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Abstract 

Background Protein kinase CK2 activity is implicated in the pathogenesis of various hematological malignancies 
like Acute Myeloid Leukemia (AML) that remains challenging concerning treatment. This kinase has emerged as 
an attractive molecular target in therapeutic. Antitumoral peptide CIGB‑300 blocks CK2 phospho‑acceptor sites on 
their substrates but it also binds to CK2α catalytic subunit. Previous proteomic and phosphoproteomic experiments 
showed molecular and cellular processes with relevance for the peptide action in diverse AML backgrounds but 
earlier transcriptional level events might also support the CIGB‑300 anti‑leukemic effect. Here we used a Clariom S 
HT assay for gene expression profiling to study the molecular events supporting the anti‑leukemic effect of CIGB‑300 
peptide on HL‑60 and OCI‑AML3 cell lines.

Results We found 183 and 802 genes appeared significantly modulated in HL‑60 cells at 30 min and 3 h of incuba‑
tion with CIGB‑300 for p < 0.01 and FC >  = │1.5│, respectively; while 221 and 332 genes appeared modulated in 
OCI‑AML3 cells. Importantly, functional enrichment analysis evidenced that genes and transcription factors related to 
apoptosis, cell cycle, leukocyte differentiation, signaling by cytokines/interleukins, and NF‑kB, TNF signaling pathways 
were significantly represented in AML cells transcriptomic profiles. The influence of CIGB‑300 on these biological 
processes and pathways is dependent on the cellular background, in the first place, and treatment duration. Of note, 
the impact of the peptide on NF‑kB signaling was corroborated by the quantification of selected NF‑kB target genes, 
as well as the measurement of p50 binding activity and soluble TNF‑α induction. Quantification of CSF1/M‑CSF and 
CDKN1A/P21 by qPCR supports peptide effects on differentiation and cell cycle.

Conclusions We explored for the first time the temporal dynamics of the gene expression profile regulated by 
CIGB‑300 which, along with the antiproliferative mechanism, can stimulate immune responses by increasing immu‑
nomodulatory cytokines. We provided fresh molecular clues concerning the antiproliferative effect of CIGB‑300 in two 
relevant AML backgrounds.
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Background
Acute Myeloid Leukemia (AML) is a heterogeneous 
hematologic malignancy characterized by high prolif-
eration and ≥ 20% of undifferentiated myeloid progenitor 
cells (blasts) in bone marrow or peripheral blood [1], rep-
resenting the most common acute leukemia in adults [2].

AML, among the most aggressive and lethal types of 
cancer, is often characterized by resistance to standard 
chemotherapy and poor long-term outcomes, in part 
due to the chromosomal alterations and gene mutations 
frequently found in leukemic blasts [3]. Technological 
advances have led to a remarkable improvement in our 
understanding of cancer through the implementation 
of large-scale genomic, transcriptomic, and proteomic 
analyses [4, 5]. Several studies have demonstrated the use 
of gene differential expressions as effective tools for risk 
stratification of AML patients [6–9] or drug sensitivity 
[10]. Microarray technology has contributed to a better 
classification of acute leukemias [8, 11–14]. The value of 
microarray technology was earlier demonstrated to clas-
sify acute leukemia in myeloid and lymphoid [15]. Later 
on, microarray permitted the recognition of molecular 
subtypes in ALL patients [16]. This technology has also 
been used in the diagnosis and prognosis of AML as well 
as in the study of mechanisms of pathogenesis and thera-
peutic action in this disease [17].

Despite the progress in understanding AML biology 
and the use of novel technologies to improve disease 
characterization, chemotherapy, and hematopoietic stem 
cell transplant are still the principal treatment approach 
for AML. Therapies targeting recurrent genetic muta-
tions have been also gaining importance but less explored 
have been targeting leukemia cells with no mutations 
[18]. FDA has recently approved several non-cytostatic 
agents for the treatment of the patient, targeting impor-
tant pathways in AML [19]. Nevertheless, there is a need 
for novel agents to combine with standard chemotherapy 
to efficiently eliminate leukemic cells and improve the 
outcomes.

Protein kinase CK2 hyperactivity is implicated in the 
pathogenesis of several hematological malignancies; high 
levels of CK2 appeared as a common denominator in all 
hematologic neoplasms, suggesting that CK2 inhibition 
could represent an attractive molecular target in AML 
[20, 21]. Only two compounds, the ATP-competitive 
inhibitor CX-4945, and the synthetic-peptide CIGB-300 
have advanced to a clinical setting [3, 22]. CIGB-300 is 
a peptide originally designed to block the CK2-mediated 
phosphorylation through binding to the phosphoac-
ceptor domain in the substrates [23]. However, recent 
studies have demonstrated that this inhibitor can inter-
act with the CK2α catalytic subunit and regulate part of 
the CK2-dependent phosphoproteome in AML cell lines 

[21]. Additionally, proteomic analysis supported pre-
vious results evidencing that the pro-apoptotic effect, 
the impact over the cell cycle, the redox regulation, and 
the modulation of transcriptional/ translational pro-
cesses are common denominators for CIGB-300-medi-
ated CK2 inhibition in AML cells [21, 24]. However, a 
comprehensive characterization of the gene profile on 
CIGB-300-treated AML cells helping to understand its 
anti-proliferative effect has not been accomplished yet.

Using a microarray approach, here we interrogated the 
temporal gene expression profile modulated for CIGB-
300 on HL-60 and OCI-AML3 cell lines uncovering key 
molecular events that might support the antileukemic 
effect of this CK2 peptide inhibitor.

Results
Profiling of CIGB‑300‑regulated transcriptome in AML cells
Firstly, different diagnostic methods were used to sense 
microarray results (Figure S1). A hierarchical cluster-
ing based on the correlation distance is shown in Figure 
S1A. This one-dimensional clustering separates sam-
ples into experimental groups firstly based on cell line 
and later based on the treatment time and treatment 
received. Replicate 1 of the sample from the OCI-AML3 
control cell at 30 min (O-30minC-1) was excluded from 
the analysis as it is an outlier. The analysis of ANOVA  R2 
of covariates on the first Principal Components showed 
main differences in the first components (PC1, PC2) 
come from cell lines differences; treatment (in PC3) and 
time (30 min or 3 h, in PC4) govern the differences in the 
other components (Figure S1B). The separation among 
the eight groups of this experiment in a homogeneous 
way is shown through Multidimensional Scaling plotting 
(Figure S1C). All these methods show the homogeneity 
of the data per group, the proper separation among them, 
and the main and ranked sources of variabilities of this 
microarray experiment.

