
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Xiong et al. BMC Genomics          (2023) 24:384 
https://doi.org/10.1186/s12864-023-09504-0

BMC Genomics

†Xuehang Xiong and Jianxin Li contributed equally to this work.

*Correspondence:
Xuehai Zhang
xuehai85@126.com
1National Key Laboratory of Wheat and Maize Crop Science, College of 
Agronomy, Henan Agricultural University, Zhengzhou, China
2The Shennong Laboratory, Zhengzhou, China

Abstract
Background  The chlorophyll content (CC) is a key factor affecting maize photosynthetic efficiency and the final 
yield. However, its genetic basis remains unclear. The development of statistical methods has enabled researchers to 
design and apply various GWAS models, including MLM, MLMM, SUPER, FarmCPU, BLINK and 3VmrMLM. Comparative 
analysis of their results can lead to more effective mining of key genes.

Results  The heritability of CC was 0.86. Six statistical models (MLM, BLINK, MLMM, FarmCPU, SUPER, and 3VmrMLM) 
and 1.25 million SNPs were used for the GWAS. A total of 140 quantitative trait nucleotides (QTNs) were detected, 
with 3VmrMLM and MLM detecting the most (118) and fewest (3) QTNs, respectively. The QTNs were associated 
with 481 genes and explained 0.29-10.28% of the phenotypic variation. Additionally, 10 co-located QTNs were 
detected by at least two different models or methods, three co-located QTNs were identified in at least two different 
environments, and six co-located QTNs were detected by different models or methods in different environments. 
Moreover, 69 candidate genes within or near these stable QTNs were screened based on the B73 (RefGen_v2) 
genome. GRMZM2G110408 (ZmCCS3) was identified by multiple models and in multiple environments. The functional 
characterization of this gene indicated the encoded protein likely contributes to chlorophyll biosynthesis. In addition, 
the CC differed significantly between the haplotypes of the significant QTN in this gene, and CC was higher for 
haplotype 1.

Conclusion  This study’s results broaden our understanding of the genetic basis of CC, mining key genes related to 
CC and may be relevant for the ideotype-based breeding of new maize varieties with high photosynthetic efficiency.
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efficiency
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Background
Chlorophyll, which is an essential photosynthetic pig-
ment in the chloroplasts of higher plants, is closely 
related to leaf photosynthesis and yield potential; it is 
critical for the accumulation of carbohydrates and con-
tributes to complex processes mediating the acquisition 
of energy from light and electron transport [1–3]. In 
the Arabidopsis thaliana chlorophyll synthesis pathway, 
EIN3/EIL1 induces the expression of genes encoding pro-
tochlorophyllide oxidoreductase A and B, which coop-
eratively function with phytochrome-interacting factor 1 
(PIF1) [4], thereby preventing seedling photo-oxidation 
and promoting cotyledon greening [5]. Furthermore, 
PIF1 can regulate the expression of PORC [6] and inter-
act with gibberellin (GA)-regulated DELLA proteins [7] 
as well as a transposase-derived transcription factor (i.e., 
FHY3) to modulate chlorophyll biosynthesis [8]. Another 
study revealed that BRAHMA encodes the SWI2/SNF2 
chromatin-remodeling ATPase that helps to regulate a 
novel mechanism underlying chlorophyll biosynthesis; 
compared with wild-type A.thaliana plants, RNA-inter-
ference transgenic seedlings of BRAHMA have a higher 
greening rate under light and accumulate less protochlo-
rophyllide and reactive oxygen species [9]. The chloro-
phyll content (CC) is related to seedling development and 
survival [10], but it is also directly or indirectly related 
to leaf senescence and crop yield [11]. Earlier research 
on rice demonstrated that OSWRKY5 is a transcription 
factor that promotes leaf senescence via OsNAC2 [12], 
which affects abscisic acid-induced leaf senescence and 
the rice yield [11]. Similarly, the rice leaf CC and photo-
synthetic efficiency are closely associated with the accu-
mulation of dry matter [13]. Moreover, there is a positive 
correlation between the grain CC and the grain filling 
rate [14]. Previous studies on the chlorophyll of Chinese 
cabbage [3], soybean [15], Brassica napus L. [16], and 
other plants [17] verified the importance of chlorophyll.

Maize is one of the most widely grown cereal crops 
worldwide. Accordingly, increasing maize productivity is 
crucial for agricultural development [18]. The ear leaf is 
one of the most important leaves of maize plants partly 
because of its close association with the yield [19]. Recent 
studies showed that increases in CC and the photosyn-
thetic rate are critical for producing high maize yields 
[20, 21]. The Soil-Plant Analysis Development (SPAD) 
value, which may be used to represent the CC, can be 
determined using a rapid, accurate, and non-destructive 
measurement method involving the SPAD-502 chlo-
rophyll meter [22]. Although several studies on maize 
chlorophyll-related genes were conducted recently [23, 
24], the molecular mechanism of regulating chlorophyll 
remains to be elucidated. Therefore, an in-depth analy-
sis of the genetic basis of the maize ear leaf CC is nec-
essary for breeding new maize varieties with efficient 

photosynthetic activities and for increasing the maize 
yield.

