nor-
malized read counts across samples by scaling down to 
the lowest depth and pooled reads from all individuals 
for each tissue to explore S and V tissue characteristics. 
We also pooled reads from all samples (S and V) to define 
more general features of chromatin accessibility for adi-
pose tissue.

GTEx genotypes and gene expression data Genotypes, S 
and V fat RNA-Seq data from GTEx v7 were downloaded 
from dbGaP under accession phs000424.v7.p2. For eQTL 
analysis, we retained variants with MAF ≥ 0.01 in GTEx-
am (~ 9  M). GTEx data were processed and analyzed 
using the GM analysis pipeline. Genes with RPKM ≥ 0.5 
in at least 10% of individuals were used as input for DE 
and eQTL analysis.

Data analysis
Differential expression (DE)
We compared transcriptomes across tissues (S vs V) for 
GM and GTEx samples. We also compared transcrip-
tomes across populations (GM vs GTEx) for each tis-
sue. DESeq2 [79] was used to call differentially expressed 
genes (DEGs) with age, sex and BMI category (individu-
als with or without obesity BMI >  = 30 kg/m2) as covari-
ates. For each comparison, we defined DEGs at 5% False 
Discovery Rate (FDR) and with fold change ≥ 1.5. In GM, 
within each tissue, we also explored DEGs across BMI 
categories and sex. To probe the underlying biology of 
differential gene expression, we tested for enrichment 
of GO terms using topGO [80]. Analysis was based on 
gene counts using the ‘weight’ algorithm with Fisher’s 
exact test. Redundant GO terms were removed through 
REVIGO [81].

ATAC‑Seq peak calling
We called open chromatin peaks using MACS2 [82] with 
flags ‘‑g hs –nomodel –nolambda –extsize 147 –keep‑
dup‑all’, retaining all peaks that satisfied FDR < 5% and 
fold enrichment > 3. Peak annotation was done using 
HOMER [83] and GO analysis for assigned genes was 
done using topGO [80].

eQTL mapping
Cis-eQTLs were mapped in S and V for: 1) GM (95 S and 
93 V), and 2) GTEx-am (313 S and 264 V) using FastQTL 
(v2.184) [84]. The mapping window was defined as 1 Mb 
up- and down-stream of the transcription start site (TSS) 
for each gene. We tested for association between SNP 
genotypes and gene expression levels and corrected for 
sex, sequencing platform and the top three genotype 
PCs. To select the number of gene expression principal 
components (PCs) to include and in order to maximize 
discoveries for each tissue, we counted the number of 
eGenes (genes with at least one significant cis-eQTL) 
identified after incrementally increasing the number of 
PCs accounted for in the model from 0 to 50 or 100 by 
increments of ten or twenty (Supplementary Material 1: 
Supplementary Figure S17). An FDR threshold of < 5% 
was applied to identify eGenes. Autosomal eQTLs only 
were retained for downstream analyses. To identify 
eGenes with multiple independent eQTLs, we applied a 
forward–backward stepwise regression to learn the num-
ber of independent variants per phenotype [85]. In GM, 
we also explored eQTLs across individuals with or with-
out obesity and across the sexes within each tissue. To do 
this, we applied linear regression with Genotype × Obe-
sity and Genotype × Sex interaction term respec-
tively. Effects linked to obesity status were captured by 
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adjusting our eQTL analysis for the top three PCs of gene 
expression (Supplementary Material 1: Supplementary 
Figure S18). To explicitly adjust for obesity status, we 
re-ran main eQTL analysis including obesity status as a 
covariate.

To explore allelic imbalance in gene expression, we 
assessed allele-specific expression (ASE) in protein-cod-
ing genes possessing a heterozygous-transcribed SNP 
in ≥ 7 GM individuals. SNP-level ASE data were gener-
ated for each tissue using the GATK ASEReadCounter 
tool [86]. Variants with UCSC 50-mer mappability < 1, 
simulation-based evidence of mapping bias [87] and no 
evidence for monoallelic expression by requiring rep-
resentation of both alleles in each SNP were excluded. 
Only variants with ≥ 8 reads were used. To test for ASE, 
we performed binomial exact test and significance was 
set at FDR < 5% (Supplementary Material 1: Supplemen-
tary Figure S19). Functional characterization of ASE 
sites and assignment of SIFT and Polyphen2 scores for 
pathogenicity prediction for missense variants was done 
through Ensembl VEP [88].

Properties of eQTLs
We calculated the fixation index (Fst) to directly measure 
allele frequency differentiation across populations using 
Plink [69]. To functionally characterize eQTLs, we tested 
whether they are enriched in adipose tissue annotations 
including promoters, enhancers, 15-chromatin states 
model (merged to 9 states) and four Chip-Seq histone 
marks from Roadmap Epigenomics (ID E063 V tissue), 
DNase hypersensitive sites (DHS) from ENCODE (V 
tissue), transcription factor binding sites from Remap2 
(adipocytes ASC) and ATAC-Seq publicly available data 
(S adipocytes from [30] and S tissue from [18]). We also 
tested for eQTL enrichment in ATAC-Seq peaks iden-
tified in GM S and V adipose tissue. Enrichment was 
tested using QTLtools [76] fenrich with significance set 
at P < 0.05.

Overlap of eQTLs with GWAS signals
We downloaded the NHGRI/EBI GWAS Catalog (v1.0.2, 
2021–09-05) and retained associations with P < 5e-8. 
GWAS SNPs explored were from studies in populations 
from all ancestries, with the majority (~ 77%) however 
being studies in European ancestry populations. Colo-
calization of GWAS variants and eQTLs was assessed 
using Regulatory Trait Concordance, RTC (colocalization 
when RTC ≥ 0.9) [89]. We summarized all tested signals 
into eleven broader categories using Experimental Factor 
Ontology (EFO) terms [90]. To uncover population dif-
ferences in regulatory effects underlying disease risk, for 
each tissue, we explored the overlap across populations 

of: a) eGene-trait pairs and b) disease associated GWAS 
SNPs that colocalize with eQTLs.

Comparison of eQTLs across tissues and populations
We compared eQTLs across tissues and populations 
through: a) FDR-based comparisons, b) p-value enrich-
ment analysis (replication was quantified using the pi1 
statistic, [31]), and c) a linear mixed model with a Geno-
type × Tissue interaction term (for GM-detected eQTLs 
only). Specificity to a particular tissue or population was 
assessed by focusing on eQTLs mapping in the 5% tail of 
the distribution of association p-values in the replicating 
tissue or population. It should be noted that GTEx-am 
is ~ four times larger than the GM sample. Additionally, 
tested SNPs in GTEx-am were more (by 30%) and eQTLs 
were called at MAF 1%. This allows for greater overlap 
when comparing eQTL findings from GM to GTEX and 
makes our analysis stricter. Therefore, replication levels 
of GM findings in GTEx-am that are reported here likely 
reflect the upper bound of shared effects.
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