The number of Differentially Expressed Genes (DEGs) 
obtained in each comparison, for an FC > =|1.5| and a 
p < 0.01 are shown in Fig. 1A. As a result, in HL-60 cells, 
183 and 802 genes were identified as significantly modu-
lated at 30  min and 3  h, while in OCI-AML3 cells, 221 
and 332 genes appeared differentially modulated in 
response to CIGB-300 treatment. Interestingly, the num-
bers of genes up-regulated are always higher than down-
regulated. HL-60 showed a much higher number of 
regulated genes after 3 h of treatment.

Subsequently, a Venn diagram was constructed to show 
common and different genes (Fig. 1B). Only 21 genes are 
shared in the four comparison groups, most of them are 
transcription factors (EGR1/2/3, FOS, FOSB, IER3, JUN, 
JUNB, NR4A1/2/3, TNF, ZFP36) or chemokines CCL2, 
CCL3 and CXCL8/IL8. It points to the recruitment of a 
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rapid response to stress and inflammation to deal with 
the peptide effect.

An unsupervised Heatmap from the most differentially 
expressed 1100 genes using the online tool Clustergram-
mer showed very well-delimited clusters (Fig.  2A). On 
top, there is a Cluster containing genes that increased 
their expression in both cell lines and time points (Clus-
ter I) although with different kinetics and magnitudes. 
Heatmap of the top 100 up-regulated genes in Cluster I 
showed those common genes, biological pathways, and 
processes (Figure S2A and B). Even when the changes are 
more pronounced in HL-60 after 3 h of treatments, it is 
interesting to note among the GO terms those related to 
cytokine-mediated signaling pathway, cellular response 
to cytokine stimulus, and inflammatory response shar-
ing genes as CXCL10, TFN, IL1B, and other transcription 
factors, also included in positive regulation of transcrip-
tion, and chemokines that participate in the Regulation 
of inflammatory response (Fig.  2B). The main pathways 
are related to TNF and IL-17, TLR, NF-kB signaling, 
Cytokine-cytokine receptor interaction, and C-type lec-
tin receptor signaling pathways (Figure S2B).

Clusters II and III show interesting behaviors related 
to cell lines background (Fig. 2A), where genes decreased 
their expression in HL-60 at 3  h but increased in OCI-
AML3 and vice versa. Enrichment analysis using the 
Enrichr tool associated with Clustergrammer showed dif-
ferent biological processes containing those genes. While 
3 h after peptide treatment of HL-60 (Fig. 2D), CIGB-300 
decreased the expression of 232 genes mostly related to 
signaling transduction through Ras and Rho proteins and 
phospholipase C-activating G protein-coupled receptor, 

the 98 genes that decreased expression in OCI-AML3 
(Fig. 2C) are mainly related to other biological processes 
as regulation of dendrite development, transcription, 
protein retention in Golgi, glucose import or leukocyte 
mediated immunity regulation.

Enrichment analysis of DEGs pointed to cell line and timing 
dependence
When enriched biological processes were analyzed on 
each cell line per time of treatment, we obtained Metas-
cape pictures (Fig. 3 and Figure S3) showing the influence 
of cell line and timing on gene ontology clusters. Since 
30  min of treatment, the NGF-stimulated transcription 
process, including transcription factors (EGR1/2/3/4, 
FOS, FOSB, JUN, SRF, NR4A1/2/3), and chemokines 
CCL2 & CXCL8 is in the top 20 highly enriched ontol-
ogy clusters, mainly in HL-60 cell line (Fig. 3). Pathways 
related to transcription factors such as AP1 or P53 also 
appeared in the ontology clusters during the experiment. 
TNF-alpha and I-kappaB kinase/NF-kappaB signaling 
pathways, and Signaling by GPCR are also processes 
highly enriched in HL-60 since the 30 min of treatment 
with CIGB-300, with increased representation at 3  h of 
treatment in this cell line (Figure S3). Of notice is the fact 
the first two processes, together with Th17 cell differen-
tiation, intrinsic apoptotic signaling pathway in response 
to DNA damage and regulation of DNA-binding tran-
scription factor activity appeared in HL-60 but not in 
OCI-AML3 treated with the peptide for 30 min. Later at 
3  h of treatment the inflammatory response, Cytokine-
cytokine receptor interaction/Cytokine Signaling in the 
Immune system, IL-18 signaling pathway, regulation of 

Fig. 1 Genomic profile and Differentially Expressed Genes (DEGs) of AML cells treated with CIGB‑300 peptide. A Numbers of differentially 
modulated genes in each AML cell line and time points; (B) Venn diagram of sets of DEGs for the treatment groups (p < 0.01;|FC|> = 1.5); groups are 
represented in colors as HL‑60 30 min and 3 h, OCI‑AML3 30 min, and 3 h. Numbers refer to DEGs specific to each treatment or common to two or 
more treatments. Inside the circle, common DEGs in the four groups are pointed out; a table with the 21 common genes is also supplied
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protein kinase activity, and MAPK cascade, and chemo-
taxis appeared as highly enriched processes in HL-60, 
together with positive regulation of cell death, regula-
tion of apoptotic signaling pathway, or Death Receptor 
Signaling (Figure S3). These last processes included genes 
as BCL2L11, CDKN1A, FAS, GADD45B, MAP3K5, 
SQSTM1 and TNFRSF12A.

Regulation of hemopoiesis and differentiation are also 
represented in both cell lines. The first process appeared 
more enriched for HL-60 (30 min and 3 h) while the sec-
ond one in both cell lines, mainly at 3  h. Regulation of 
the myeloid cell differentiation process is highly enriched 
after 3 h of treatment in HL-60. In contrast, Interleukin-4 
and Interleukin-13 signaling and negative regulation of 
the cell cycle appeared enriched in OCI-AML3 (Fig.  3 
and S3).

DEGs show high functional network connections
Using Cytoscape as a framework, we investigated the net-
work connection among genes in each cell line, also con-
sidering their expression kinetics (Fig. 4).