A genome-wide association study (GWAS) can effec-
tively reveal the genetic basis of complex quantita-
tive traits according to linkage disequilibrium (LD). 
The advantages of linkage analyses over other methods 
include their higher throughput and greater resolution 
[25]. For example, YIGE1, which is an important gene 
for increasing maize ear growth and yield, was cloned 
following a GWAS [26]. Additionally, CC-related genes 
were mapped according to a GWAS [27, 28]. In another 
study, the rice flag leaf CC was determined and GWAS 
data were combined with high-density markers to detect 
several significant loci associated with chlorophyll-
related traits in different rice subpopulations, including 
the locus for Ghd7 [29]. The development of statistical 
methods has enabled researchers to design and apply var-
ious GWAS models, including single-locus model: MLM 
[25] and multi-locus models: MLMM [30], SUPER [31], 
FarmCPU [32], and BLINK [33]. Recently, 3VmrMLM 
was established as a novel MLM with three variance 
components for more efficient calculations [34]. This 
model is useful for identifying quantitative trait nucleo-
tides (QTNs) and revealing QTN-by-environment inter-
actions (QEIs) and QTN-by-QTN interactions.

In this study, the SPAD values of ear leaves from 290 
maize inbred lines were determined in three environ-
ments and best linear unbiased prediction (BLUP) values 
were also calculated to represent the maize CC pheno-
type. A GWAS was performed using 1.25  million SNPs 
and six models (MLM, MLMM, SUPER, FarmCPU, 
BLINK, and 3VmrMLM) to elucidate the genetic basis 
of CC in maize. The results of this study will enrich our 
understanding of the molecular mechanism underlying 
the maize CC. The generated data may be used to further 
characterize the genes related to chlorophyll synthesis, 
while also providing the theoretical foundation for breed-
ing maize plants with optimal light-use efficiency.

Results
Phenotypic variation
The ear leaf Soil-Plant Analysis Development (SPAD) val-
ues [i.e., Chlorophyll Content (CC)] in Yuanyang (YY), 
Hebi (HB), and Yongchen (YC) at 10 days after pollina-
tion were analyzed. Additionally, the BLUP values were 
calculated and correlations were assessed. The index 
values in YC were lower than those in YY and HB, but 
similar values were obtained in YY and HB (Table  1; 
Fig.  1). Among the three environments (i.e., HB, YY, 
and YC) and Best Linear Unbiased Prediction (BLUP), 
the standard deviation in the SPAD value was high-
est for YC and YY (5.38), whereas the standard devia-
tion was lowest for BLUP (3.83). The SPAD values were 
significantly correlated between any two environments 
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(Fig.  2). Moreover, absolute value of skewness and kur-
tosis of the SPAD value for all environments and BLUP 
is less than 1 (Table 1) and it displayed a normal distri-
bution (Figure S1), which implies CC follows a typical 
quantitative pattern that is controlled by numerous genes 
with small effects. The double-factor variance analysis 
revealed extremely significant genetic and environmental 
effects on CC. The genotype-by-environment interaction 
also had a significant effect (Table S1). According to the 
results, genetic factors influenced the maize CC more 
than environmental factors; the broad-sense heritability 
(0.86) was consistent with this observation (Table 1).

Identification of the QTNs for the CC-related traits based 
on a GWAS
A GWAS was performed using six models (MLM, 
BLINK, MLMM, SUPER, FarmCPU, and 3VmrMLM). 
The QQ plots of all of the models, with the exception of 
3VmrMLM, reflected the relative reliability of the GWAS 
results (Figure S2). Using − log10(p-value) ≥ 5.75 or LOD 
score ≥ 3 as the significance threshold, we counted the 
QTNs for the six models in different environments. In 

addition to the “Single_env” method, the “Multi_env” 
method of 3VmrMLM was used to detect QTNs. The 
identified candidate genes were divided according to 
the models, environments, and methods. In YY, the 
BLINK, MLMM, SUPER, FarmCPU, and 3VmrMLM 
(“Single_env”) methods identified 7, 4, 7, 7, and 76 candi-
date genes, respectively. In YC, 4, 1, 11, and 81 candidate 
genes were detected using MLM, MLMM, SUPER, and 
3VmrMLM. In HB, 8, 11, 7, 33, 9, and 74 candidate genes 
were revealed by MLM, BLINK, MLMM, SUPER, Farm-
CPU, and 3VmrMLM, respectively. For BLUP, 47 and 82 
candidate genes were detected by SUPER and 3VmrMLM 
(“Single_env”), respectively, whereas 3VmrMLM (“Multi_
env”) detected 145 candidate genes, including 21 genes 
associated with QEIs (Table S2, Fig. 3). The R2 values for 
the QTNs were 0.29–10.28, indicating they explained 
0.29–10.28% of the phenotypic variation. The LOD 
scores for the QTNs detected using 3VmrMLM were 
3.16–43.35 (Table S2). Thus, compared with the other 
models, SUPER and 3VmrMLM detected more candidate 
genes for the subsequent correlation analysis.

