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Abstract 

Background Cell death plays a crucial role in the progression of active tuberculosis (ATB) from latent infection (LTBI). 
Cuproptosis, a novel programmed cell death, has been reported to be associated with the pathology of various dis-
eases. We aimed to identify cuproptosis-related molecular subtypes as biomarkers for distinguishing ATB from LTBI in 
pediatric patients.

Method The expression profiles of cuproptosis regulators and immune characteristics in pediatric patients with 
ATB and LTBI were analyzed based on GSE39939 downloaded from the Gene Expression Omnibus. From the 52 ATB 
samples, we investigated the molecular subtypes based on differentially expressed cuproptosis-related genes (DE-
CRGs) via consensus clustering and related immune cell infiltration. Subtype-specific differentially expressed genes 
(DEGs) were found using the weighted gene co-expression network analysis. The optimum machine model was then 
determined by comparing the performance of the eXtreme Gradient Boost (XGB), the random forest model (RF), the 
general linear model (GLM), and the support vector machine model (SVM). Nomogram and test datasets (GSE39940) 
were used to verify the prediction accuracy.

Results Nine DE-CRGs (NFE2L2, NLRP3, FDX1, LIPT1, PDHB, MTF1, GLS, DBT, and DLST) associated with active immune 
responses were ascertained between ATB and LTBI patients. Two cuproptosis-related molecular subtypes were 
defined in ATB pediatrics. Single sample gene set enrichment analysis suggested that compared with Subtype 2, 
Subtype 1 was characterized by decreased lymphocytes and increased inflammatory activation. Gene set variation 
analysis showed that cluster-specific DEGs in Subtype 1 were closely associated with immune and inflammation 
responses and energy and amino acids metabolism. The SVM model exhibited the best discriminative performance 
with a higher area under the curve (AUC = 0.983) and relatively lower root mean square and residual error. A final 
5-gene-based (MAN1C1, DKFZP434N035, SIRT4, BPGM, and APBA2) SVM model was created, demonstrating satisfac-
tory performance in the test datasets (AUC = 0.905). The decision curve analysis and nomogram calibration curve also 
revealed the accuracy of differentiating ATB from LTBI in children.

Conclusion Our study suggested that cuproptosis might be associated with the immunopathology of Mycobacte-
rium tuberculosis infection in children. Additionally, we built a satisfactory prediction model to assess the cuproptosis 
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subtype risk in ATB, which can be used as a reliable biomarker for the distinguishment between pediatric ATB and 
LTBI.

Keywords Cuproptosis, Molecular subtype, Active tuberculosis, Latent tuberculosis infection, Prediction model

Background
Tuberculosis, an infection caused by Mycobacterium 
tuberculosis (Mtb), is the most lethal pathogen-related 
cause of death and one of the leading global causes of 
human mortality [1]. Tuberculosis affects 500,000 to 
1,000,000 children annually, with ~ 226,000 fatalities 
worldwide [2]. 5–15% of the estimated 2–3 billion Mtb-
infected individuals are expected to develop tubercu-
losis at some point in their lives, with the highest risk 
among young children [3]. The treatment of tuberculosis 
can be complex and time-consuming, resulting in low 
patient compliance, especially among pediatric popula-
tions. The factors that ultimately govern the transition 
between active tuberculosis (ATB) and latent tubercu-
losis infection (LTBI) remain fully clarified. The clinical 
differentiation between these two disease states remains 
challenging despite being critical to providing patients 
with appropriate treatments to curtail further tubercu-
losis spread. The two most common methods for deter-
mining tuberculosis infection status are the tuberculin 
skin test and the interferon γ release assay. Still, neither 
method can distinguish between ATB and LTBI in all 
cases  [4]. The results may be non-reactive in malnour-
ished children with tuberculosis or a comorbid human 
immunodeficiency virus  infection [5]. Consequently, 
there is an urgent need to develop alternative biomarkers 
that can reliably differentiate between these two types of 
tuberculosis infection.