In HL-60 cells, 305 out of 915 genes were connected 
in functional networks (Fig. 4A). Most of the genes were 
regulated after 3  h of treatment and 30 of them were 

regulated at both time points. The majority of these 
genes regulated along the experiment were transcrip-
tion factors; additional TF highly connected are black 
lines surrounded in the net. The most interconnected 
modules included TF as EGR1, JUN, JUNB, FOS, FOSB, 
NF-kB family members, RUNX1, TNF, and genes con-
nected to signaling for apoptosis and cell cycle control, 
such as FAS and CDKN1A. On the other side, DEGs in 
OCI-AML3 were less connected in networks. Figure 4B 
shows the main modules obtained with 116 out of 512 
genes. Here, we also found highly connection among TF 
EGR1, JUN, JUNB, FOS, and FOSB but mainly at 30 min 
post-CIGB-300 treatment. TNF, regulated along all the 
experiment, connect with NF-KB regulator NFKBIA and 
with genes connected to signaling for apoptosis and cell 
cycle control as PPARG, GADD45B, and CDKN1A (p21). 
P21 is also connected to Vimentin (VIM), which is also 
regulated throughout the experiment. Using Metascape 
and the entire study list, MCODE identified neighbor-
hoods that are densely connected (Figure S4), taking 
into account treatment groups (in colors in Figure). This 
also showed a highly interconnected module, includ-
ing EGR and AP1 transcription factors, TNF, and some 
chemokines and cytokines; most of them regulated in the 

Fig. 2 Analysis of DEGs by the action of CIGB‑300 treatments and enriched biological processes. A Unsupervised Heatmap from the most 
differentially expressed 1100 genes, ranking the row order by Clusters. A subset with highly up‑regulated genes (Cluster I), a subset where genes 
decreased their expression in OCI‑AML3 at 3 h but increased in HL‑60 (Cluster II) and a subset where genes decreased their expression in HL‑60 
at 3 h but increased in OCI‑AML3 (Cluster III) are shown. B GO terms enriched using associated Enrichr analysis and genes included in more 
represented processes from Top 100 analysis in Cluster I, in a Clustergrammer shape. C and D represent the Enrichr analysis from genes included in 
Cluster II and III, respectively
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four treatment groups. Functional description of the cor-
responding components in this module pointed to NFAT 
TF, AP1, and IL-17 signaling pathways with a -log10(P) 
near 20. It also appeared an additional smaller module 
including NF-KB family members, principally regulated 
at 3 h with a -log10(P) of 8.

Transcription factor prediction from DEGs shows 
differential dynamics in both AML cell lines
For a deeper understanding of gene expression regula-
tion in HL-60 and OCI-AML3 after CIGB-300 treatment 
for 30  min and 3  h, we explored two different strate-
gies: an enrichment analysis using the curated database 
of human transcriptional regulatory networks TRRUST 
through Metascape and the search of gene regulatory 
motifs from DEGs connected networks using the iReg-
ulon application on Cytoscape. In Fig.  5 enrichment 
analysis in TRRUST is shown. As for the ontology clus-
ters, there is a dependence on the cell line and timing for 
gene regulation, where NF-KB family members such as 
RELA, NFKB1, and REL are among the most enriched 
along the entire experiment, followed by JUN, STAT3, 
TP53, and EGR1. An interesting finding is the contribu-
tion of STAT1, ATF2, and CREB1 in OCI-AML3 from 
the 30 min of treatment but only after 3 h in HL-60 and 
NFKBIA only after 3 h of CIGB-300 treatment.

In Figure S5, we show two graphs with ordered TF 
according to the Normalized Enrichment Score (NES) 
in iRegulon per cell line and time point taking into 
account only network-connected genes. A high NES 
score (≥ 3.0) indicates a motif that recovers a large pro-
portion of the input genes within the top of its ranking. 
In HL-60, gene transcription regulation is governed 
at 30  min by SRF, NF-kB family members (RELA, 
NFKB1), JUN, CREB1, MEF2A/C, TBP, and EGR 4/2/3; 
later at 3  h, BCL3 gains importance together with 
NF-kB family members (RELA, NFKB1 and 2, REL), 
FOS, TBP, JUN, and JUNB. Otherwise, in OCI-AML3 
the 30  min gene regulation is mainly accomplished 
by TBP, SRF, EGR2/1/4, MEF2A/C/B, RELA, NFKB2, 
MAPK14, JUND, and CREB1 while at 3  h post-treat-
ment, the gene regulation strategy completely changed 
with a role for DBP, HLF, ATF2, TEF, CEBPA/B, NFIL3, 
and GATA2 and not by NF-kB family members or AP-1 
complex components.

CIGB‑300 stimulates cellular differentiation and cell cycle 
target genes
Myeloid hematopoietic differentiation is controlled 
by extrinsic cytokines and intrinsic transcription fac-
tors such as the macrophage colony-stimulating fac-
tor (M-CSF, encoded by CSF1) and EGR1. Both were 

Fig. 3 Top enriched ontology clusters across AML cell lines treated with CIGB‑300 for 30 min and 3 h using Metascape. The most 20 enriched 
biological processes (‑log10(P)) in HL‑60 (H) or OCI‑AML3 (OCI) after CIGB‑300 treatment for 30 min and 3 h are shown
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studied by qPCR (Figure S6), showing an increase of the 
TF EGR1 in all conditions but mainly in HL-60 treated 
for 30 min. CSF1 was significantly increased after 3 h of 
HL-60 treatment with CIGB-300.

We also explored gene expression of CDKN1A/
P21, with important regulator roles in G1 progression 
in the cell cycle, by qPCR in both cell lines after the 
CIGB-300 treatment for 30  min, 2  h, and 8  h. Figure 
S7 shows the increase of CDKN1A mRNA levels in 
both cell lines; from 30  min in OCI-AML3 and after 
2  h and 8  h of CIGB-300 treatment in HL-60 with 
higher magnitudes.

CIGB‑300 elicits up‑regulation of TNFA and NF‑kB target 
genes
NF-kB pathway genes were shown to be significantly up-
regulated by CIGB-300. To assess the robustness of the 
microarray analysis, we selected representative genes 
for validation by quantitative real-time RT-PCR (qPCR) 
and ELISA. Nine genes from the NF-kB signaling path-
way, identified by the high-throughput analysis in HL-60 
and OCI-AML3 cells treated with CIGB-300 in a tempo-
ral serial at 30 min and 3 h, were investigated by qPCR 
(Fig.  6). The expression patterns obtained by PCR con-
firmed microarray results, in a cell-line and temporal 

Fig. 4 Network of DEGs by CIGB‑300 treatment. Connected DEGs are shown in HL‑60 (A) and OCI‑AML3 (B) in both treatment times. Some 
modules of interest obtained by MCODE are shown in grey ovals. Additional TF are black lines surrounded in the net, as well as green edges of 
interest from TNF in HL‑60. The network was generated by the BisoGenet Cytoscape application
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manner, with higher absolute up-regulation fold changes 
values to those in the microarray.