Analysis of co-located QTNs
We investigated 19 co-located QTNs across various mod-
els, methods, or environments. Out of these, four QTNs 
were detected within the same environment but using 
different models. Additionally, three QTNs were detected 
in different environments, but utilizing the same model. 
Furthermore, three QTNs were discovered in different 
environments and analyzed using different models. Three 
QTNs were found in different environments and ana-
lyzed using different methods. It is worth noting that six 
QTNs were identified in the same environment through 
the application of both the “Single_env” and “Multi_env” 
methods of 3VmrMLM. Moreover, three QTNs were 
detected in different environments using the two meth-
ods of 3VmrMLM (Table 2). For each QTN, we defined 
a 100  kb interval, encompassing 50  kb upstream and 
downstream, as the respective QTL region. It is impor-
tant to highlight that two of the co-located QTNs were 
within the same QTL, while the remaining 17 QTNs 
were situated in distinct QTL regions. Out of these 18 
QTL regions, two lacked identified candidate genes, 

Table 1  Descriptive statistics of the CC (SPAD value) of maize in different environments
Trait Environment Range Mean sd. Ske. Kur. H2

SPAD HB 38.93–64.91 52.48 5.14 -0.09 -0.40 0.86

YC 32.28–64.85 48.74 5.38 -0.17 -0.07

YY 39.93–65.22 52.90 5.38 -0.09 -0.69

BLUP 41.76–59.64 51.33 3.83 -0.08 -0.58
sd., standard deviation for the sample population

Ske., skewness (i.e., degree of asymmetry used to represent the relative mean)

Kur., kurtosis (i.e., peak value used to represent the dataset)

H2, broad-sense heritability

Fig. 1  Variations in the SPAD values (CC) among the maize ear leaves in 
three environments (HB = Hebi, YY = Yuanyang, and YC = Yongcheng) and 
variations according to BLUP. The same abbreviations are used in the other 
figures. The black horizontal line indicates the median
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However, the remaining 16 QTL regions contained a 
total of 69 candidate genes (Table  2). These candidate 
genes detected by each model were analyzed and sum-
marized. In details, the candidate genes detected using 
MLM were not co-located with the candidate genes 
detected by the other five models. Furthermore, we per-
form a comprehensive evaluation of different models, 
with a specific emphasis on their efficacy in gene local-
ization and 21 candidate genes are the co-located genes 
that identified at least two different models. Notably, 
SUPER, 3VmrMLM, and FarmCPU demonstrated supe-
rior performance and were therefore deemed to produce 
better results because they exhibited the highest number 
of co-located candidate genes (Fig. 4A). Additionally, the 
3VmrMLM model (only this model) identified a total of 
395 candidate genes. Specifically, 295 genes were iden-
tified using the “Single_env” method, while 145 genes 
were identified using the “Multi_env” method. Impor-
tantly, there were 45 candidate genes that were detected 
by both the “Single_env” and “Multi_env” methods of the 
3VmrMLM model (Fig. 4B).

Candidate gene analysis
The candidate genes identified in Table S2 were catego-
rized into two groups: those with functional annotations 

Fig. 3  Number of candidate genes identified in different environments 
or by different models. “YY”, “YC”, “HB”, “BLUP” and “Mutli” indicated that the 
candidate genes identified in the environments of Yuanyang, Yongcheng, 
Hebi, Best linear unbiased prediction and by 3VmrMLM “Multi_env” meth-
od, respectively

 

Fig. 2  Pearson coefficients for the CC-related traits of maize lines in different environments. The lines were selected from an association mapping panel
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and those without functional annotations. We performed 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses specifically 
for the genes with functional annotations. The top 20 GO 
terms related to biological processes and KEGG path-
ways were determined, revealing that the candidate genes 
were predominantly enriched in metabolic processes 
(Fig.  5). It has been established in previous studies that 
chlorophyll serves as the primary pigment for photosyn-
thesis. Photosynthesis, being the basis and source of plant 
metabolism, suggests a close relationship between plant 
metabolism and chlorophyll [35, 36]. Taking into account 
the candidate genes located within the co-located QTNs, 
we conducted a detailed examination and identified cor-
responding homologs in A. thaliana or rice to further 
characterize the functional aspects of these candidate 

genes (Table 2). Based on the aforementioned findings, it 
is crucial to analyze the key candidate genes within the 
co-located QTLs. These genes hold significant potential 
for further research and exploration.

One of the candidate genes, GRMZM2G110408, was 
associated with two co-located QTNs (chr9.S_110657959 
and chr9.S_110659989). This gene encodes a nucleoside 
triphosphatase involved in chlorophyll biosynthesis. In 
Arabidopsis thaliana, its homolog has been reported to 
encode a metalloproteinase that contributes to thylakoid 
membrane biogenesis [37] and aids in the repair of Pho-
tosystem II (PSII) after photoinhibition-related damage. 
The expression levels of this gene (both transcript and 
protein levels) increase in response to light, we named it 
as ZmCCS3. Among the annotated candidate genes, two 
genes (GRMZM2G376595 and GRMZM2G098420) were 

Fig. 5  Enriched GO terms and KEGG pathways among the candidate genes. (A) Enriched GO terms in the biological process. (B) Enriched KEGG pathways

 

