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Abstract 

Background Fatty acids composition in poultry muscle is directly related to its tenderness, flavour, and juiciness, 
whereas its genetic mechanisms have not been elucidated. In this study, the genetic structure and key regulatory 
genes of the breast muscle fatty acid composition of local Chinese chicken, Gushi-Anka F2 resource population 
by integrating genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) 
strategies. GWAS was performed based on 323,306 single nucleotide polymorphisms (SNPs) obtained by genotyping 
by sequencing (GBS) method and 721 chickens from the Gushi-Anka F2 resource population with highly variable fatty 
acid composition traits in the breast muscle. And then, according to the transcriptome data of the candidate genes 
that were obtained and phenotypic data of fatty acid composition traits in breast muscle of Gushi chickens at 14, 22, 
and 30 weeks of age, we conducted a WGCNA.

Results A total of 128 suggestive significantly associated SNPs for 11 fatty acid composition traits were identi-
fied and mapped on chromosomes (Chr) 2, 3, 4, 5, 13, 17, 21, and 27. Of these, the two most significant SNPs were 
Chr13:5,100,140 (P = 4.56423e-10) and Chr13:5,100,173 (P = 4.56423e-10), which explained 5.6% of the phenotypic 
variation in polyunsaturated fatty acids (PUFA). In addition, six fatty acid composition traits, including C20:1, C22:6, sat-
urated fatty acid (SFA), unsaturated fatty acids (UFA), PUFA, and average chain length (ACL), were located in the same 
QTL intervals on Chr13. We obtained 505 genes by scanning the linkage disequilibrium (LD) regions of all significant 
SNPs and performed a WGCNA based on the transcriptome data of the above 505 genes. Combining two strategies, 9 
hub genes (ENO1, ADH1, ASAH1, ADH1C, PIK3CD, WISP1, AKT1, PANK3, and C1QTNF2) were finally identified, which could 
be the potential candidate genes regulating fatty acid composition traits in chicken breast muscle.

Conclusion The results of this study deepen our understanding of the genetic mechanisms underlying the regula-
tion of fatty acid composition traits, which is helpful in the design of breeding strategies for the subsequent improve-
ment of fatty acid composition in poultry muscle.
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Background
Muscle fatty acid composition is one of the most impor-
tant meat-based food factors affecting meat quality and 
human health. Numerous human and animal studies have 
shown that PUFA can be transformed in vivo to produce 
a variety of derivatives that inhibit platelet agglutina-
tion [1, 2], increase platelet cell membrane fluidity, and 
change cell signaling, thereby inhibiting thrombosis for-
mation [3, 4]. A high omega-6 fatty acid diet inhibits the 
anti-inflammatory and inflammatory mitigating effects of 
omega-3 fatty acids [5]. In general, the PUFA/SFA > 0.4, 
and the n-6/N-3 PUFA ratio maintained at (4–6)/1 is 
appropriate for human fat intake [6, 7]. Chicken is one 
of the most critical animal protein sources in people’s 
dietary intake [8, 9]. The PUFA/SFA in chicken meat was 
higher than 0.4, whereas the n-6/n-3 was lower than 0.25, 
and thus, there was still a problem of fatty acid imbalance 
in the diet. Therefore, it is significant to reveal the genetic 
regulation mechanism of chicken muscle fatty acid com-
position and genetically improve chicken muscle fatty 
acid composition for improving meat quality and human 
health.

Muscle fatty acid composition traits are complex quan-
titative traits regulated by major and minor genes [10]. 
Candidate genes and regulatory loci for fatty acid compo-
sition traits in the muscle of livestock such as pigs, cattle, 
and sheep have been well studied [11–13]. These studies 
have shown that multiple genes control muscle fatty acid 
composition traits, and the regulatory loci were located 
on different chromosomes and regulated multiple fatty 
acid traits simultaneously. Compared with other animals 
and livestock, scientific studies lack the genetic regula-
tion of fatty acid composition traits in chickens. Jin et al. 
identified 30 QTL related to fatty acid composition traits 
in leg and breast muscles [14]. However, only seven fatty 
acid-related QTLs, C18:0, C18:2, C16:0, C18:1, C18:3, 
C22:6, and C20:1, are currently recorded in the Chicken 
QTL Database (https:// www. anima lgeno me. org/ cgi- bin/ 
QTLdb/ GG/ index). Muscle fatty acid deposition is essen-
tially the esterification of fatty acids into triglycerides and 
deposition to body fat, involving the fine regulation of 
many aspects and genes related to fatty acid metabolism 
in the body [15]. Therefore, identifying these functional 
genes and their variant loci related to fatty acid metabo-
lism is crucial to unraveling the genetic regulation of fatty 
acid composition traits in chickens.

The application of modern omics technology pro-
vides strong support for the genetic analysis of muscle 
fatty acid composition traits in livestock and poultry. 