Target genes NFKBIA/IKBα, NFKB1/p50, NFKB2/
p52, and TNFAIP3/A20 showed little or no over-expres-
sion early (30 min) but at 3 h they significantly increased 
expression in both cell lines. These increased levels were 
higher in the HL-60 cell line compared to OCI-AML3. 
c-REL/REL showed this same behavior in HL-60. In 
contrast, RELA gene levels were not significantly modu-
lated by CIGB-300 in the microarray and qPCR analy-
sis. Moreover, c-REL targets MAP3K8 and GADD45B 
increased gene expressions either in HL-60 (30 min) or in 
OCI-AML3 (30 min and 3 h), respectively.

In agreement with the qPCR result, a clear increase 
of the p50 binding activity after CIGB-300 treat-
ment was confirmed by ELISA assay in both AML 
cell lines; although a higher level of p50 DNA binding 
was observed after OCI-AML3 cells were treated with 
CIGB-300 for 2 h and 5 h, compared to HL-60 (Fig. 7A).
qPCR results also evidenced TNFA(TNF-α) was up-
regulated by CIGB-300 3.8- fold in OCI-AML3 and 
11.6- fold in HL-60 as early as 30 min of drug exposure. 

This up-regulation was still found at 3  h (1.7-fold for 
OCI-AML3 and 10.6-fold for HL-60). An ELISA assay 
to measure TNF-α secretion in AML cell lines following 
CIGB-300 treatment corroborated microarray and qPCR 
data showing a cell line-specific regulation with elevated 
TNF-α expression in HL-60 (66.7  pg/mL) compared to 
OCI-AML3 (10.3  pg/mL) at 3  h of treatment (Fig.  7B). 
TNF-α induction by CIGB-300 tends to decrease at 24 h 
post-treatment, pointing to the time-dependent effect of 
this signaling pathway activation.

Discussion
AML is still a challenging disease in terms of effective 
therapy and minimal residual disease control [25], thus 
novel therapeutics have evolved in the last years, where 
CK2 targeting looks among the most promising ones [20, 
26, 27]. Preclinical results have shown CIGB-300 pep-
tide impacts on leukemic cell proliferation [21]. Prelimi-
nary clinical results show safety and first insights into the 
effect on AML patients [28].

In vitro models are often used to understand the cellu-
lar response, molecular mechanisms, and key pathways 

Fig. 5 Enrichment analysis of transcription factor using TRRUST database from Metascape. Enriched transcription factors (‑log10(P)) in HL‑60 (H) or 
OCI‑AML3 (OCI) after CIGB‑300 treatment for 30 min and 3 h is shown using the TRRUST database in Metascape
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involved in the effect of a drug. Here, HL-60 (FAB M2 14% 
in AML; TP53/CDKN2A/NRASmut) and OCI-AML3 
(FAB M4 20% in AML; DNMT3Amut, NPMc +) cell lines 
were chosen to cover an important part of AML patients 
with non-assigned therapy [in contrast to it is the case of 
FAB-M3] [29, 30]. Previous proteomic and phosphoprot-
eomic analyses in both cell lines showed common but also 
specific ways CIGB-300 impacts cell apoptosis, the cell 
cycle, and regulate transcription and translation compo-
nents [21, 24]. Gene expression profiles in both cell lines 
would also allow sensing of what are general or more spe-
cific mechanisms to genetic backgrounds and differentia-
tion states of leukemic cells. This study will give a new view 
at an earlier step of regulation. This is the first report of the 
gene expression profile modulated for CIGB-300 in HL-60 
and OCI-AML3 cell lines using a microarray approach.

The Multidimensional Scaling and the ANOVA  R2 of 
covariates analysis showed the main differences are gov-
erned by the cell line background and later, by treatment 
and time. Nevertheless, the heatmap picture showed 
a Cluster I comprising genes that are up-regulated in 
both cell lines although with differential magnitudes 
and kinetics. Interestingly, this cluster is composed of 
genes encoding transcription factors responding to 
stress stimulus as EGR1 and AP-1 components, pro-
inflammatory cytokines such as IL1β and TNFα, and 
chemokines, including IL8. Most of them are part of 
the Top 100 up-regulated genes in the complete experi-
ment, with a higher increase in HL-60. NFAT Transcrip-
tion factor and AP1 pathways were also found enriched 
in both cell lines. Although the Calcineurin–NFAT 
pathway was described in T cells as acting as a master 

Fig. 6 qPCR validation of selected genes of NF‑kB signaling pathway modulated by CIGB‑300. A HL‑60 and B OCI‑AML3 cells were treated with 
40 μM of CIGB‑300 for 30 min and 3 h. Histogram bars indicate relative mRNA levels ± standard errors to a time‑matched untreated control, for two 
independent experiments analyzed in triplicate. All genes were normalized with ABL1, DDX5, and GAPDH genes. Asterisks represent statistically 
significant changes (p < 0.05) by REST 2009
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regulator of lymphocyte development and effector T-cell 
functions [31], it is also essential in myeloid lineages for 
their defense function against pathogens [32]. NFAT fac-
tors can cooperate with AP-1 and NF-kB transcription 
factors to modify immune responses. NFAT expression 
also increased in murine bone marrow cultures stimu-
lated with M-CSF (encoded by CSF1) [33]. In normal 
physiology, M-CSF triggers hematopoietic stem cells to 
differentiate into macrophages/monocytes, and in our 
experiment, CSF1 increased their gene expression after 
3  h of peptide treatment in HL-60. Leukemia-derived 

cell lines come from hematopoietic precursors with the 
potential to differentiate into immune cells. Ramírez 
et  al. (2017) profiled HL-60 promyelocytes differenti-
ating into macrophages, neutrophils, monocytes, and 
monocyte-derived macrophages in a time series experi-
ment from 3 to 168 h [34]. Similarly, they found a rapid 
response at 3 h with the expression of key transcription 
factors and lineage markers, including EGR1, EGR2, 
RELB, and NFKB2 in both subtypes of macrophages and 
NR4A1, NR4A2, NR4A3, EGR3, and FOSB in monocyte-
derived macrophages. Heatmap of other differentially 