Immune responses are the predominant factor in 
the control of Mtb infection [6]. Previous research has 
shown that the death of host cells is involved in regu-
lating Mtb infections [7]. Increasing evidence indicates 
that the crosstalk between cell death and host immune 
responses is essential for developing ATB following LTBI 
[8, 9]. Recently, cuproptosis, a novel form of programmed 
cell death distinct from the well-known regulated cell 
death processes, was discovered [10]. This cell death is 
copper-dependent, may be controlled, and is strongly 
associated with mitochondrial respiration. The direct 
binding of copper causes Cuprotosis to the lipoacylated 
component of the tricarboxylic acid cycle, which results 
in the aggregation of lipoacylated proteins and the loss 
of Fe-S cluster proteins, ultimately causing protein toxic 
stress and cuproptosis. According to research, the inter-
action between copper and Mtb is crucial for regulating 
Mtb infection [11]. In addition, many studies indicate 
that mitochondrial dysfunction-induced deficiencies in 

energy metabolism and oxidative stress contribute to the 
activation of LTBI. Consequently, it is acceptable to con-
clude that cuproptosis is closely related to ATB’s emer-
gence from LTBI.

However, cuproptosis regulation mechanisms in 
Mtb infection are not well understood. The variation in 
Mtb infection may be explained by further elucidating 
the molecular properties of cuproptosis-related genes 
(CRGs). This study aimed to extensively investigate 
the differentially expressed CRGs (DE-CRGs) and immu-
nological features in ATB children. The DE-CRG expres-
sion patterns were then used to divide ATB patients into 
two groups, and the genes characteristic of each subtype 
were used to determine which biological activities and 
pathways were enriched. As a bonus, by contrasting sev-
eral machine learning methods [eXtreme Gradient Boost 
(XGB), the Random Forest (RF) model, the Generalized 
Linear Model (GLM), and the Support Vector Machine 
(SVM) algorithms], a prediction model was built to reveal 
patients with distinct molecular subtypes. The accuracy 
of the prediction model was checked using an external 
dataset, a calibration curve (CC), a nomogram, and a 
Decision Curve Analysis (DCA). Figure 1 represents the 
flowchart for this analysis.

Results
Comparison of CRGs expression levels and immune cells 
infiltration between ATB and LTBI children
The location of 19 CRGs on chromosomes can be seen in 
Fig. 2a. A total of 9 CRGs (NFE2L2, NLRP3, FDX1, LIPT1, 
PDHB, MTF1, GLS, DBT, and DLST) were determined as 
DE-CRGs between pediatric ATB and LTBI patients by 
Wilcoxon test. The expression levels of MTF1, NFE2L2, 
and NLRP3 were higher, while the FDX1, LIPT1, PDHB, 
GLS, DBT, and DLST were lower in the ATB group than 
LTBI group (Fig. 2b-c). The correlation of the seven dif-
ferentially expressed CRGs (DE-CRGs) is presented in 
Fig.  2d. Some had positive relationships (e.g., NLRP3 
and NFE2L2 with MTF1, DBT with FDX1, LIPT1, and 
PDHB), while some had negative associations (e.g., MTF1 
with DBT, GLS, and PDHB). The  association between 
these differentially expressed CRGs was also shown using 
a gene connection network diagram (Fig. 2e).

The Single-sample Gene Set Enrichment Analysis 
(ssGSEA) algorithm was employed to assess the rela-
tive immune cell infiltration in the training dataset. The 
results revealed the suppression of lymphocytes, which 
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was mainly presented by a lower infiltration of memory 
CD8 T cells, activated CD8 T cells, memory CD4 T cells 
and activated CD4 T, and B cells and activation of inflam-
matory and myeloid cells (e.g., a considerably elevated 
infiltration of neutrophils, dendritic cells, and mono-
cytes) in ATB patients (Fig. 2f-g). Meanwhile, correlation 
analysis showed that the nine DE-CRGs correlated with 
the immune cells, suggesting that CRGs may be the key 
factors in controlling ATB’s molecular and immune infil-
tration status progressed from LTBI (Fig. 2h).

Identification of cuproptosis subtypes in ATB pediatrics
A consensus clustering approach was used to classify the 
52 samples from ATB patients centered on the expres-
sion profiles of 9 DE-CRGs, to elucidate the cuproptosis-
related expression patterns in ATB. At k = 2, the cluster 
numbers were most stable, while the Cumulative Dis-
tribution Function (CDF) curves ranged between 0.2 
and 0.8 on average (Fig.  3a-b). The area under the CDF 

curves showed the separation between the two CDFs (k 
and k-1) for k = 2 to 9 (Fig. 3c). Moreover, the reliability 
score of each subtype was > 0.8 only at k = 2 (Fig. 3d). In 
a nutshell, the t-Distributed Stochastic Neighbor Embed-
ding (tSNE) analysis showed that the two subtypes were 
distinct (Fig. 3e).