GWAS has been widely used in the study of quantita-
tive traits in livestock since Risch first proposed it in 
1996 [16–18]. However, there is a lack of studies using 
chicken SNPs to systematically demonstrate associa-
tions between fatty acid traits in chicken and genomic 
loci. RNA sequencing (RNA-Seq) has been applied in 
the genetic resolution of fatty acid composition traits in 
livestock and poultry [19]. Yang et al. [20] screened sev-
eral candidate genes affecting the percentage of PUFA 
in the thigh muscle of Huangshan black chickens by 
RNA-Seq, such as FADS2, DCN, FRZB, OGN, PRKAG3, 
LHFP, CHCHD10, CYTL1, FBLN5, and ADGRD1. Li 
et al. [21] identified 98 candidate genes regulating fatty 
acid composition in chicken breast muscle in six mod-
ules through WGCNA analysis. By WGCNA, two dif-
ferentially expressed circRNAs and two competing 
endogenous RNAs can regulate chicken adipogenic 
differentiation [22]. These studies have deepened the 
understanding of the genetic regulation of fatty acid 
composition traits in chicken muscle. In recent years, 
multi-omics analysis strategies have been reported in 
the analysis of fatty acid composition traits in a few live-
stock and poultry, such as high-density SNP chip typing 
combined with phenotypic data to identify QTL, high-
throughput SNP typing combined with RNA-seq data to 
identify expression quantitative trait loci (eQTL), phe-
notypic data and RNA-seq data association analysis to 
identify quantitative trait transcripts (QTTs) [23, 24]. 
These strategies have increased the depth and precision 
of fatty acid composition trait resolution, whereas there 
are fewer applications in chicken currently.

Gushi chicken is a local chicken breed for meat and 
eggs, with excellent characteristics such as tender meat 
and unique flavor [25]. To explore the excellent traits 
of Gushi Chicken, we constructed a Gushi-Anka F2 
resource population, and a series of studies were pre-
viously carried out on intramuscular fat deposition 
in breast muscle of this breed from the aspects of the 
identification of key functional genes and regulation of 
non-coding RNA [21, 26, 27]. On this basis, the GBS 
sequencing data of 721 individuals from the F2 resource 
population, phenotypic data of 30 breast muscle fatty 
acid composition traits, and transcriptome profiles of 
breast muscle tissue of Gushi chickens at 14, 22, and 
30 weeks of age were used to analyze the genetic archi-
tecture and key regulatory genes of breast muscle fatty 
acid composition by integrating GWAS and WGCNA 
strategies. This study provides a valuable reference for 
a better understanding of the genetic regulation of fatty 

https://www.animalgenome.org/cgi-bin/QTLdb/GG/index
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acid composition in breast muscle of Gushi chickens 
and the molecular mechanisms underlying the forma-
tion of high-quality meat traits from the perspective of 
genetic variation and gene co-expression.

Result
Phenotype and genotype statistics
Based on the contents of 21 fatty acids in breast mus-
cle of the F2 resource population, 9 fatty acid metabolic 
traits were calculated, and phenotypic values of 30 fatty 
acid composition traits in breast muscle were obtained, 
including sample number, mean ± standard deviation, 
and heritability  (h2) (Table 1). In the breast muscle tissue, 
the highest fatty acid content was C18:1, followed closely 

by C16:0, C18:2, and C18:0, accounting for approximately 
66% of the total fatty acid content. The content of UFA 
was 2.16 times higher than the content of SFA. In addi-
tion, the contents of fatty acids in breast muscle of the F2 
resource population showed significant population varia-
tion, especially C20:1, C22:0, C22:1, and other fatty acids 
could only be detected in part of individuals. This indi-
cated that the fatty acid composition traits in breast mus-
cle of the F2 resource population were separated (Fig. 1). 
The heritability of these 21 fatty acids was also estimated, 
with some fatty acid composition traits of moderate her-
itability (0.2–0.4), but most of them of low heritability 
(0–0.2), further suggesting that fatty acid composition 
traits in chicken muscle are complex quantitative traits 

Table 1 Summary statistics for fatty acid compsition traits in breast muscle of the F2 resource population

N, The number of valid individuals for each fatty acid trait for analysis,  h2 Heritability, Mean Arithmetic mean, SD Standard deviation

Trait N Mean ± SD h2 Trait N Mean ± SD h2

Laurate C12:0 439 0.02 ± 0.04 0.034 Eicosadienoate C20:2 432 0.16 ± 0.35 0.049

Myristic C14:0 439 0.18 ± 0.33 0.08 Eicosatrienoate C20:3 430 0.55 ± 1.49 0.008

Pentadecanoate C15:0 439 0.02 ± 0.05 0.01 Arachidonate C20:4 439 2.14 ± 1.26 0.024

Palmitate C16:0 438 2.98 ± 1.58 0.25 Docosatrienoic C22:3 425 0.50 ± 0.49 0.023

Heptadecanoate C17:0 439 0.05 ± 0.10 0.01 Docosatetraenoate C22:4 429 0.52 ± 0.43 0.148

Stearate C18:0 439 2.30 ± 1.17 0.18 Docosahexaenoate C22:6 429 0.82 ± 0.72 0.01

Arachidate C20:0 391 0.09 ± 0.11 0.11 SFA content 438 5.51 ± 2.45 0.235

Behenate C22:0 350 0.12 ± 0.15 0.01 MUFA content 439 4.22 ± 2.06 0.16

Palmitoleate C16:1 439 0.52 ± 0.64 0.07 PUFA content 439 6.85 ± 2.92 0.198

Oleate C18:1 439 4.08 ± 2.79 0.001 UFA content 439 11.07 ± 4.66 0.205

Eicosenoate C20:1 157 0.22 ± 0.26 0.015 DBI 439 1.63 ± 0.23 0.167

Erucic acid C22:1 109 0.26 ± 0.38 0.01 ACL 439 18.27 ± 0.26 0.234

Palmitic C16:2 438 0.03 ± 0.09 0.028 UI 439 3.25 ± 0.47 0.167

Linoleate C18:2 439 2.77 ± 2.33 0.10 PI 439 1.26 ± 0.29 0.75

Linolenate C18:3 439 0.07 ± 0.15 0.001 Fatty AI 439 0.32 ± 0.13 0.01

Fig. 1 Box plots of the distribution of phenotypic values for fatty acid composition traits. The x-axis represents the fatty acid composition trait, 
and the y-axis represents the fatty acid content after  log10 normalization
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that are regulated by a combination of micro-effective 
genes. Pearson correlations between fatty acid composi-
tion traits showed that all 21 fatty acid traits were cor-
related (Fig.  2), with those having the same number of 
carbon atoms being more correlated, in line with the 
principles of fatty acid carbon chain synthesis and elon-
gation [28]. Otherwise, the four metabolic traits of ACL, 
peroxide index (PI), double bond index (DBI), and unsat-
urated index (UI), were highly correlated.