Fig. 7 ELISA assays for p50 binding and TNF‑α levels detection after CIGB‑300 treatment of HL‑60 and OCI‑AML3 cells. A Cell extracts from HL‑60 
and OCI‑AML3 cells were subjected to an ELISA Panomics kit (#EK110) to quantify p50 DNA binding activation after treatment with 40 μM of 
CIGB‑300 at 0.5 h, 2 h, and 5 h. NF‑kB activation positive control (C +) was included. Histogram bars indicate Absorbance (Abs) 450 nm mean ± SD 
(standard deviation) for two independent experiments analyzed in triplicates. B Soluble TNF‑α level was measured by ELISA after 3 h and 24 h of 
treatment with 40 μM of CIGB‑300. PMA was employed as a positive control (C +) of TNF‑α secretion. Histogram bars indicate pg/mL mean ± SD for 
two independent experiments analyzed in triplicate. Relevant statistically significant differences between conditions are represented as **p < 0.01 
and *** p < 0.001 after a one‑way ANOVA followed by Tukey’s Multiple Comparison Test
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expressed transcriptional regulators showed the 
increase, as early as 3  h, of AP-1 elements, REL/REL 
A, and inflammatory molecules such as IL1B or CCL2. 
This differentiation program is very well controlled over 
time with waves of expressions. NFAT pathway can also 
be stimulated via pattern recognition receptors (PRR) 
which increases the expression of IL2, -10, or -12. IL-10 
gene expression increased after 30  min of treatment in 
OCI-AML3. These elements joined to the enrichment of 
regulation of hematopoiesis as a biological process along 
the experiment for the M2 cell line HL-60, and regula-
tion of cell differentiation in both cell lines with different 
kinetics are indicating CIGB-300 possibly triggers dif-
ferentiation in leukemic cells. Corroboration should be 
done by measuring differentiation membrane markers in 
properly controlled experiments.

This transcriptomic analysis has particularly revealed 
the stimulation of cytokine and chemokine responses, as 
a quick molecular response to CIGB-300 and the involve-
ment of an inflammatory response as part of the mecha-
nism of this peptide. These CIGB-300 targeted cell lines 
are a myeloid precursor in an intermediate state of differ-
entiation that can evolve to become effector myeloid cells 
and then their response could mimic that of an antigen-
presenting cell. The presence of the cationic Tat penetrat-
ing peptide as part of the CIGB-300 sequence contributes 
to its rapid internalization within 3 min in 80% of the cells 
[21]. Previous reports with other penetrating peptides 
have shown the increased uptake by antigen-presenting 
cells and the induction of a potent  CD8+ T cell immunity. 
Using OVA as a vaccine antigen model, a potent antigen-
specific immune response was induced with increases in 
IgG titer, splenocyte proliferation, secretion of cytokines 
IFN-γ, IL12, IL4, and IL10, immune memory function, 
and the activation and maturation of dendritic cells [35]. 
CIGB-300 has not elicited an antibody response after 
mice immunization (unpublished results), thus additional 
mechanisms where an immune inflammatory response 
can contribute to change cell phenotypes, recruit effec-
tor immune cells nearby leukemic cells, and then help 
to control cancer cell proliferation should be participat-
ing. This inflammatory response is higher in HL-60 after 
3 h of treatment, involving IL18 signaling. This pathway 
shares components with IL1 to activate NF-kB signaling, 
adhesion molecules, chemokines, IFN-γ, IL4/IL13, and 
Fas ligand [36]. The cell chemotaxis process is a process 
mainly enriched in the HL-60 cell line while IL4/IL13 
signaling was principally enriched at 3 h in OCI-AML3. 
Heatmap Cluster II comprised genes participating in the 
positive regulation of leukocyte-mediated immunity, that 
only down-regulated expression in OCI-AML3 at a 3  h 
time point. Both cell lines interpret initial inflammatory 
signaling in different ways and timing.

A higher number of regulated genes in HL-60 com-
pared to OCI-AML3, mainly after 3  h of treatment, 
indicates both models have their ways to achieve the 
antiproliferative state. Based on DEGs, TRRUST and 
iRegulon plugin showed the early activation of transcrip-
tion factors such as AP-1 components (JUN or JUND) 
and NF-kB family members together with EGR and oth-
ers. The role of AP-1 and NF-kB family members is rein-
forced after 3  h of peptide treatment in HL-60, where 
JUNB, FOS, and REL are incorporated into the predic-
tion by iRegulon. Networking analysis also showed a 
high degree of connections from several of these nodes. 
The vision of time dependence as well as their central-
ity to interact with other components of the functional 
net, including those genes participating in Apoptosis and 
Cell Cycle is better for HL-60 with 305 functional links. 
Although TFs are very well connected in the net for OCI-
AML3, the ramification to the other genes is lower with 
116 genes functionally linked.

Singh et  al. (2011) showed AP-1 transcription factor 
family members’ c-Jun and JunB were transcription-
ally activated in non-steroidal anti-inflammatory drugs 
treated AML cells, leading to the activation of GADD45A 
with Apoptosis induction [37]. CIGB-300 has been 
shown to have an impact on apoptosis in AML cells [21] 
and the process was found enriched in these cell lines 
after a proteomic experiment [24]. Extrinsic apoptotic 
plays an important role in the immune surveillance of 
transformed cells and it is activated by cytokine ligands 
binding (i.e., FasL, TNF, and TRAIL) to members of the 
TNFα receptor superfamily, also called death receptors 
(i.e., Fas, TNF, and TRAIL receptors), followed by the 
activation of an active caspase-8 and beyond effector cas-
pases (caspase-3, -6 and -7) [38]. The pro-apoptotic effect 
of CIGB-300 in OCI-AML3 cells was supported in the 
proteomic experiment by the increase of BAK, FADD, 
caspase-7, and gasdermin-D levels [24]; while in HL-60, 
elements that counteract pro-apoptotic stimuli, probably 
to allow DNA damage repair under low levels of geno-
toxic stress, were over-expressed. In our experiment, FAS 
gene expression increased by 1.55 at 3 h of treatment and 
TRAIL (encoded by TNFSF10) progressively increased 
along the experiment in HL-60. Preclinical models have 
shown recombinant TRAIL induces tumor regression 
with little toxicity to normal tissues [39]. In OCI-AML3, 
this apoptotic pathway showed no other changes than the 
increase in TRAIL receptor (encoded by TNFRSF10A) at 
3 h with a low FC of 1.27. In accordance, Positive regu-
lation of cell death and Death Receptor signaling were 
shown as enriched Biological Processes in the Metas-
cape tool at 3  h in HL-60, including genes FAS, TNF, 
TNFRSF12A, TNFSF10, and also BCL2L11, encoding for 
the pro-apoptotic BIM in the intrinsic pathway [38].
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NFAT members also participate in the transcription of 
several cytokines and signaling molecules with the activa-
tion or inhibition of the Cell cycle [40]. The CDK inhibi-
tor P21 is also regulated by this transcription factor. Here, 
we found CDKN1A (encoding P21) up-regulated after 
3 h of CIGB-300 treatment in both cell lines. In HL-60, 
a higher number of CDKN1A network interactions were 
found, and a higher mRNA expression after 2 h and 8 h of 
CIGB-300 treatment was also demonstrated by qPCR. In 
contrast, OCI-AML3 showed the highest P21 increases at 
30 min, although with lower values than in HL-60. Balusu 
et al. demonstrated NPM1 knockdown induced P53 and 
P21 and decreased the percentage of cells in the S-phase 
of the cell cycle, thus this could be also the relation in 
this NPM1-mutated cell line [41]. The cell cycle-related 
gene encoding GADD45B, targeted by P53 and c-REL, 
also showed differential regulation in both cell lines after 
qPCR validation. The modulation of P21 and GADD45B 
by CIGB-300 in both cell lines is another example of how 
the antiproliferative response could be achieved depend-
ing on the cell background; proteomic experiment also 
showed the importance of this biological process in the 
peptide effect but with different biomarkers regulated by 
CIGB-300.