Fig. 4  Candidate genes revealed by the models used for the GWAS. (A) Venn diagram of the number of co-located candidate genes detected by five 
models. (B) Venn diagram of the number of co-located candidate genes detected by the 3VmrMLM “Single_env” and “Multi_env” methods
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found to be associated with leaf senescence (GO:0010150, 
p-value = 0.0052) (Fig.  5A), a process involving changes 
to chlorophyll [38]. GRMZM2G098420, co-located 
by both the “Single_env” and “Multi_env” methods 
of 3VmrMLM. In Arabidopsis thaliana, its homo-
log encodes an autophagy protein 5, which is part of 
the Atg12–Atg5–Atg16 complex (cellular component) 
(Table S3). This suggests its involvement in chlorophyll 
degradation. In contrast, GRMZM2G376595 encodes a 
phosphatidylcholine-sterol O-acyltransferase. Another 
candidate gene, GRMZM2G056920, was co-located in 
three environments (YC, HB, and BLUP) according to the 
“Single_env” method and the “Multi_env” method. The 
LOD scores of the associated QTNs were relatively high 
(ranging from 7.36 to 15.69). This gene encodes a protein 
involved in the construction of the cell wall structure. A 
previous study indicated that the overexpression of its 
Arabidopsis thaliana homolog, AT3G12130 (KHZ1), 
significantly promotes leaf senescence [39]. The gene 
GRMZM2G045314, co-located by four models (BLINK, 
MLMM, SUPER, FarmCPU), encodes a GTP-binding 
protein 2. In rice, its homolog is involved in controlling 
grain development and the grain filling process, directly 
affecting yield. This suggests that further research on 
this gene could be valuable for optimizing yield [40]. 
GRMZM2G093347, co-located by both the “Single_env” 
and “Multi_env” methods of 3VmrMLM, encodes ade-
nine Adenine phosphoribosyl transferase 1 (APT1). An 
Arabidopsis thaliana mutant lacking ATP1 activity exhib-
ited higher chlorophyll content (compared to the wild-
type leaf chlorophyll content), suggesting that this gene 
may be associated with chlorophyll accumulation [41].

Apart from the comprehensive analysis of the co-
located candidate genes, we observed that 3VmrMLM 
outperformed the other models in terms of detecting 
QTNs and identifying more candidate genes associ-
ated with CC. For instance, GO analysis revealed genes 
enriched in protein localization within chloroplasts 
(GO:0072598, p-value = 0.0437) (Table S3), one such 
gene, GRMZM5G839422, was functionally annotated 
as encoding an inner membrane protein. In an earlier 
study, a mutant carrying a mutated ALB3 gene (homolo-
gous to GRMZM5G839422) exhibited abnormal chloro-
plasts and a lower CC compared to the wild-type control 
[42]. The A. thaliana homolog of GRMZM2G005848 
(ARC5) encodes a chloroplast division protein. Muta-
tions in this gene lead to a decrease in the number and 
size of chloroplasts in mesophyll cells [43]. In cucum-
bers, the homolog of this gene causes the cucumber 
peel to appear light green [44]. The functional annota-
tions of this gene include biological processes related 
to chloroplast fission (GO: 0010020, p-value = 0.0240) 
and organization (GO:0009658, p-value = 0.0431) (Table 
S3). By searching for homologous genes in Arabidopsis 

and rice, some interesting discoveries were made. 
GRMZM2G017077 appears to affect chloroplasts and 
chlorophyll synthesis. The A. thaliana homolog, VIPP1, 
is a multifunctional protein in chloroplasts with impor-
tant effects on the envelope [45]. It is also involved in 
the maintenance of photosynthetic membranes [46]. The 
gene GRMZM2G135283 falls within the QTL interval 
of the QTN (chr1.S_274280041, P-value = 1.18 × 10− 12) 
that located on chromosome 1 was detected in YC by 
3VmrMLM model. Its rice homolog, OsSHM1, encodes a 
serine hydroxymethyltransferase. The CC of the OsSHM1 
mutant is significantly lower than that of the wild-type 
control and the mutant seedlings exhibit a less green 
phenotype compared to the wild-type seedlings during 
early growth and development [47]. The rice homolog 
of GRMZM2G171444 encodes a chloroplast precursor, 
while the A. thaliana homolog encodes a chloroplast 
envelope and matrix protein that influences chlorophyll 
biosynthesis. However, further investigation and charac-
terization of GRMZM2G171444 are required. Based on 
the enriched GO terms, KEGG pathways, co-localization 
results and earlier studies on the homologs of the can-
didate genes, we selected 11 candidate genes. Among 
them, the QTN associated with GRMZM2G005848 and 
GRMZM2G098420 were located approximately 20  kb 
downstream of the two genes, while the QTN of the other 
nine genes were located within the gene regions. These 
genes show significant potential for further research into 
their association with CC.

Analysis of candidate gene expression patterns
We examined the expression profiles of the 11 selected 
candidate genes in different B73 tissues and constructed 
a heatmap of the FPKM-based expression levels (Fig. 6). 
Earlier research confirmed CC is closely related to leaf 
photosynthesis [48] and directly or indirectly affects leaf 
senescence [11]. Therefore, we focused on the candidate 
genes highly expressed in the leaf tissues (S11–S14), espe-
cially the mature leaves (S14). The GRMZM2G171444 
expression level was significantly higher in S14 than in 
the other tissues. Moreover, GRMZM2G171444 was 
the most highly expressed candidate gene in mature 
leaves (Fig.  6, Table S5). However, GRMZM5G839422, 
GRMZM2G110408, and GRMZM2G017077 were also 
highly expressed in S14. The GRMZM2G093347 expres-
sion level was high in all tissues. In contrast, the other 
genes were expressed at relatively low levels in the leaves. 
Overall, the analysis of candidate gene expression indi-
cated that GRMZM2G171444 and ZmCCS3 may be 
related to CC and involved in chlorophyll synthesis, but 
GRMZM5G839422 and GRMZM2G017077 may also 
influence CC.
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Haplotype analysis of candidate genes
We performed a haplotype analysis of the key candidate 
genes (Table S6). The p-values for the phenotypic dif-
ferences associated with QTNs were less than 0.01 for 