GWAS for fatty acid traits
The imputed GWAS results of 30 fatty acid traits are 
shown in Fig. 3a, Fig. 3b, Table 2, Additional file 1:Fig. S1, 
Additional file  2:Fig. S2, and Additional file  5:Table  S2. 
Annotation of each significant locus revealed putative 
candidate genes. Moreover, the genes located within the 
high-LD region  (r2 > 0.3 and −  log10(P) < 4.42) neighbor-
ing the significant locus also remained. The single marker 
analysis identified 16 SNPs above the genome-wide 

Fig. 2 Pearson correlation between phenotypes. The Pearson correlation coefficients of 30 fatty acid traits were calculated, and the traits were 
clustered based on the correlation coefficients. The colors (numbers) represent the pairwise correlation coefficients of the fatty acid traits. Red 
indicates positive correlation, and blue indicates a negative correlation
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threshold and 128 above the chromosome-wide sugges-
tive threshold. The 128 SNPs were associated with 11 
fatty acid traits (C17:0, C18:1, C20:1, C22:1, C20:3, C22:6, 
SFA, UFA, PUFA, ACL, and fattyAI) and mapped on 
Chr2, 3, 4, 5, 13, 17, 21, and 27. Based on SNP annotation, 
we found 35 significant SNPs in the intergenic region, 64 
in the introns, 4 upstream of the coding sequence, and 

7 downstream. In the end, 505 candidate genes were 
screened within the linkage disequilibrium interval of 
these SNPs (Additional file  6:Table  S3). In addition, an 
SNP was significantly associated with C20:1 located on 
the first exon of the gene KCNT1 gene (Chr17: 8,537,914, 
Sorting Intolerant From Tolerant (SIFT) score = 0.03), 
which may lead to altering protein function.

Fig. 3 The Manhattan and Q-Q plots for eleven traits. A for six fatty acid composition traits, (b) for five fatty acid metabolic traits. Each dot in this 
figure corresponds to an SNP within the data set. In each Manhattan plot, the dot color indicates the chromosome on which the SNP is located, 
the dot position indicates the -log10-transformed P value of the SNP, the number below represents the chromosome number, the length 
of the figure above the number represents the length of the chromosome, and the color represents the number of SNPs on the chromosome. 
The solid and dashed lines represent genome-wide significance (-log10(P) > 5.72) threshold and chromosome-wide suggestive threshold 
(-log10(P) > 4.42), respectively. For each Q-Q plot, the x-axis represents the expected -log10-transformed P value, and the y-axis shows the observed 
-log10-transformed P value and the red line is the diagonal line
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LD analysis for Chr13
The above results showed that all six fatty acid composi-
tion traits (C20:1, C22:6, SFA, UFA, PUFA, ACL) were 
identified with significant signals within the same QTL 
interval (Chr13: 4.13–11.58  Mb). The four traits SFA, 
UFA, PUFA, and ACL shared four significantly associ-
ated SNPs (S13_8121375, S13_8121406, S13_5100140, 
and S13_5100173) (Fig.  4a). These four loci explained 
6.2%, 6.6%, 8.4%, and 2.9% of the phenotypic variation 
for these four traits, respectively. Multiple traits shared 
the Chr 13 QTL interval, suggesting the presence of key 
causal mutation loci and causal genes affecting fatty 
acid composition traits in breast muscle within this 
region. Thus, we conducted further LD analysis of the 
Chr 13 QTL region. A total of 29 significant SNPs were 
obtained for the six fatty acid composition traits (C20:1, 
C22:6, SFA, UFA, PUFA, and ACL) and used to con-
struct haplotypes. Two small blocks containing SNPs 
shared by multiple traits were obtained (Chr13:5.09–
5.10  Mb and Chr13: 8.21–8.57  Mb). For the block at 
5.09–5.10 Mb, there were three SNPs with high linkage 

with all other SNPs, and the block at 13:8.21–8.57  Mb 
contained seven SNPs with high linkage with all other 
SNPs (Fig. 4b).

WGCNA for fatty acid traits
By integrating the results of the GWAS for fatty acid 
traits and the transcriptome profile data of Gushi chicken 
breast muscle, 505 genes were identified. The expression 
data of these 505 genes in Gushi chicken breast muscle 
were used to complete the WGCNA. A total of 4 mod-
ules (turquoise, yellow, brown, and blue) were identified, 
and the number of genes in these modules was 231, 94, 
63, and 59, respectively (Fig. 5). In addition, association 
analysis between these modules and fatty acid composi-
tion traits was completed. Turquoise, brown, and blue 
were specific transcriptional modules associated with 
fatty acid composition traits in breast muscle (Fig.  6). 
Among them, the turquoise module was significantly 
positively correlated with C20.3N6 (P < 0.05) and nega-
tively correlated with C22:6N3 (P < 0.05), the blue mod-
ule was significantly positively correlated with C17:1  T, 