The induction of TNF response is evident in all groups 
of this experiment, with higher increases reached in 
HL-60. Four putative NFAT-binding sites, but also EGR1 
and AP-1 binding sites, have been demonstrated in the 
TNF-α promoter, a gene that also increased. Systemic 
administration of TNFα in cancer therapy has been 
avoided because of its pro-inflammatory actions but TNF 
destroys tumor-associated blood vessels by apoptosis and 
improves vascular permeability to cytotoxic drugs. Thus 
a more controlled application displays advantages. Cur-
nis et al. (2000) showed that low doses of TNF improved 
the penetration of doxorubicin in the treatment of mela-
noma and lymphoma [42]. Here, we showed increases 
in the gene encoding TNFα in both cell lines although 
increases were higher in the HL-60 cell line at gene and 
protein levels. Moreover, TNFα induction is transient 
as the protein expression is decreased 24 h after peptide 
treatment compared to 3  h. TNF receptor 1 (TNFR1) 
signaling is bifurcated into three different paths affecting 
cellular fate. In the absence of TRADD, ligand binding to 
TNFR1 recruits RIP1 producing reactive oxygen species 
(ROS), activating the JNK signaling cascade, and cells 
then die by apoptosis [43]. Incubation of AML cells with 
CIGB-300 peptide increased ROS production in HL-60 
cells but not in OCI-AML3 cells. As a consequence, the 
HL-60 proteomic profile included ROS metabolic as an 
enriched process [24] and the connection between ROS 
de-regulation and CIGB-300-induced apoptosis was 
demonstrated. ROS can sustain JNK activity allowing 

TNFα to kill cells in which NF-kB is active [38]. On the 
other hand, autocrine binding of TNFα to TNFR2 up-
regulates the anti-inflammatory cytokine IL10 in mono-
cytes and clears TNF from the environment, serving as 
a balance for the pro- and anti-inflammatory actions of 
this cytokine [44]. As we mentioned before, IL10 expres-
sion was increased in OCI-AML3 at 30 min. This could 
be part of the explanation for the low TNFα detected in 
the supernatants of OCI-AML3 (10.3 pg/mL) compared 
to HL-60 (66.7 pg/mL) at 3 h of treatment. The measure 
of TNFR1&TNFR2 membrane expression, as well as TNF 
secretion in a time course experiment, could clarify pos-
sible mechanisms and contributions in both models.

TNF signaling is also linked to NF-kB signaling. 
Although the NF-kB signaling pathway has been mainly 
associated with a survival response in cancer to protect 
cells from apoptosis [45] different drugs targeting this 
cascade have been developed to control cancer cell pro-
liferation [46]. Dual functions of NF-kB signaling appear 
to result from the ability of these transcription factors to 
either activate or repress transcription of genes depend-
ing on interaction with transcription co-activator or 
repressors and post-translational modifications [47, 48]. 
For instance, DNA-damaging chemotherapeutic agents 
can lead to NF-kB activation by initiating signals gener-
ated in the nucleus [49, 50]. However, modulation of the 
NF-kB pathway and temporal dynamic depends on the 
cell type and the nature and amount of the agent [51, 
52]. At present, the molecular characterization of the 
effect of CIGB-300 on the NF-kB signaling pathway is 
not fully elucidated. As a preliminary study, we explored 
the gene expression of different components of canoni-
cal NF-kB signaling pathways by qPCR. In both AML-cell 
lines, we detected an over-expression of NFKBIA/IKBα, 
NFKB1/p50, NFKB2/p52, and TNFAIP3/A20 at 3  h 
post-treatment although higher in HL-60. Interestingly, 
only in HL-60, c-REL/REL shows that same increase at 
3 h, as well as its target MAP3K8. In contrast, although 
we did not find a gene regulation for REL or REL A in 
OCI-AML3 an increase in their target GADD45B was 
accounted during the experiment setting. The activation 
of this cascade in both cell lines was then validated by 
qPCR with different magnitudes and paths.

CK2 protein kinase phosphorylates IkB (NF-kB inhibi-
tor/NFKBIA gene) which promotes its degradation and 
release of NF-kB complexes to enter into the nucleus 
[53]. NF-kB p65/REL A subunit is also phosphorylated 
by CK2 in Ser529; both phosphorylation events implicate 
activation of this transcription factor [54]. CK2 inhibi-
tors, CX-4945 and CIGB-300, have evidenced a clear 
inhibitory effect on the NF-kB signaling pathway [21, 55, 
56]. Particularly, in two non-small-cell lung cancer mod-
els, the antiproliferative effect was accompanied by the 
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inhibition of the CK2-dependent canonical NF-kB path-
way, with reduced REL A/p65 nuclear levels and condi-
tionally reduced NF-kB transcriptional activity [56]. In 
the AML context, we demonstrated an up-regulation 
of some of the NF-kB target genes as well as TNF-α as 
one of these pathway inducers, following treatment with 
CIGB-300. This fact could be related to the activation of 
apoptosis as molecules from the mitochondrial (intrinsic) 
and death receptor (extrinsic) apoptotic pathways (ex. 
p53, Fas and FasL, TNFα, TRAIL, receptors DR4, DR5, 
DR6, pro-apoptotic Bcl-2 family members) are NF-kB 
transcriptional targets [38]. Certainly, a closer inspection 
of whether NF-kB signaling activation in AML cells trig-
gers the apoptotic machinery induced by CIGB-300 or 
cell rescue signals upon cell exposure to the drug remains 
to be established.