Differentiation of cuproptosis regulators, immune 
infiltration characteristics, and functional annotation 
between cuproptosis subtypes
The expression levels of MTF1, NFE2L2, and NLRP3 
were higher in CRGs subtype 1, while the expression 
levels of LIPT1, PDHB, GLS, and DBT were higher in 
subtype 2 (Fig.  4a-b). The immune infiltration analy-
sis results showed that the infiltration of lymphocytes 
(e.g., activated and memory CD8 T cells, activated and 
memory CD4 T cells, and B cells) was lower. In contrast, 
that of inflammatory and myeloid cells (e.g., monocytes, 

Fig. 1 Shows the flow chart for the present study
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Fig. 2 Shows the identification of CRGs that have been dysregulated in pediatric patients with ATB. a The specific positions on the chromosomes 
of the 19 CRGs. b The heatmap comprised representations of the expression patterns for 19 CRGs. Each CRG is represented along the X-axis, while 
the relative expression levels of genes are displayed along the Y-axis. c Boxplots illustrated the differences in the expression of 19 CRGs between 
patients with ATB and LTBI. d An examination of the correlations between the 9 CRGs and differential expression. The color red denotes a positive 
connection, whereas the color green represents a negative correlation. The areas of the pie chart corresponded to the calculated correlation 
coefficients. e A gene association network diagram shows the 9 CRGs that have differential expression. f The differences in the relative abundances 
of 28 infiltrating immune cells between patients with ATB and LTBI. g Boxplots illustrated 28 immune cell infiltration disparities between individuals 
diagnosed with ATB and LTBI. Each immune cell is shown along the X-axis, and the relative risk score is displayed along the Y-axis. h The correlation 
between the infiltrating immune cells and the 9 CRGs with differential expression was studied. *p < 0.05, **p < 0.01, ***p < 0.001

Fig. 3 Displays the identification of ATB cuproptosis-related molecular subtypes. a Clustering consensus matrix for k = 2. b CDF delta area curves.c 
The consensus clustering score. d The non-negative matrix heatmap. e The distribution of two subtypes is visualized using t-SNE
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neutrophils, macrophages, and dendritic cells) was 
higher in subtype 1 (Fig. 4c).

The Gene Set Variation Analysis (GSVA) indicated that 
the pathways of immune and inflammation responses 
(K EG G_AU TOIMMUNE_THYROID_DISE A SE , 
KEGG_ALLOGRAFT_REJECTION), metabolism of 
energy (KEGG_OXIDATIVE_PHOSPHORYLATION) 
and amino acid (KEGG_LYSINE_DEGRADATION, 
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIO-
SYNTHESIS) were upregulated in subtype 1. While the 
pathways of neuro activation (KEGG_NEUROACTIVE_
LIGAND_RECEPTOR_INTERACTION), cell cycle, 
ERK and PI3K signaling (KEGG_REGULATION_OF_
ACTIN_CYTOSKELETON, KEGG_MELANOMA) were 
upregulated in subtype 2 (Fig. 4d).

Gene modules screening and co‑expression network 
construction
The training set (GSE39939) was used to construct a co-
expression network by Weighted Gene Co-Expression 

Network Analysis (WGCNA) to assess the critical mod-
ules associated with ATB. We analyzed the importance of 
hub gene expression level diagnosis and assessment using 
a cut height of 0.25 and a soft-thresholding power of 1. 
We eventually settled on the three components shown 
in Fig.  5a-d. Using heat map profiling, we discovered a 
correlation between the modules and clinical sample 
attributes, and we were able to quantify this correlation 
by looking at the relationship between module eigengene 
(ME) values and sample traits. The turquoise module was 
shown to be the most closely related to the disease stage 
(cor = 0.29, p = 0.02) (Fig. 5e). Moreover, a significant cor-
relation (cor = 0.35, p < 1E-200) was found between the 
turquoise module and module-related genes (Fig. 5f ).