Fig. 4 Manhattan plot for the six fatty acid composition traits located on Chr13. A is the Manhattan plot of the six fatty acid composition 
traits (C20:1, C22:6, SFA, UFA, PUFA, ACL) on Chr13. Each dot corresponds to an SNP within the data set. The horizontal solid and dashed lines 
represent the genome-wide significance threshold (0.05/N) and chromosome-wide suggestive threshold (1/N). The remaining SNPs with  r2 > 0.3 
and −  log10(P) < 4.42 genomic regions were obtained within a total range of 4.9 Mb (Chr1:4,137,600 – 9,068,668; vertical black dashed line. b is 
LD blocks with 29 significant SNPs on Chr13 that affect the above six fatty acid composition traits. Two blocks (Chr13: 5.09–5.10 Mb and Chr13: 
8.21–8.57 Mb) containing multiple traits shared SNPs (S13_8121375, S13_8121406, S13_ 5,100,140, and S13_5100173) were obtained

(See figure on next page.)

Table 2 The significant SNPs and candidate genes associated with the fatty acid composition traits

Chr Chromosome, Nsnp The total number of significant SNPs associated with the traits, Top SNP The most significantly associated SNP, P_value The P-value of the top 
SNP, Var Phenotypic variance explained by the top SNPs, Range Region of the chromosome that significant SNPs covered

Chr Trait Nsnp Top SNP P_Value Var (%) Range (Mb) Candidate gene

2 C22:1 27 S2_24024322 4.83E-05 2 21.79–26.86

Fatty AI 5 S2_142073970 1.35E-06 1.7 14.14–14.40 WISP1

3 C17:0 12 S3_82848466 7.38E-07 1.2 82.56–86.52

4 C18:1 6 S4_52115241 5.81E-05 1.7 50.57–52.25

C20:3 6 S4_55276199 1.28E-06 2 53.48–60.98 ADH1C,ADH6, 
ELOVL6, FABP2, 
ASAH1

5 Fatty AI 18 S5_50226872 1.90E-08 4.1 49.81–53.05 AKT1

Fatty AI 6 S5_39758590 4.32E-08 4.1 38.64–39.86

13 C20:1 4 S13_8349071 5.93E-05 1.3 41.37–41.59

C22:6 4 S13_10685870 3.41E-06 2 82.83–10.97 C1QTNF2

SFA 6 S13_8144131 5.53E-06 1.6 50.37–89.19 PANK3

UFA 12 S13_8121375 4.18E-07 1.7 51.00–88.70 PANK3

PUFA 4 S13_5100140 4.56E-10 2.9 50.37–94.89 PANK3

ACL 5 S13_8121375 2.55E-06 0.8 50.37–84.19 PANK3

17 C20:1 8 S17_8518233 0.000359 1.1 81.50–98.32

21 C20:3 3 S21_3726359 4.10E-07 2.2 22.31–39.63 ENO1, PIK3CD

27 C20:3 7 S27_4705736 6.14E-07 2.2 35.27–49.58
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Fig. 4 (See legend on previous page.)
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C18:1N9T, C20:2 (P < 0.05) and highly significant posi-
tively correlated with C20:3N6 (P < 0.01), the brown 
module was significantly positively correlated with 
C17:0, C18:3N6 (P < 0.05) and highly significant positively 

correlated with C18:1N12, C18:1N7, C18:1N9C, C20:1, 
SFA, MUFA (P < 0.01). Unfortunately, the yellow module 
was not significantly correlated with any of the fatty acid 
composition traits.

Fig. 5 Clustering dendrogram of gene profiles from breast muscle tissues at 14, 22, and 30 weeks of age. The gene clustering dendrogram 
was obtained by hierarchical clustering of adjacency-based dissimilarity. Each short vertical line corresponds to a gene, and the branches are 
expression modules of highly interconnected groups of genes. The color row underneath the dendrogram shows the assigned original module, 
and each color represents a specific gene module. A total of 4 modules, ranging from 58 to 231 genes in size, were identified

Fig. 6 Relationships between modules and fatty acid composition traits in breast muscle of Gushi chicken. Each row in the table corresponds 
to a module, and each column to a trait. Each cell contains the corresponding correlation value above and the P-value below. The table 
is color-coded by correlation and the color legend. The intensity and direction of correlations are indicated on the right side of the heatmap (red, 
positively correlated; blue, negatively correlated)
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To elucidate the biological significance of the gene 
co-expression networks, GO term and KEGG pathway 
enrichment analysis was performed for these genes in 
each specific transcriptional module associated with fatty 
acid composition traits (Additional file 7:Table S4, Addi-
tional file  8:Table  S5). KEGG pathway analysis showed 
that genes in these 3 modules were enriched in pathways 
closely related to fatty acid synthesis and decomposition. 
As shown in Fig. 7, genes in the turquoise module were 
enriched in the glycolysis/gluconeogenesis, sphingolipid 
metabolism, fatty acid degradation, and pyruvate metab-
olism pathways, and other pathways, genes in the blue 
module were enriched in the inositol phosphate metab-
olism, phosphatidylinositol signaling system, and Wnt 
signaling pathway, and genes in the brown module were 
enriched in pantothenate and CoA biosynthesis, oxida-
tive phosphorylation, biosynthesis of cofactors and oth-
ers. Combining the results of pathway analysis and the 
connectivity of genes in each module, we identified four 
hub genes in the turquoise module (ENO1, KME = 0.913; 
ADH6, KME = 0.819; ASAH1, KME = 0.807; ADH1C, 
KME = 0.800), 2 hub genes in the blue module (PIK3CD, 
KME = 0.967; WISP1, KME = 0.862), 2 hub genes in 
the brown module (AKT1, KME = 0.892; PANK3, 
KME = 0.867), and constructed gene co-expression net-
work for the 3 modules (Fig. 8). These hub genes may be 
the causal genes regulating the synthesis and catabolism 
of fatty acid composition traits in chicken breast muscle.