Conclusions
We present the temporal gene profile in two cellular 
models for AML, HL-60 and OCI-AML3, treated with 
the peptide CIGB-300. An interesting finding at this 
early step of regulation is the increase of TF, cytokines, 
and chemokines related to stress stimulus and inflam-
mation since 30  min of treatment which increases at 
3  h; TNF and NF-kB signalings are also stimulated at a 
higher proportion in HL-60. In this cell line, IL18 sign-
aling is enriched in contrast to IL10 and IL4/IL13 sign-
aling in OCI-AML3. Hematopoiesis and differentiation 
are also stimulated. Even when previous experiments 
have shown the role of the peptide over apoptosis and 
cell cycle, this microarray profile gives new clues about 
the role of TNF and NF-kB signaling to accomplish those 
effects. The networking from several TF shows the diver-
sification of process actors and the particular ways both 
cell lines achieve similar biological effects. Temporal gene 
expression shows that together with the antiproliferative 
mechanism, CIGB-300 can stimulate immune responses 
by increasing immunomodulatory cytokines which, when 
locally secreted, may activate the immune system for 
tumor attack and blast cell control. This dual mechanism 
observed for CIGB-300 action can be very relevant in 
AML therapeutic.

Methods
Cell culture
Human AML cell lines HL-60 and OCI-AML3 were 
originally obtained from the American Type Culture Col-
lection (ATCC, VA, USA) and the German Collection 
of Microorganisms and Cell Cultures (DSMZ, Braun-
schweig, Germany), respectively. Both cell lines were 
cultured in RPMI 1640 medium (Invitrogen, CA, USA) 
supplemented with 10% (v/v) fetal bovine serum (FBS, 
Invitrogen, CA, USA) and 50 μg/mL gentamicin (Sigma, 

MO, USA) under standard cell culture conditions at 37 °C 
and 5%  CO2.

Experiment setting up
An experiment with three replicates per condition of 
both cell lines was designed. The eight groups included 
untreated cells at 30  min and 3  h and treatment with 
40  μM of CIGB-300 peptide for 30  min and 3  h. After 
incubations cells were pickup in buffer RLT with 1% of 
β-mercaptoethanol and total RNA purification pro-
ceeded following the instructions of RNeasy Plus mini kit 
(Qiagen, USA). Quality control of total RNA was carried 
out by spectrophotometric readings of optic density (OD) 
at 260 and 280  nm in Nanodrop 1000 (ThermoFisher, 
USA) to determine the concentration (> 80  ng/μL) and 
OD260/280 ratio (1.8–2.2). Additionally, RIN (7–10) was 
calculated by capillary electrophoresis in a Bioanalyzer 
(Agilent, Waldbronn, Germany).

Gene expression profile by microarray
2.5  μg (100  ng/μL) of each total RNA sample was sent 
to McGill University and Génome Québec Innovation 
Centre (Montréal, Québec, Canada) for the experiment 
in the Affymetrix Clariom S microarray gene expression 
platform.

Quantitative PCR amplification
We obtained cDNA in 20 μL, from 870 ng of total RNA of 
three samples per group, following the instructions of the 
manufacturer of Transcriptor First Strand cDNA Synthe-
sis Kit (Roche, Germany). Quantitative (q)PCR reactions 
were set up in 20 μL with 300  nM of oligonucleotides 
(Table S1) and LightCycler® 480 SYBR Green I Master 
2x (Roche, Germany) using three technical replicates per 
sample. The runs were carried out in LightCycler®480II 
(Roche, Germany) equipment using the standard pro-
gram SYBR Green Probe II and controls [57]. Ct and effi-
ciency values were obtained and used in REST 2009 [58] 
to report a Change Factor in gene levels after the treat-
ment for 30  min and 3  h with CIGB-300, to untreated 
cells after the normalization with GAPDH, DDX5, and 
ABL1 as reference genes [57]. The program reports a 
p-value after a Pair Wise Fixed Reallocation Randomiza-
tion Test [59], reporting increasing and decreasing gene 
levels as UP and DOWN, respectively.

Basic microarray data analysis provided by the genome 
Québec Innovation Centre
Basic bioinformatics analysis of microarray experiment 
was performed as a custom service at McGill University 
and Génome Québec Innovation Centre (Montréal, Can-
ada). This service included quality control, preprocess-
ing, and exploratory and differential expression analysis. 
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As a result of the quality control, the array correspond-
ing to replicate 1 of the OCI-AML3 control cell at 30 min 
(O-30minC-1) was removed from the analysis. Preproc-
essing included the Robust Multi-array Average (RMA) 
method [60] that performs background adjustment using 
the RMA convolution model, followed by quantile nor-
malization and log2 transformation. Probes belonging 
to the same gene are then averaged using a robust model 
that estimates probe-specific effects using all arrays. 
Technical replicate arrays were averaged within the 
groups defined by variable(s) SampleID. The exploratory 
analysis applied clustering and dimensionality reduction 
techniques to the expression profiles in a hypothesis-
free manner such as hierarchical clustering based on the 
correlation distance, 2D Multidimensional scaling plot 
(MDS), and ANOVA  R2 of covariates on the first Princi-
pal Components.

For differential expression analysis, the Bioconductor 
Limma package was used [61]. Statistical tests contrast-
ing different treatments were performed (Moderated 
t-tests) [62]. The Benjamini–Hochberg was used for FDR 
estimation [63].

Additional bioinformatics analysis
Genes with a fold change (FC) >  = than |1.5| and p val-
ues lesser than 0.01 (p < 0.01), in each cell line at each 
time compared with the untreated control, were consid-
ered Differentially Expressed Genes (DEGs) and used for 
later bioinformatics analysis. Table S2 shows DEGs in 
HL-60 and OCI-AML3 at 30 min and 3 h, in independent 
sheets. Venn diagram was constructed to show common 
and different genes (VIB /UGent Bioinformatics & Evo-
lutionary Genomics Gent, Belgic; http:// bioin forma tics. 
psb. ugent. be/ webto ols/ Venn/).