Using the WGCNA technique, we also evaluated the 
crucial gene modules related to cuproptosis subtypes. 
According to our screening, the best soft threshold val-
ues for building a scale-free network were β = 1 and 
 R2 = 0.9 (Fig. 6a). In particular, three modules were recog-
nized as important, and the TOM of all genes associated 

Fig. 4 Shows the molecular and immunological differences between the two cuproptosis subtypes. a Heatmap of 9 DE-CRG expression patterns 
between two cuproptosis subtypes. b Boxplots comparing the expression of 9 DE-CRGs in the two cuproptosis subtypes. The X-axis indicates each 
DE-CRG, and the Y-axis depicts gene expression levels. c Boxplots demonstrating the variations in the infiltration of 28 immune cells between the 
two cuproptosis subtypes. The X-axis depicts each immune cell, while the Y-axis displays the relative risk score. d GSVA t-value ranking differences in 
hallmark pathway activities between Subtype 1 and Subtype 2 samples. *p < 0.05, **p < 0.01, ***p < 0.001
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with those modules are shown in a heatmap (Fig. 6b–d). 
Analysis of module-clinical characteristics (Subtype 1 
and Subtype 2) showed a strong positive link between the 
turquoise module and module-related genes (cor = 0.75, 
p < 1E-200) (Fig. 6e) and a significant correlation between 
the turquoise module and ATB subtypes (cor = 0.65, 
p = 2E-7) (Fig. 6f ).

The development and evaluation of machine learning 
models
Comparing the module-related genes of cuproptosis 
subtypes to those of ATB and LTBI patients, we could 
identify a total of 78 cluster-specific DEGs (Supple-
mentary file 3)  (Fig.  7a). Based on the expression pat-
terns of 78 subtype-specific DEGs in the ATB patients 
from the training dataset, we constructed four proven 
machine-learning models (RF,  GLM, SVM, and XGB) 
(Fig.  7b-d). Outperforming the RF (AUC = 0.933), XGB 
(AUC = 0.900), and GLM (AUC = 0.683), the SVM 
machine learning model had the largest AUC of 0.983 
(Fig. 7e).

We initially developed a nomogram to quantify the 
probability of cuproptosis subtypes in 52 ATB patients 
to evaluate the SVM model’s prediction efficacy (Fig. 8a). 

The DCA shows that our nomogram has a high degree 
of accuracy, and the CC shows a very small differ-
ence between the observed and projected risks of 
ATB subtypes (Fig.  8b-c). Then, we used the test data 
(GSE39940)  to validate our 5-gene prediction model 
(MAN1C1, DKFZP434N035, SIRT4, BPGM, and APBA2). 
The 5-gene prediction model performed well in ROC 
analyses, with an AUC of 0.905 (Fig. 9).

Discussion
Host cell death controls Mtb outgrowth and restricts 
infection dissemination [7–9]. Apoptosis during Mtb 
infection is a defense mechanism for cells confronted 
with intracellular pathogens [7]. In contrast, necrotic cell 
death is considered host-detrimental since it facilitates 
mycobacterial spread [12]. Cuproptosis, a recently found 
programmed cell death, differs in the initiating stimuli, 
intermediate activation events, and end effectors from 
other forms of cell death and is involved in the progres-
sion of tumor and neurodegenerative diseases [13, 14]. 
By far, no studies have been reported on cuproptosis-
related genes’ role in Mtb infection. Recent transcrip-
tomic research efforts have highlighted a range of genes 
and gene expression patterns related to the stage of Mtb 