Discussion
Although GWAS has been widely used to explore the 
key genetic variations and genes of important traits in 
various species [16, 29, 30], the causal genes could not 
be identified directly and accurately. Therefore, we used 
the combined analysis of GWAS and WGCNA to analyze 

the fatty acid composition traits in Gushi chicken breast 
muscle and identified the key genes. It is very interesting 
to find in our results that the fatty acid composition traits 
significantly associated with the three modules were con-
sistent with the fatty acid composition traits associated 
with significant SNPs in the GWAS results, which sug-
gests that the results obtained from both analytical strat-
egies are reliable.

A strong candidate gene PANK3 was found in the QTL 
on Chr13 (4.13–11.58  Mb) shared by multiple traits, 
including C20:1, C22:6, SFA, UFA, PUFA, and ACL, 
which is also a hub gene in the brown module. Nota-
bly, brown was highly significantly correlated with SFA, 
UFA, and MUFA (P < 0.01). PANK3 is the first step in the 
catalytic coenzyme A (CoA) biosynthesis pathway and 
is strictly regulated by feedback from acetyl CoA levels 
in vivo [31]. During the synthesis process, acetyl CoA is 
a direct feedstock for the de novo biosynthesis of fatty 
acids [32]. During the catabolism process, acetyl CoA is 
the intermediate metabolite of β-oxidative catabolism 
of long-chain fatty acids [33, 34]. It may slow down fatty 
acid synthesis in vivo by feedback inhibiting the expres-
sion of the PANK3 gene. Elisabeth John et al. found that 
miR-103–1 produced by the PANK3 was significantly 
induced at least fivefold during adipogenesis [35], and the 
PANK3 gene was significantly (P < 0.05) associated with 
growth-development and fat deposition levels in Xin-
yang buffaloes by WGCNA analysis [36]. To sum up, the 
PANK3 gene is closely related to fatty acid metabolism, 
especially SFA, UFA, and PUFA, based on our GWAS 
and WGCNA results.

In order to more accurately locate the causal muta-
tion and genes affecting fatty acid composition traits in 
chicken muscle, we performed a haplotype analysis of 
the QTL on Chr13 and two important gene intervals 

Fig. 7 Pathway enrichment of genes in turquoise (A), blue (B), and brown (C) modules
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(Chr13: 5.09—5.10  Mb and Chr13: 8.21—8.57  Mb). A 
strong candidate gene is located in the block, namely 
C1QTNF2. The C1q family was predicted to be involved 
in regulating the lipid metabolic process, and the defi-
ciency of C1QTNF2 upregulates the expression of lipo-
lytic enzyme, leading to enhanced lipolysis in adipose 
tissue [37–39]. Overexpression of C1QTNF2 inhibits 
triglyceride hydrolysis in fatty acid cells [40]. In addi-
tion, an important microRNA is located in the block, 
namely miR-146a. Several studies have shown that miR-
146a regulates insulin sensitivity in adipocytes by down-
regulate NPR3 gene expression in mouse adipocytes 
and can also target MED1 to regulate glucose and lipid 
metabolism in mouse hepatocytes [41, 42]. Springer CB 
et al. [43] showed that miR-146a expression was signifi-
cantly increased (P = 0.02) after high-fat meals. These two 
blocks on Chr13 and genes within may be key regions 
and genes regulating the synthesis and catabolism of fatty 
acid composition.

Due to the different types of fatty acids that make up 
dietary fats, their physiological functions and health 
effects vary. Previous studies have suggested that total 
dietary fat intake was strongly associated with athero-
sclerosis [44], while studies on the composition of dietary 

fatty acids in coronary heart disease have shown that the 
type of dietary fat has a more significant effect on ath-
erosclerosis than fat intake [45]. In the present study, 
we found significant signals for FattyAI on Chr2 (14.14–
14.40 Mb) and Chr5 (49.81–52.97 Mb). We identified hub 
genes in these QTL regions: inducible signaling pathway 
protein-1 (WISP1) and AKT1. WISP1, located in the 
Wnt signaling pathway, is a newly identified adipokine 
[46]. It has been shown that circulating levels of WISP 
adipokines are higher in obese patients with increased 
insulin resistance and that WIPS1 adipokines impair glu-
cose homeostasis and induce diabetes [47]. PI3K-AKT-
mTOR is a classical pathway that responds to insulin 
signaling and is closely linked to carbohydrate and lipid 
metabolism [48, 49]. AKT1 phosphorylation activates the 
mammalian target of the rapamycin (mTOR) signaling 
pathway and subsequently enhances sterol regulatory ele-
ment binding protein 1 (SREBP1), which increases intra-
cellular triacylglycerol content and plays an important 
role in regulating the de novo synthesis of fatty acids in 
goat mammary epithelial cells [50]. Integrin-dependent 
of AKT1 activates the expression of PGC-1α and PDK4, 
thereby enhancing fatty acid oxidation [51]. Therefore, 
WIPS1 and AKT1 may have a close relationship with 

Fig. 8 The interactive network of hub genes in the turquoise (a), blue (b), and brown (c) modules. The node size and edge number are 
proportional to the degree and connection strength, respectively
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human fatty acid intake on the formation of atheroscle-
rosis, but the exact regulatory mechanism needs further 
study.