chr3.S_17284190 (LOD = 6.7012, p-value = 2.77 × 10− 8) 
and chr3.S_168368384 (LOD = 15.2228, 
p-value = 5.60 × 10− 17) within GRMZM5G839422 and 
GRMZM2G017077 respectively. Whereas they were less 
than 0.001 for chr5.S_215364939 (p-value = 6.40 × 10− 7) 
and less than 0.0001 for the remaining eight QTNs. 
Accordingly, the phenotypic differences related to the 
SNPs in the 11 key candidate genes were all extremely 
significant (Figure S3, Figs.  7B, 8B and 9B). Next, we 
extracted all of the polymorphic loci within the QTLs 
containing the significant QTNs of the key candidate 
genes for the LD analysis (Figure S4). There was a strong 
linkage relationship between the significant QTNs of sev-
eral candidate genes and the polymorphic sites (Fig. 8 C, 
9  C). The linkage relationship was especially strong for 
GRMZM2G110408, which was detected using SUPER 
(BLUP and HB) and FarmCPU (HB) (Fig. 7).

Discussion
Chlorophyll is critical for photosynthesis. Changes in 
CC directly affect the leaf photosynthetic efficiency, 
which ultimately influences the crop yield [48–50]. 
Maize plants can efficiently use light energy and accu-
mulate a large amount of dry matter through photosyn-
thesis [51]. Hence, the maize yield is greatly affected by 
photosynthesis, but it is also considerably influenced by 
leaf senescence if chlorophyll is degraded [38]. A recent 
study demonstrated that adjusting the timing of maize 

Fig. 7  GRMZM2G110408 (ZmCCS3) affects CC-related traits. (A) Manhattan plot of the SPAD values for BLUP and HB. The line represents the thresh-
old − log10(p-value) ≥ 5.75 (p ≤ 1.79 × 10− 6). (B) Differences in the CC-related traits of haplotypes 1 and 2. (C) R2 values for all SNPs in the QTL of the signifi-
cant QTN

 

Fig. 6  Heatmap of the expression profiles of key candidate genes. 
S1: 6–7_Internode, S2: 7–8_Internode, S3: Ear_Primordium_2–4_mm, 
S4: Ear_Primordium_6–8_mm, S5: Embryo_20_DAP, S6: Embryo_38_
DAP, S7: Endosperm_12_DAP, S8: Endosperm_Crown_27_DAP, S9: 
Female_Spikelet_Collected_on_Day_as_Silk, S10: Germinated_Ker-
nels_2_DAI, S11: Leaf_Zone_1_Symmetrical, S12: Leaf_Zone_2_
Stomatal, S13: Leaf_Zone_3_Growth, S14: Mature_Leaf_8, S15: 
Mature_Pollen, S16: Pericarp_Aleurone_27_DAP, S17: Primary_Root_5_
Days, S18: Root_Cortex_5_Days, S19: Elongation_Zone_5_Days, S20: 
Root_Meristem_Zone_5_Days, S21: Secondary_Root_7–8_Days, S22: Silk, 
S23: Vegetative_Meristem_16–19_Days
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leaf senescence can substantially modify the maize yield 
[52]. There has been extensive research on chlorophyll-
related genes, especially those associated with leaf senes-
cence [53–55]. However, compared with other plants, 
there have been relatively few related studies on maize. 
Because of the considerable interest in chlorophyll syn-
thesis, the underlying mechanism is continually being 
clarified [56, 57], but the molecular mechanism regu-
lating CC will need to be further analyzed. In addition, 
there is growing interest in stay-green traits among crop 
breeders [58, 59]. Therefore, studying the genetic basis 
of maize CC, identifying important genetic variants, and 
mining-related candidate genes are crucial for the genetic 
improvement of maize via breeding.

Genome-wide association studies have been conducted 
to elucidate the genetic basis of complex quantitative 

traits and to screen for genes related to agronomic traits 
[60, 61]. In the current study,

the normal distribution of CC indicate that it is jointly 
determined by multiple genetic variants (Figure S1), and 
its heritability is calculated to be 0.86 (Table S4). Next, 
MLM [25], MLMM [30], SUPER [31], FarmCPU [32], 
BLINK [33], and 3VmrMLM [34] were used to ana-
lyze the ear leaf CC of 290 maize inbred lines at 10 days 
after pollination. More specifically, a GWAS was com-
pleted using 1.25  million high-density markers and the 
CC (SPAD values) (Figure S5). Finally, 140 significant 
QTNs and 481 genes were identified (Table S1). There 
were 19 significant co-located QTNs, of which 10 were 
detected by at least two different models or methods, 
three were detected in at least two different environ-
ments, and six were identified by different models or 

Fig. 9  GRMZM2G135283 affects CC-related traits. (A) Manhattan plot of the SPAD values for YC. The line represents the threshold LOD score ≥ 3.0. (B) Dif-
ferences in the CC-related traits of haplotypes 1 and 2. (C) R2 values for all SNPs in the QTL of the significant QTN

 