Fig. 5 Shows a co-expression network of differentially expressed genes in aTB patients. a Establishing an appropriate threshold power. 
bCo-expression module cluster tree dendrogram. Each color reflects different modules of co-expression. c Illustration of module eigengene 
clustering. d A heatmap that shows the correlations between the 4 modules. e A correlation analysis between the clinical status and the module 
eigengenes. Each column denotes a clinical status, whereas each row indicates a module. f A scatter plot showing the relationship between the 
gene importance for aTB and turquoise module membership
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infection [15, 16]. We systemically explored the cuprop-
tosis-related gene expression profiles in Mtb infection 
individuals for the first time. In line with previous reports 
[17, 18], our study showed that the immune status of ATB 
patients was characterized by the suppression of lympho-
cytes, which presented by a significant drop in through-
out CD4 T cells, CD8 + T cells, and B cells, together with 
the activation of myeloid and inflammation cells (e.g., 
macrophages. neutrophils, and monocytes). T cells and 
their antibodies may impact the course of an Mtb infec-
tion by affecting granuloma development [19]. Limit-
ing lymphocyte responses is therefore associated with 
uncontrolled Mtb infection and the transition from LTBI 
to ATB [20]. Extensive inflammatory responses, including 
DCs, monocytes, macrophages, and neutrophils, are gen-
erated in ATB patients in response to the disseminated 
bacteria and accompanying tissue damage. Further, we 
discovered that the expression of some DE-CRGs (e.g., 
NFE2L2, NLRP3, and MTF1) was upregulated in ATB 
pediatric patients, which were negatively associated with 
lymphocytes, while positively correlated to myeloid and 
inflammation cells; some DE-CRGs (e.g., DBT, DLSTFD, 
LIPT1, and PDHB) were downregulated, which were 
positively associated with lymphocytes, and negatively 
related to inflammation cells. The dysregulation of CRGs 

and their association with immune cell populations high-
light the potentially important role that copper-induced 
cell death may participate in the pathogenesis of LTBI 
progressing to ATB in children.

We used unsupervised cluster analysis to highlight the 
various cuproptosis regulation patterns in pediatric ATB 
patients based on the expression landscapes of nine DE-
CRGs tested and discovered two unique cuproptosis-
related subtypes. ICI analysis showed that Subtype 1 was 
characterized by the suppression of lymphocytes and 
activation of myeloid and inflammatory cells. Subtype-
specific DEGs indicated that Subtype 1 was primar-
ily enriched in regulating immune and inflammation 
responses and energy and amino acid metabolism. These 
results implied that Subtype 1 was more closely related to 
the immunopathology of ATB.

Over the last two decades, effective and precise com-
puter methods have been developed to mine the grow-
ing mountain of biological data for insights [21]. It has 
been shown that machine learning models may provide 
an appropriate platform for merging data from dispa-
rate sources to comprehend the intertwining nature 
of genetic, environmental, and demographic informa-
tion in the development of different diseases [22]. Thus, 
compared to univariate analysis, the outcomes of these 

Fig. 6 Demonstrates a co-expression network of genes differentially expressed in the two cuproptosis subtypes. a Applying a minimal threshold 
power. b Co-expression module cluster tree dendrogram. Multiple colors indicate different modules of co-expression. c Representation of module 
eigengene clustering. d A heatmap depicting the correlations between 3 modules. e Representation of the correlation analysis of module 
eigengenes and clinical status. Each row represents a module and each column a clinical status. f Scatter plot of turquoise module membership 
versus gene importance for Subtype 1
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multifactorial studies are more accurate and credible. 
Using the expression patterns of subtype-specific DE-
CRGs, we developed a prediction model for pediatric 
ATB using four machine-learning classifiers (RF, GLM, 
SVM, and XGB). RF uses several decision trees for clas-
sification or regression prediction [23]. Using the SVM 
technique, one may create a hyperplane with a maxi-
mum margin to discriminate between negative and posi-
tive examples [24]. In order to examine the association 
between normally distributed dependent characteristics 
and categorical or continuous independent data, GLM 
was developed as an extension of multiple linear regres-
sion models [25]. XGB is a gradient-boosting-based 
ensemble of boosted trees that allows for a thorough 

analysis of the trade-offs between model complexity and 
classification error [26]. Ultimately, it was shown that 
SVM-based machine learning had the greatest AUC in 
predicting the subtypes of ATB patients.