QTLs were found for two ultra-long chain unsaturated 
fatty acids (C18:1, C20:3) on Chr4, and two candidate 
gene intervals with 1.69 Mb (Chr4: 50.57 -52.25 MB) and 
7.49 Mb (chr4: 53.48 -60.97 Mb) were defined based on 
12 significant SNPs. Three hub genes (ADH1C, ADH6, 
and ASAH1) were identified in these two intervals. ADH6 
and ADH1C are both a member of the alcohol dehydro-
genase family. Many studies have shown that alcohol 
plays a role in the oxidative decomposition and synthe-
sis of fatty acids and is associated with the induction of 
many rate-limiting enzymes for fatty acid synthesis [52]. 
The alcohol inhibits fatty acid oxidation by inhibiting 
peroxisome proliferator-activated receptor and AMP-
activated protein kinase[53, 54], while chronic and acute 
alcohol stimulation in mice increased levels of mature 
SREBP-1 protein in the liver to affected fatty acid synthe-
sis[55, 56]. In addition, an SNP (c.-64  T > C) in ADH1C 
was sown to have an association with intramuscular fat 
in the longissimus thoracis muscle of cattle[57]. V. duna-
lianum and 6’-O-caffeoyl-arbutin were found to regulate 
the expression of ADH1C protein and play a role in low-
ering blood lipids in the high-fat diet-induced rat model 
of hyperlipidemia[58]. Thus, ADH6 and ADH1C can reg-
ulate lipid synthesis and catabolism through metabolic 
reactions to ethanol. ASAH1 hydrolyzes sphingolipid cer-
amides into sphingosine and free fatty acids at acidic pH 
and also catalyzes the reverse reaction allowing the syn-
thesis of ceramides from fatty acids and sphingosine[59]. 
P. Lu et al. [60] showed that ASAH1 activity is important 
for preventing the accumulation of long-chain ceramides 
such as C16-ceramide. In addition, genes known to be 
associated with fatty acid synthesis were identified in 
this region (ELOVL6 and FABP2). ELOVL6 is involved in 
the saturation of the monounsaturated extension of C16 
and the formation of C18 [61]. A QTL locus significantly 
affecting linoleic acid was identified in the 58.4—58.4 Mb 
interval on Chr4 of Korean native chicken breast and 
leg muscle, which is consistent with our findings [62]. 
ELOVL6 may be a potential candidate gene for the mus-
cle C18:1n-9/C16:1n-7 and C18:1n-9/C18:0 content loci 
on pig chromosome 8 [63]. The FABP family is thought 
to play a role in the intracellular transport of long-chain 
fatty acids and their acyl-CoA esters [64]. Studies have 
shown that the FABP2 Ala54Thr polymorphism is sig-
nificantly associated with postprandial hypertriglyc-
eridemia. Particularly in the middle-aged and elderly 
population, codon 54 carriers of the FABP2 gene have a 
hyperlipidemic profile [65, 66]. In summary, ELOVL6 and 
FABP2 located in the QTL on Chr4 are genes known to 
be associated with fatty acid composition traits. ADH6 

and ADH1C may play a major role in fatty acid oxidation 
as coenzymes, indicating that genes located in the QTL 
on Chr4 may be the causal genes regulating the synthe-
sis and catabolism of ultra-long chain unsaturated fatty 
acids.

QTLs were identified for C20:3 both on Chr21 and 
Chr27. Interestingly, genes within these two QTLs were 
located in the two modules (turquoise and blue), which 
also significantly correlated with C20-series fatty acids 
(Pearson’s r2 > 0.5). The hub genes located in this gene 
interval in the two modules are ENO1 and PIK3CD. It 
is known that MiR-125b can inhibit the insulin signal-
ing pathway by targeting PIK3CD in hepatocytes [67]. 
ENO1 encodes alpha-enolase and is involved in Glycoly-
sis / Gluconeogenesis pathway, possibly regulating lipid 
synthesis through glucose restriction [68]. Thus, genes 
located in these two QTLs, such as ENO1 and PIK3CD, 
may be associated with the synthesis and catabolism of 
C20-series fatty acids.

The Gushi-Anka F2 resource group is the second 
domestic line to be used for chicken genetic target-
ing studies. It was formed using the F-2 distant half-sib 
design, which is large in size and comprehensive in phe-
notypic determination [69]. The Gushi chicken is a high-
quality meat and egg-type breed with good water-holding 
capacity, fine muscle fiber diameter, high muscle tender-
ness, high free amino acid content, tender meat, and tasty 
flavour [25]. Anka chickens are a fast-growing breed, 
with fast growth and a high percentage of UFA, especially 
PUFA, essential fatty acids, arachidonic acid, and linoleic 
acid are the characteristics of fatty acid composition in 
Anka chicken muscle. The two are more distantly related, 
with more significant variation between traits and higher 
heterozygosity in the F2 generation. Thus the two pop-
ulations are designed for forward and backward F2 
crosses, which is conducive to genetic localization stud-
ies [70]. China has abundant livestock and poultry breed 
resources, and it will be important to use these breeds to 
establish reference lines to supplement the deficiencies in 
genomic studies.