Fig. 8  GRMZM2G171444 affects CC-related traits. (A) Manhattan plot of the SPAD values for YC. The line represents the threshold LOD score ≥ 3.0. (B) Dif-
ferences in the CC-related traits of haplotypes 1 and 2. (C) R2 values for all SNPs in the QTL of the significant QTN
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methods in different environments (Table 2). The statisti-
cal analysis of the number of candidate genes detected by 
each model indicated 3VmrMLM and SUPER detected 
the most candidate genes. Moreover, co-located can-
didate genes were detected by all of the models, except 
for MLM, with 45 co-located genes revealed by the 
two 3VmrMLM methods (Figs. 3 and 4; Table 2). These 
results may be relevant for identifying genes significantly 
associated with CC. Relevant published reports and the 
functionally annotated A. thaliana and rice homologs 
were used to clarify the functions of the co-located genes 
(Table 2). The enriched GO terms and KEGG pathways 
were considered and 11 candidate genes were selected 
for the subsequent experiments (i.e., expression analy-
sis, haplotype analysis, and LD analysis of candidate 
genes). On the basis of the results of these experiments, 
we identified GRMZM2G110408, GRMZM2G171444, 
and GRMZM2G135283 as candidate genes related 
to the maize ear leaf CC. Of these genes, we suggest 
ZmCCS3 may be the most worthwhile candidate gene 
for future investigations. Among the 11 key candidate 
genes, the GO analysis indicated GRMZM5G839422 
likely encodes a protein localized in chloroplasts (Table 
S3). A mutation to the A. thaliana homolog (ALB3) of 
GRMZM5G839422 reportedly leads to a decrease in 
CC [42]. In the present study, GRMZM5G839422 was 
most highly expressed in the mature leaf stage (Fig.  6, 
Table S5). The GO terms assigned to GRMZM2G005848 
suggested the encoded protein is also associated with 
chloroplasts. Consistent with this observation, the A. 
thaliana homolog of this gene encodes a chloroplast 
protein [43]. The GRMZM2G017077 expression level 
was relatively high (Fig.  6, Table S5). Additionally, its 
A. thaliana homolog VIPP1 encodes a multifunctional 
chloroplast protein that may affect chloroplast functions 
and CC [45]. The GO analysis of GRMZM2G376595 and 
GRMZM2G098420 indicated that these two genes con-
tribute to leaf senescence (biological process) (Fig.  5A). 
Moreover, GRMZM2G098420 encodes autophagy pro-
tein 5. The overexpression of KHZ1, which is the A. thali-
ana homolog of GRMZM2G056920, can significantly 
promote leaf senescence [39]. We propose that these 
three genes may be involved in chlorophyll degrada-
tion. Both GRMZM2G045314 and GRMZM2G093347 
were among the co-located genes. The rice homo-
log of GRMZM2G045314 is related to grain develop-
ment (e.g., grain filling stage) [40]. Earlier research 
showed that a mutation to APT1, which is a homolog of 
GRMZM2G093347, enhances the accumulation of chlo-
rophyll in leaves [41]. These functions are closely related 
to CC, implying these genes should be more precisely 
characterized in future studies.

In this study, GRMZM2G171444 was more highly 
expressed than the other candidate genes in the 

mature leaf stage (Fig.  6, Table S5). A significant QTN 
(chr5.S_190752068) in this gene was detected by 
3VmrMLM in YC, with a LOD score of 11.45, sugges-
tive of its importance (Table S2, Fig.  8A). This signifi-
cant QTN was used for a haplotype analysis [62], which 
revealed that the phenotypic difference between the 
two haplotypes of this gene was significant (4.18 × 10− 5) 
(Fig.  8B). The A. thaliana and rice homologs of this 
gene encoding a ribosome protein have not been identi-
fied, but the A. thaliana and rice databases suggest the 
homologs may be involved in the synthesis of chloroplast 
precursors. This possibility will need to be experimen-
tally verified. The GRMZM2G135283 candidate gene 
detected by 3VmrMLM in YC contained a significant 
QTN (chr1.S_274280041) with a LOD score of 10.9716 
(Table S2, Fig.  9A). The phenotypes associated with 
the two haplotypes of this QTN differed significantly 
(2.22 × 10− 5) (Fig. 9C). Because the LD analysis detected 
a strong linkage relationship, we speculate that the can-
didate gene is highly correlated with chlorophyll traits 
(Fig.  9B). We also determined that GRMZM2G135283 
encodes a serine hydroxymethyltransferase. A muta-
tion to the rice homolog (OsSHM1) of this gene does 
not affect seed germination, but the mutant leaves 
are less green and have a lower CC than the wild-type 
leaves. Additionally, this rice homolog is expressed in all 
examined tissues (i.e., root, stem, leaf, and young ear), 
but especially in the leaves [47]. In the current study, 
3VmrMLM detected more noteworthy candidate genes 
than the other models. Finally, and most importantly, our 
findings imply that ZmCCS3 should be examined more 
comprehensively in future investigations. In particular, 
this gene was identified on the basis of two co-located 
QTNs (chr9.S_110657959 and chr9.S_110659989). The 
p-values for chr9.S_110657959 in the BLUP and HB 
environments of SUPER were respectively 6.9 × 10− 7 
and 2.5 × 10− 7, which differed from the correspond-
ing p-value in the HB environment of FarmCPU (1.3E-
06). The p-values for chr9.S_110659989 in the BLUP 
and HB environments of SUPER were respectively 
1.7 × 10− 6 and 9.3 × 10− 7 (Fig. 7A, Table S2). Furthermore, 
chr9.S_110657959, which was detected by the two mod-
els (SUPER and FarmCPU), was selected as a significant 
QTN for the haplotype analysis. The significance of the 
phenotypic difference between the two haplotypes was 
the highest among the 11 candidate genes (2.92 × 10− 10) 
(Fig. 7B), with haplotype 1 detected as the favorable hap-
lotype. Of the 290 maize materials included in this study, 
210 were temperate lines and 80 were tropical/subtropi-
cal lines, with the latter accounting for 27.59% of the 
examined materials. 214 materials contained the haplo-
type, with tropical/subtropical materials accounting for 
25.23% (54/214) of the total. The findings of this study 
suggest that CC might be related to the germplasm type. 
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Specifically, germplasm from temperate regions may have 
a higher CC than germplasm from other regions. More-
over, the LD analysis indicated that chr9.S_110657959 in 
ZmCCS3 had a strong linkage relationship with polymor-
phic sites (Fig.  7C), implying this gene might be highly 
correlated with CC. The A. thaliana homolog of this gene 
encodes a metalloproteinase localized in the thylakoid 
membrane, wherein it repairs PSII adversely affected by 
photoinhibition [37]. The functional annotation showed 
that the nucleoside triphosphatase encoded by ZmCCS3 
is involved in chlorophyll biosynthesis (Table S2). Over-
all, we identified 11 candidate genes encoding proteins 
with regulatory effects on CC. Furthermore, we propose 
that ZmCCS3 is critical for the regulation of CC. The data 
generated in this study may provide the basis of future 
research conducted to improve high photosynthetic effi-
ciency of maize and breed ideotype-based maize varieties 
suitable for commercial cultivation.