Afterward, a 5-gene-based RF model was con-
structed by selecting five important genes (MAN1C1, 
DKFZP434N035, SIRT4, BPGM, and APBA2). A pre-
vious study showed that α-mannosidase I (MAN1C1) 
participates in cellular immunity during some chronic 
infections, such as HBV. The upregulation of a-mannosi-
dase I expression manipulates the pathogens to escape 
immune recognition by DC-SIGN, inhibiting an efficient 
immune response and clearance of the etiologies [27]. 
SIRT4 resides within the mitochondria and belongs to 

Fig. 7 Shows the development of machine models and the identification of subtype-specific DEGs. a The connections between module-related 
genes in the training dataset and cuproptosis subtype-related genes. b The distribution of cumulative residuals for each machine learning model. 
c Boxplots displayed each machine learning model’s residuals. The root mean square of residuals (RMSE) was shown as a red dot. d The crucial 
components of the machine models for RF, SVM, GLM, and XGB. e ROC analysis of the training dataset’s four machine learning models
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the sirtuin (SIRT) family, with ADP-ribosyltransferase, 
lipoamidase, substrate-specific deacetylase, and dea-
cetylase functions [28]. SIRT4 has also been linked to the 

defense of cells against bacteria. SIRT4 overexpression in 
LPS-treated cells boosted steroidogenesis and lowered 
apoptosis, promoting Mtb infection propagation and 

Fig. 8 Shows the development of a nomogram model a Construction of a nomogram for estimating the risk of AD clusters using the SVM model 
based on 5 genes and establishing a calibration curve (b) and a DCA (c) to evaluate the predictive efficiency of the nomogram model
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LTBI activation [29]. Moreover, SIRT4 was also found 
to suppress the anti-inflammatory activity, contribut-
ing to the inflammation response in ATB [30]. BPGM is 
a glycolytic enzyme that converts 1,3-diphosphoglycer-
ate to 2,3-diphosphoglycerate (2,3-DPG), a tiny molecule 
that modulates the oxygen affinity of hemoglobin and is 
highly expressed in red blood cells [31]. It was reported 
that the BPGM gene expression was significantly upregu-
lated in some form of inflammation and infection [32]. 
Additionally, BPGM is related to T- and B-cell recep-
tor signaling pathways and neutrophilia [33]. However, 
DKFZP434N035 is an uncharacterized gene. Our results 
suggested that the DKFZP434N035 might play a vital 
role in Mtb infection by affecting immunity or cell death. 
Additionally, using the five genes, we created a nomo-
gram model for identifying ATB subtypes. Our predic-
tion model had excellent predictive efficacy, proving its 
relevance for clinical applications.

This research has clear limitations. First, although 
attempts were made to locate all related publicly acces-
sible datasets, the sample size for these analyses was rela-
tively small, which may have hampered the precision of 
these conclusions. The link between CRGs and immune 
cells revealed in this research should be classified as a 
statistical correlation rather than a causative one. Also, 
it is unclear whether these host variables are exclusive to 
Mtb infection. Finally, microarrays have several disadvan-
tages (e.g., not a whole genome analysis, high background 
signal levels, not quantitative, and an inability to detect 
alternative splicing). In order to determine the processes 

behind the pathophysiology of pediatric ATB advanced 
from LTBI, further in  vitro and in  vivo investigations 
examining the activity of these CRGs are required.

Conclusions
In conclusion, we comprehensively evaluated the cuprop-
tosis-related gene expression levels and immune cell infil-
tration in pediatrics with ATB and LTBI. Moreover, we 
constructed a 5-gene-based model to predict the cuprop-
tosis subtypes of ATB risk in children. These results 
suggest that CRGs can be used as potential biomarkers 
for differentiating ATB from LTBI in pediatric patients. 
Future studies are recommended to concentrate on 
the mechanisms of cuproptosis in conjunction with the 
immunopathology of Mtb infection.

Methods
Data source
For the present study, data were downloaded from the 
NCBI-GEO database (http:// www. ncbi. nlm. nih. gov/ geo). 
Inclusion criteria: 1) Patients < 15 years of age; 2) Sample 
collection prior to the initiation of anti-mycobacterial 
treatment; 3) Negative for human immunodeficiency 
virus (HIV). Two datasets (GSE39939 and GSE39940) 
were selected for analysis based on these three criteria. 
The GSE39939 microarray dataset concluded whole-
blood samples from 52 and 14 pediatric ATB and LTBI 
patients, which was used as the training dataset for con-
structing a prediction model. The GSE39940 microarray 
dataset of whole-blood samples from 52 and 54 pediatric 
ATB and LTBI patients validated the prediction model’s 
performance.