Conclusion
This study first completed a GWAS analysis based 
on GBS sequencing data of 721 individuals in the F2 
resource population. The phenotypic data of 30 fatty acid 
composition traits in breast muscle and 128 suggestive 
significantly associated SNPs for 11 fatty acid composi-
tion traits were identified, which mapped on Chr2, 3, 4, 5, 
13, 17, 21, and 27. And then completed a WGCNA analy-
sis based on the transcriptome profile of 505 genes iden-
tified in the above SNPs linkage disequilibrium region 
and the fatty acid composition data in breast muscle of 
Gushi chicken. Three specific transcription modules 
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and eight key regulatory genes, including ENO1, ADH6, 
ASAH1, ADH1C, PIK3CD, WISP1, AKT1, and PANK3, 
related to the fatty acid composition in chicken breast 
muscle were identified. These results revealed the genetic 
structure and molecular regulatory network of fatty acid 
composition traits in the breast muscle of Gushi chicken 
and provided a basis for further elucidating the genetic 
regulatory mechanism and identifying molecular mark-
ers of breeding value.

Materials and methods
Gushi‑Anka F2 resource population and phenotypic data 
of the fatty acid composition
The F2 resource population used in GWAS was estab-
lished by Henan Poultry Germplasm Resources Innova-
tion Engineering Research Center for genome research 
and consisted of four cross-bred families (Anka-cocks 
mated with Gushihens) and three reciprocal families 
(Gushi-cocks mated with Anka-hens) [71], which even-
tually produced a total of 860 F2 chickens and obtained 
phenotypic values for 21 fatty acid contents by gas chro-
matography. We further calculated nine fatty acid meta-
bolic indices using the following equations [72, 73].

where SFA is saturated fatty acids that including laureate 
(C12:0), myristic acid (C14:0), pentadecanoate (C15:0), 
palmitate (C16:0), heptadecanoate (C17:0), stearate 
(C18:0), arachidonate (C20:0), behenate (C22:0); MUFA 
is monounsaturated fatty acids that including Palmi-
toleate (C14:1), Oleate (C18:1), Eicosenoate (C20:1), 
Erucic acid (C22:1); and PUFA is polyunsaturated fatty 
acids that including palmitic acid (C16:2), Linolelaidic 
acid (C18:2), Gamma Linolenate (C18:3), 11–14 Eico-
sadienoate (C20:2), 11–14-17 Eicosatrienoate (C20:3), 

(1)Double bond index(DBI) =
∑

(Percentage of fatty acids×Number of double bond)

(2)Average chain length(ACL) = (Percentage of fatty acids× Carbon length)

(3)
Unsaturated index(UI) =

∑
(Percentage of fatty acids×Number of double bond × 2+ Percentage of fatty acids

× Number of triple bond × 4 + . . . )

(4)Peroxide index(PI) = (%Monoenoic× 0.025)+ (%Dienoic× 1)

+(Trienoic× 2)+ (%Tetraenoic× 4)

+(%Pentaenoic× 6)+ (%Hexaenoic× 8)

(5)Fatty acid atherogenic index(FattyAI) = (4 × C14 : 0+ C16 : 0)/(MUFA + PUFA)

Arachidonate (C20:4), cis-13,16, 19-Docosatrienoic acid 
(C22:3), Docosatetraenoic acid (C22:4), Docosahexaeno-
ate (C22:6); UFA is the sum of MUFA and PUFA. Before 
the association analysis, these 9 fatty acid metabolic traits 
were log2-transformed and then transformed data were 
used in the following genetic analyses.

Transcriptome profile and fatty acid composition in breast 
muscle of Gushi chicken
WGCNA was performed using transcriptome profiles 
and fatty acid composition data of Gushi chicken breast 
muscle. We completed the transcriptome sequencing 
in 14, 22, and 30 weeks of age and identified a total of 
16,755 known genes previously [21]. The total num-
ber of samples taken into the study for transcriptome 
analysis is 9. The same breast muscle samples as the 
transcriptome sequencing, with three biological repli-
cates at each developmental stage, were sent to Suzhou 
PANOMIX Biomedical Tech Co., LTD and performed 
the fatty acid targeting analysis by Trace 1310-ISQ 7IQS 
gas-mass spectrometer (Thermo, USA) to obtain the 
dynamic change pattern of fatty acid composition in 
breast muscle of Gushi chickens at 14, 22, and 30 weeks 

of age (Additional file  4: Table  S1). The gas chromato-
graphic conditions used were an injection volume of 
1μL, injection temperatures of 250℃, ion source tem-
perature of 230℃, transmission line temperature of 
250℃, and quadrupole temperature of 150℃. The pro-
grammed temperature rise starts at 80  °C and is main-
tained for 1 min, followed by a 20 °C/min rise to 160 °C 
for 1.5 min, 3  °C/min rise to 196  °C for 8.5 min, and a 
final 20 °C/min rise to 250 °C for 3 min. The carrier gas 
was helium at a flow rate of 0.63 mL/min.
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Genotyping, imputation and quality control
Genomic DNA was extracted from blood samples by the 
Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instruc-
tions. All DNA samples were digested with a combina-
tion of EcoRI and MseI for double-digest [74]. A total 
of 768 chickens from the F2 resource population were 
genotyped using the Illumina HiSeq X Ten platform 
(PE150) according to the manufacturer’s protocol. The 
quality control (QC) procedures were carried out using 
VCFtools (version 0.1.13) [75], SNPs were identified 
using the TASSEL GBS analysis pipeline (version 5.2.31) 
[76, 77], and SNPs with call rates > 0.30 and minor allele 
frequencies > 0.05, genotypes with a quality above 98 
(minGQ ≥ 98) and depth ≥ 5, consistent with Hardy–
Weinberg equilibrium; and max missing rate < 0.40 
samples with genotyping were retained for further sta-
tistical analyses. Filtered paired reads were aligned to the 
chicken reference genome Gallus_gallus-6.0(released in 
2018) using Bowtie2 (version 2.3.0) [78]. A total of 7,258 
million clean reads and 6,071 million good barcode reads 
were obtained after 768 samples were sequenced. The 
genome coverage at least 1X was 58.462% by the GBS. 
After strict parameter filtering in the TASSEL-BEAGLE-
GBS pipeline (including imputation) and removal of the 
sex chromosomes, we identified 323,306 SNPs ultimately 
(average sequencing depth was 13 ×). The average SNP 
density and average SNP variant rate per chromosome 
were 309 SNPs/Mb and 5.79 kb/SNP, respectively (Addi-
tional file 3:Fig. S3).