Conclusions
Our study compared the results of six GWAS models (a 
single-locus model and five multi-locus models), screen 
candidate genes within the range of co-located QTNs, 
combine functional annotation, GO and KEGG analy-
sis, mine 11 CC-related key candidate genes. Based on 
the haplotype and LD analysis results of these key genes, 
GRMZM2G110408 (ZmCCS3) is considered worthy of 
further study. This finding broadens the understanding of 
the genetic basis of CC and may be relevant for the ideo-
type-based breeding of new maize varieties with high 
photosynthetic efficiency.

Materials and methods
Experimental materials and field cultivation
The association mapping panel used in this study, which 
consisted of 290 maize inbred lines (210 temperate lines 
and 80 tropical/subtropical lines), was derived from 540 
inbred lines [62, 63] and was provided by Professor Yan 
Jianbing of Huazhong Agricultural University. All 290 
maize inbred lines were grown at the Yuanyang Mod-
ern Agricultural Science and Technology Park of Henan 
Agricultural University (Yuanyang; N35°, E113°; i.e., YY), 
the XunXian Experimental Station of the Hebi Academy 
of Agricultural Sciences in Henan province (Hebi; N35°, 
E114°; i.e., HB), and the Cotton Seed Farm in Yongcheng, 
Henan (Yongcheng; N33°, E116°; i.e., YC) in the summer 
of 2019. Two replicates of a complete randomized block 
design were used. Specifically, each line was grown in 
two (4  m long) rows, with 67  cm between rows and 10 
plants per row. Routine field management practices were 
applied during the cultivation of open-pollinated plants.

Determination of CC
For 10 days after pollination, five plants per row were 
randomly selected to determine the daily SPAD value 
(i.e., CC) for the ear leaf at 9:00–11:30. Briefly, a hand-
held SPAD instrument: SPAD-502Plus (i.e., Minolta cor-
poration, Ltd., Osaka, Japan) was used to measure the CC 
at three points of the ear leaf. Each plant was analyzed 
three times (error was less than 5%), after which the aver-
age value was recorded as the leaf CC. Finally, the average 
CC of five plants was used as the ear leaf CC of the inbred 
lines for the general statistical analysis of the phenotype 
and the GWAS. The phenotyping raw data of the CC for 
the 290 maize inbred lines across different environments 
and the best linear unbiased predictor (BLUP) values was 
provided in Table S7.

Data processing and analysis
Microsoft Excel 2021 was used for the general statistical 
analysis of the variance in the SPAD values among the ear 
leaves in different environments. The data were visual-
ized using RStudio and Origin 2021 (https://www.origin-
lab.com/2021). The corr function of R (version 4.2.2) was 
used to analyze the correlation between the SPAD values 
for different environments. The BLUP values for all mate-
rials in three environments were calculated using the 
MLM of lme4 in the R package [64, 65]. The BLUP values 
were also used for the general statistical analysis and the 
subsequent GWAS, which can reduce the prediction bias 
caused by the unbalanced data [65]. The broad-sense her-
itability of the SPAD value was determined using R and 
the following formula:

	 H2 = δ2
G/

[
δ2

G + (δ2
GE/n

)
+ δ2

e/ (nr)]

where δ2
G  is the genotypic variance, δ2

GE  is the variance in 
the genotype-by-environment interaction, δ2

e  is the error 
variance, r  is the number of replicates in an environ-
ment, and n  is the number of environments.

Genome-wide association study
The genotype data obtained from the Maizego data-
base (http://www.maizego.org/Resources.html) con-
sisted of 1.25 million SNP (B73_RefGen_v2) that covered 
the whole maize genome, with a minimum allele fre-
quency ≥ 0.05 [63]. Here, six models were implemented 
for GWAS, which included a single-locus model: Mixed 
Linear Model (MLM) and five multi-locus models, 
namely, Bayesian-information and Linkage-disequilib-
rium Iteratively Nested Keyway (BLINK), Multiple Loci 
Mixed Linear Model (MLMM), Fixed and random model 
Circulating Probability Unification (FarmCPU), Settle-
ment of MLM Under Progressively Exclusive Relation-
ship (SUPER) and 3 Variance-component multi-locus 
random-SNP-effect Mixed Linear Model (3VmrMLM). 

https://www.originlab.com/2021
https://www.originlab.com/2021
http://www.maizego.org/Resources.html
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Specifically, MLM was implemented using TASSEL 
5.0, whereas BLINK, MLMM, SUPER, and FarmCPU 
were implemented using “GAPIT” in the R package. The 
detected SNPs were referred to as lead SNPs. To deter-
mine whether there were false positives or negatives, 
Quantile–Quantile (QQ) plots for the five models (MLM, 
BLINK, MLMM, FarmCPU, and SUPER) were compared 
[66]. The LD among SNP markers was considered and 
the commonly used genome-wide threshold for detecting 
significant SNP–trait associations The suggested p-value 
(1.79 × 10− 6; 1/En) and − log10(p-value) ≥ 5.75 were calcu-
lated using a reported En (557,894) [67] after the quality 
control step.