Clustergrammer online tool was used to generate unsu-
pervised heatmaps from the most differentially expressed 
1100 genes [64]. Enrichr online analysis associated with 
Clustergrammer was used for enrichment exploration of 
the top 100 genes and other lists [65]. Additional func-
tional enrichment analyses were carried out with the 
bioinformatic tool Metascape [66, 67]. Metascape gene 
annotation and analysis resource (https:// metas cape. 
org/), is a web-based tool that computes the accumula-
tive hypergeometric distribution and enrichment factors 
to identify significantly enriched biological processes 
through statistical analysis (p-value < 0.01, enrichment 
factor > 1.5)).

BisoGenet (version 3.0.0) Cytoscape plugin available 
from Cytoscape Application Manager, was used to gen-
erate PPI networks [68]. Cytoscape software (v.3.3.0) 
was used as a network framework [69]. Analysis on net-
works to predict transcription factors (TF) from DEGs 
was carried out with the iRegulon plugin (version 1.3) 

[70]. Highly interconnected genes on the network were 
explored with the MCODE plugin (version 1.4.1) [71].

P50‑DNA binding activity detection by ELISA
To measure p50-DNA binding activity HL-60 and OCI-
AML3 cells were incubated with CIGB-300 at a dose 
of 40  μM for 30  min, 2  h, and 5  h at 37  °C in 5%  CO2. 
After treatment, cells were collected and nuclear extrac-
tion was performed using a Panomics kit (#EK110). The 
DNA-binding activity of the p50 NF-kB subunit was 
monitored using a commercially available ELISA-based 
assay (Panomics, #EK1111). Briefly, nuclear samples 
(10 μg) were incubated in an ELISA plate that was coated 
with oligonucleotides containing a p50 consensus regu-
latory element sequence. The positive control nuclear 
extract was prepared from HEK293 cells that were 
treated with 20  ng/mL of TNF-α for 30  min. The wells 
were washed and exposed to a primary antibody specific 
for the p50 subunit of NF-kB. The binding of the primary 
antibody to protein was detected through a chromog-
enic reaction involving the enzymatic breakdown of 3, 3’, 
5, 5’ tetramethylbenzidine via a horseradish peroxidase 
(HRP)-conjugate secondary antibody. Finally, absorbance 
at 450  nm was read using a CLARIOstar® high-perfor-
mance monochromator multimode microplate reader 
(BMG LABTECH, Ortenberg, Germany).

TNF‑α secretion detection by ELISA
To evaluate TNF-α secretion we employed a commer-
cial human TNF-α ELISA kit (R&D Systems). HL-60 
and OCI-AML3 cells were seeded at a concentration 
of 500,000 cells /mL in 12-well cell culture plates and 
treated with CIGB-300 (40 μM) for 3 h and 24 h at 37 °C 
in 5%  CO2. Phorbol myristate acetate (PMA) at a dose of 
2.5 ng/mL was used as a positive control of TNF-α induc-
tion for 24 h of treatment. After incubation, supernatants 
were collected and subjected to ELISA analysis.
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Additional file 1: Figure S1. Diagnostic plots in control cells or CIGB‑300 
treated OCI‑AML3 (O) and HL‑60 (H) samples for 3h and 30min. (A) One 
dimensional hierarchical clustering of all samples (replicates 1, 2, 3), (B) 
ANOVA R‑squared (^2) of covariates (Cell, Time and Treatment) in % (C), 
Multidimensional Scaling (MDS) of filtered data. Samples from HL60 (H) 
and OCI‑AML3 (O) Untreated or treated with the peptide CIGB‑300 for 
30min and 3h are indicated. Figure S2. Top 100 differentially up‑regulated 
genes by CIGB‑300. (A) Unsupervised Heatmap from the Top 100 most 
differentially up‑expressed genes in HL‑60 and OCI‑AML3. (B) Pathways 
analysis in Top 100 up‑regulated genes using Enrichr. Figure S3. Top 100 
enriched ontology clusters across AML cell lines treated with CIGB‑300 
for 30min and 3h using Metascape. The most 100 enriched biological 
processes (‑log10(P)) in HL‑60 (H) or OCI‑AML3 (OCI) after CIGB‑300 treat‑
ment for 30min and 3h are shown. Figure S4. MCODE in network using 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Metascape. MCODE was used to identify neighborhoods where proteins 
are densely connected in network. Network nodes are displayed as pies, 
where colors in sectors represent the treatment groups according to the 
legend at the draw corner for HL‑60 (H) and OCI‑AML3 (OCI) treated with 
CIGB‑300 for 30min and 3h. Figure S5. Predicted Transcription factors 
from DEGs. TF predicted from regulatory motifs in DEGs in HL‑60 and OCI‑
AML3 after 30min and 3h of CIGB‑300 treatment are shown in both panels 
of the Figure. The Cytoscape on‑net analysis plugin iRegulon was used 
and a NES>3.0 was selected. Figure S6. qPCR validation of genes related 
to differentiation modulated by CIGB‑300. HL‑60 and OCI‑AML3 cells were 
treated with 40 μM of CIGB‑300 for 30min and 3h. Histogram bars indicate 
relative mRNA levels ± standard error with respect to a time‑matched 
untreated control, for two independent experiments analyzed in triplicate. 
All genes were normalized with ABL1, DDX5, and GAPDH genes. Asterisks 
represent statistically significant changes (p< 0.05) by REST 2009. Figure 
S7. qPCR validation of the cell cycle related gene CDKN1A/P21 gene 
modulated by CIGB‑300. HL‑60 and OCI‑AML3 cells were treated with 40 
μM of CIGB‑300 for 30min, 2h and 8h. Histogram bars indicate relative 
mRNA levels ± standard error with respect to a time‑matched untreated 
control, for two independent experiments analyzed in triplicate. All genes 
were normalized with ABL1, DDX5, and GAPDH genes. Asterisks represent 
statistically significant changes (p< 0.05) by REST 2009. Table S1. Oligonu‑
cleotides used for qPCR amplifications. Information of Gene name, oligo‑
nucleotide identifiers (ID), Sequence 5´ to 3´ (Sequence 5’…3’), number of 
bases (# Bases) and Function (Reference or Biomarker) is provided. All were 
synthesized in Oligonucleotide Synthesis Group (CIGB, Havana).

Additional file 2: Table S2. DEGs for the treatment groups comparisons 
(p< 0.01;|FC|>=1.5). In independent sheets we have HL‑60 vs Untreated 
control 30min & 3h, and OCI‑AML3 vs Untreated control 30min & 3h. 
Column order: # number of gene, Gene SYMBOL, Fold Change, P value, 
adjusted (adj) P value, ENTREZ ID, Gene Name.
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