Single trait GWAS
Population structure is the main origin of confounding 
effects in genetic analyses. Principal component analy-
sis (PCA) was performed using genome-wide complex 
trait analysis (GCTA) [79] software to assess popula-
tion structure, and the first two principal components 
(PCs) were then calculated and used as covariates in the 
mixed model. The variances explained by PC1 and PC2 
were 18.7% and 11.3%, respectively. A genomic relation-
ship matrix was constructed with the 323,306 SNPs using 
GCTA software and used as random effects in the mixed 
model.

GWAS analysis of 30 fatty acid composition traits was 
carried out in the GCTA program using a mixed linear 
model (MLM).

The following MLM were used:

where y is the phenotypic value of each trait; W is a 
matrix of covariates (fixed effects) controlling for popu-
lation structure (first two PCs), sex, and batch effects; α 

y = Wα + βx + u+ e

is a vector containing the corresponding coefficients of 
the intercept; β is the SNP effect and x is the carrier of 
the SNP genotype; u is a vector of random effects with 
a covariance structure, obeying a normal distribution as 
u ~ N (0, KVg), where K is known of the genetic relation-
ship matrix; e is a random error vector.

The genome-wide significance thresholds were calcu-
lated using a valid number of independent SNPs using 
the Bonferroni correction. Genome-wide independent 
markers were calculated using PLINK [80] -indep-pair-
wise with a window size of 25 SNPs, a step size of 5 SNPs, 
and an  r2 threshold of 0.1. The genome-wide significance 
threshold is 1.90E-06 (0.05/26,430; -log10(P) > 5.72) and 
the chromosome-wide suggestive threshold is 3.78E-05 
(1/26,430; -log10(P) > 4.42), based on 26,430 independent 
SNPs markers. Manhattan and Q-Q plots were drawn 
from GWAS results using the CMplot package (https:// 
github. com/ YinLi Lin/R- CMplot) within the R software 
(http:// www.r- proje ct. org/).

WGCNA for fatty acid composition traits
Genes located in the linkage disequilibrium genomic 
region of the 128 suggestive significantly associated SNPs 
identified by GWAS were extracted and combined with 
the breast muscle transcriptome data for joint analysis. 
Finally, 505 genes were obtained for WGCNA. Gene co-
expression networks were constructed by the WGCNA 
package within the R software [81]. Firstly, the Pearson 
correlation coefficients of each gene pair were calcu-
lated to build a Pearson correlation coefficient matrix, 
and then the key parameter β values were optimized up 
to the plateau (β = 16) to construct a weighted neigh-
borhood matrix. The expression correlation values were 
used to convert the adjacency Matrix into a topological 
overlap measure (TOM), and hierarchical clustering was 
performed based on the TOM. Ultimately, a dynamic 
tree-cutting algorithm was used to identify modules with 
a minimum number of genes of 32. Subsequently, Gene 
ontology (GO) terms and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways analyses of genes in the 
module were performed by the Clusterprofiler package 
with a corrected P-value < 0.05 and were considered to be 
significantly enriched [82–85].

To integrate the two strategies of GWAS and 
WGCNA to identify the key regulatory genes of fatty 
acid composition in Gushi chicken breast muscle, we 
selected 22 fatty acids with the same carbon chain 
length from the data of Gushi chicken breast muscle 
fatty acid composition targeting analysis based on the 
carbon chain length of fatty acids associated with signif-
icant SNPs in GWAS, including C17:0, C17:1 T, C17:1, 
C18:0, C18:1N9T, C18:1N12, C18:1N9C, C18:1N7, 
C18:2N6T, C18:2N6, C20:0, C18:3N6, C20:1, C18:3N3, 

https://github.com/YinLiLin/R-CMplot
https://github.com/YinLiLin/R-CMplot
http://www.r-project.org/
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C20:2, C22:0, C20:3N6, C22 C20:1N9, C20:3N3, C22:2, 
C20:5N3, C22:6N3. The contents of the above 22 fatty 
acids and 9 fatty acid metabolism indicators, including 
SFA, MUFA, PUFA, UFA, DBI, ACL, UI, PI, and Fat-
tyAI, in breast muscle of Gushi chicken at 14, 22, and 
30 weeks of age were used as the phenotypic data, for 
the correlation analysis with gene co-expression mod-
ule. Pearson correlation coefficients were used to evalu-
ate the correlation between each module and each fatty 
acid composition trait. P < 0.05 was set as the threshold 
standard for a significant correlation between modules 
and traits. Hub genes were identified based on the fol-
lowing principles: (1) the eigengene connectivity (KME) 
value > 0.8; (2) TOM value > 0.2; (3) the genes obtained 
from the above two principles and whose functional 
annotations associated with fatty acid composition 
traits. The gene regulatory network in the key module 
was drawn by using Cytoscape software [86].
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