The recently published 3VmrMLM method was imple-
mented using the IIIVmrMLM software [34] from the 
GitHub website (https://github.com/YuanmingZhang65/
IIIVmrMLM). The main-effect QTNs and QEIs in this 
model were detected using “Single_env” and “Multi_
env”, with the following parameters: SearchRadius = 50; 
svpal = 0.01; and LOD score ≥ 3. Moreover, Manhattan 
and QQ plots were generated using the default param-
eters of “CMplot” in the R package (https://github.com/
YinLiLin/R-CMplot) and 3VmrMLM.

Analyses of candidate genes
For each QTN, a 100  kb interval (50  kb upstream and 
downstream ot the significant SNP) was defined as a 
QTL, where the LD decay distance was approximately 
50  kb in the association mapping panel, and the candi-
date genes within all QTLs were searched. We sorted 
and summarized the candidate genes in the correspond-
ing QTL among the models, methods, and environments 
and then analyzed the homologs of these candidate genes 
in A. thaliana and rice (Oryza sativa) using MaizeGDB 
(http://www.maizegdb.org), NCBI (www.ncbi.nlm.nih.
gov), RiceData (https://ricedata.cn), and Phytozome v13 
(https://phytozome-next.jgi.doe.gov). The candidate 
genes related to CC were then functionally annotated.

The Gene Ontology (GO) analysis and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis of the candidate genes were performed using 
OmicShare tools (https://www.omicshare.com/tools) 
[68]. The principle is as follows: first, genes obtained 
from the GWAS results, which had unknown func-
tions, were excluded from further analysis. The remain-
ing genes were mapped to corresponding GO database 
terms (http://www.geneontology.org/). enabling us to 
assign specific GO terms to each gene. Subsequently, the 
number of genes associated with each GO term was com-
puted, which facilitated the creation of a gene list and 
allowed us to determine the frequency of genes linked to 
each GO function.

To identify significantly enriched GO entries among 
differentially expressed genes compared to the entire 

genome background, we employed a hypergeometric 
test. This statistical test served to evaluate whether the 
observed frequency of genes associated with a particu-
lar GO term was significantly higher than what would 
be expected by chance alone. Through this analysis, we 
were able to pinpoint GO terms that exhibited notewor-
thy enrichment among the differentially expressed genes. 
The formula utilized for the hypergeometric test is as fol-
lows [69]:

	
P = 1 −

m−1∑

i=0

(
M
i

)
(
N−M
n−i

)

(Nn )

where, P is p-value, represents the probability of observ-
ing i or more genes associated with a specific GO term, 
N is the number of genes with GO annotation in all 
Unigene; n is the number of differentially expressed genes 
in N; M is the number of genes annotated for a specific 
GO term in all Unigene; m is the number of differentially 
expressed genes annotated as a specific GO term. By 
applying this statistical test, we were able to identify GO 
entries that were significantly enriched among the differ-
entially expressed genes, providing valuable insights into 
the functional implications of the observed gene expres-
sion changes.

The p-value was set to ≤ 0.05. A Gene Ontology 
(GO) term that satisfied this condition was defined as a 
GO term with significant enrichment in differentially 
expressed genes. Regarding the KEGG analysis [112], the 
formula for determining significance is similar to that 
of GO. The formula is as follows: N represents the total 
number of genes (background genes). n represents the 
number of differential genes (target genes). M represents 
the number of occurrences of a specific pathway in all 
genes. If the p-value is ≤ 0.05, the pathway is considered 
significantly enriched in differentially expressed genes.

Linkage disequilibrium analysis
The LD analysis was performed using all SNPs within 
the QTL containing significant QTNs. The heatmaps of 
the LD were constructed using LDBlockShow (Dong et 
al., 2021), which is available online (https://github.com/
BGI-shenzhen/LDBlockShow).

Haplotype analysis
The SNP haplotype analysis was performed for the candi-
date genes most likely related to CC after the comprehen-
sive analysis. We utilize significant QTN for dividing into 
two haplotypes based on their genotype, which detected 
the candidate gene. The SPAD values for the environ-
ments in which the significant QTN of the candidate 
genes were detected were used as the phenotypic data. 
And t-test was performed on the phenotypic data of 
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the two haplotypes to compare whether there were sig-
nificant differences between the two haplotypes, which 
were plotted using Origin 2021(https://www.originlab.
com/2021).

Analysis of candidate gene expression patterns
To analyze candidate gene expression patterns, the 
expression data for the different samples in B73 avail-
able online (http://www.zeamap.com/) were compared. 
The heatmap of the FPKM-based expression levels for the 
key candidate genes was drawn using the Python package 
seaborn (https://seaborn.pydata.org/index.html).
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