Evaluation of CRGs expression and immune cell infiltration 
(ICI) between ATB and LTBI pediatric patients
To further understand the biological roles of cuprop-
tosis regulators in ATB, we used the training dataset to 
compare the expression patterns of 19 CRGs between 
ATB and LTBI in pediatric patients (Supplementary file 
1). In order to determine the relative infiltration levels of 
immune cells in the training set, the ssGSEA algorithm 
was applied (Supplementary file 2). Violin plots depict 
the varying degrees of expression produced by invading 
immune cells. Spearman correlations between immune-
invading cells and CRGs were shown using the R ’ggplot2’ 
package (version 4.2.2).

Unsupervised clustering of ATB patients
Based on the 9 DE-CRGs expression profiles, the "Con-
sensusClusterPlus" R package (version 4.2.1) was 
employed to perform the unsupervised clustering analy-
sis and classify the 52 samples from ATB cases into dif-
ferent subtypes using the k-means algorithm with 1,000 

Fig. 9 Shows the ROC analysis of the 5-gene SVM model using the 
test dataset and fivefold cross-validation

http://www.ncbi.nlm.nih.gov/geo
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iterations. After carefully considering the consensus 
matrix, the CDF curve, and the consistent cluster score 
(> 0.8), we settled on a maximum subtype number of k 
(k = 9).

GSVA
To further understand how the various subtypes of CRGs 
vary in terms of enriched gene sets, the “GSVA” R pack-
age (version 4.2.2) was employed. In order to continue 
the GSVA analysis, the “c2.cp.kegg.symbols” file [34] was 
downloaded from the MSigDB internet database. Differ-
entially expressed biological functions and pathways were 
determined by comparing GSVA scores across CRG clus-
ters using the "limma" R package (version 4.2.2). Signifi-
cant changes were defined as |t value of GSVA score|> 2 
and p-value < 0.05.

WGCNA
The R package “WGCNA” (version 4.2.2) was used to 
conduct WGCNA and find co-expression modules. The 
top 25% of most variable genes were included in subse-
quent WGCNA analyses to provide reliable quality find-
ings. We first determined the optimum soft power to 
create a weighted adjacency matrix, which was then con-
verted into a topological overlap  matrix (TOM). When 
the minimum module size was set to 100, modules were 
produced using the TOM dissimilarity measure (1-TOM) 
in conjunction with the hierarchical clustering tree algo-
rithm. Each module was assigned a random color. The 
eigengenes of each module reflected the overarching pat-
terns of gene expression in that particular module. Mod-
ular significance (MS)  demonstrated the link between 
modules and disease conditions. When discussing the 
relationship between a gene and its clinical manifesta-
tion, the term “gene significance” (GS) was coined.

Construction of predictive model based on multiple 
machine learning methods
We used the "caret" R packages (version 4.2.3) to create 
machine learning models such as RF, GLM, SVM, and 
XGB based on two classes of CRGs (the codes of the 
models can be found in Supplementary file 4). The dis-
tinct subtypes were used as the response variable, while 
subtype-specific differentially expressed genes were 
selected as the explanatory factors. 70% of the 52 ATB 
samples were part of the training set, while the remain-
ing 30% was a validation set. All models were run with 
their default settings and evaluated using fivefold cross-
validation, and their parameters were automatically 
tweaked using a grid search using the caret package. 
The "DALEX" package (version 4.2.2) was executed 
to understand the models mentioned above and show 
their residual distribution and feature significance. The 

AUC was plotted using the "pROC" R program (version 
4.2.1). As a result, the most suited model was estab-
lished, and the top five factors were considered ATB’s 
most significant predictor genes. In the end, the diag-
nostic model’s accuracy was tested using ROC  curve 
analysis.

Construction and validation of a nomogram model
Using the “rms” R package (version 4.2.3), a nomogram 
was developed to evaluate the frequency of ATB sub-
types. Each predictor has an associated score, and the 
"total score" is the total of all the aforementioned pre-
dictors’ scores. Using a combination of DCA and the 
CC, we were able to calculate an approximation of the 
nomogram model’s predictive ability. The ROC analyses 
were used in the test dataset (GSE39940) to validate the 
prediction model’s ability to discriminate between ATB 
and LTBI in pediatric patients. The "pROC" R package 
allowed for the visualization of ROC curves.
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