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Abstract
Background Clonostachys rosea is an established biocontrol agent. Selected strains have either mycoparasitic activity 
against known pathogens (e.g. Fusarium species) and/or plant growth promoting activity on various crops. Here 
we report outcomes from a comparative ‘omics analysis leveraging a temporal variation in the in vitro antagonistic 
activities of C. rosea strains ACM941 and 88–710, toward understanding the molecular mechanisms underpinning 
mycoparasitism.

Results Transcriptomic data highlighted specialized metabolism and membrane transport related genes as being 
significantly upregulated in ACM941 compared to 88–710 at a time point when the ACM941 strain had higher in 
vitro antagonistic activity than 88–710. In addition, high molecular weight specialized metabolites were differentially 
secreted by ACM941, with accumulation patterns of some metabolites matching the growth inhibition differences 
displayed by the exometabolites of the two strains. In an attempt to identify statistically relevant relationships 
between upregulated genes and differentially secreted metabolites, transcript and metabolomic abundance data 
were associated using IntLIM (Integration through Linear Modeling). Of several testable candidate associations, a 
putative C. rosea epidithiodiketopiperazine (ETP) gene cluster was identified as a prime candidate based on both 
co-regulation analysis and transcriptomic-metabolomic data association.

Conclusions Although remaining to be validated functionally, these results suggest that a data integration approach 
may be useful for identification of potential biomarkers underlying functional divergence in C. rosea strains.
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Background
Clonostachys rosea is an endophytic filamentous fungi 
recognized for its microparasitic and plant growth pro-
motion (PGP) properties. Subsequently, a few C. rosea 
strains have been developed into biocontrol and/or bio-
stimulant agents against economically important plant 
pathogens. Two strains of C. rosea, ACM941 and 88–710, 
have been patented for different applications. ACM941, 
originally isolated from pea plants was patented for 
commercial use in Canada as a biocontrol agent against 
Fusarium graminearum [1, 2]. F. graminearum is a fungal 
plant pathogen that mainly causes Fusarium head blight 
in North America. C. rosea strain 88–710 was patented 
in both the United States of America and Canada for its 
benefits in promoting plant vigor, health, growth and 
yield [3]. Despite the differences in their patented appli-
cations, the two strains are genetically closely related [4, 
5] and their beneficial properties display strong over-
lap. C. rosea strain 88–710 is well regarded for its strong 
PGP ability but is also noted to induce disease resistance 
against economically important fungal pathogens in dif-
ferent crops including cereals, vegetables, peas, etc. [3]. 
On the other hand, ACM941 elicits superior mycopara-
sitism activity, but still has some PGP activity as well. 
Leveraging these beneficial activities could enhance the 
economic competitiveness of these biocontrol agents 
compared to chemical-based products. Toward this 
we have undertaken a systematic comparative ‘omics 
approach to glean insight into the molecular and bio-
chemical underpinnings of the beneficial effects of C. 
rosea.

At this time, both direct and indirect (comparative 
genome analyses and ‘omics profiling) evidence has 
established specialized metabolites (SMs) as leading 
candidates mediating PGP and mycoparasitic proper-
ties of beneficial microbes. For example, harzianic and 
isoharzianic acids, isolated from Trichoderma Harzia-
num (also a microparasitic fungi), were shown to pro-
mote tomato growth and impart resistance against fungal 
pathogens like Pythium irregulare, Sclerotinia sclerotio-
rum and Rhizoctonia solani [6]. Likewise, SMs isolated 
from C. rosea strains ACM941 [7], IK726 [8], YRS-06 [9] 
and BAFC3874 [10] displayed promising antibacterial 
and antifungal activities. Additionally, we have recently 
shown that SMs of C. rosea strain ACM941 modulate 
early stage effects during F. graminearum mycoparasitism 
[11]. Such prior studies, each relying on independently 
analysed, single platform ‘omics profiling techniques, 
have yielded several beneficial lead metabolites and pos-
sible associated biosynthetic genes, including several 
putative gene cluster identifications [7, 9–13]. How-
ever, the vast majority of C. rosea SMs and their meta-
bolic pathways remain to be characterized. For example, 
while deletion of a non-ribosomal peptide synthase gene 

1 (nrps1), identified based on its expression profile, sig-
nificantly weakened the nematicidal and mycoparasitic 
properties of C. rosea strain IK726 [8], any NRPS1-linked 
metabolite has yet to be identified.

Genomic-comparison is in itself a powerful tool for 
prediction of structural and functional features respon-
sible for phenotypic differences between closely related 
organisms. For example, comparative genomics analysis 
was used to identify genetic features unique to the E. coli 
strain NADC6564 and to infer their roles in strain viru-
lence [14]. However, recent advances in data integration 
tool development and availability of high-throughput 
genomic and metabolomic data have also significantly 
enhanced our ability to correlate functionally related 
transcripts and metabolites. In particular, transcriptomic 
and metabolomic data can be integrated using different 
approaches including multivariate data analyses, dif-
ferential correlation/co-expression or pathway/network 
based analyses methods [15–25]. Integration of multiple 
types of high-throughput ‘omics profiling data could thus 
be used to elucidate global patterns that might explain 
mechanisms that drive C. rosea’s mycoparasitism, as well 
as reveal putative genes and metabolites involved in the 
process. To this effect, several open-source computa-
tional solutions have been developed to integrate metab-
olomics and transcriptomics data including MixOmics 
[20], WGCNA [17, 18], DiffCorr [15], MetaboAnalyst 
[19], INMEX [24], XCMS Online [16], Metabox [23], 
IMPaLA [26], IntLIM [27], etc.

However, while multivariate and correlation-based 
data integrations reveal global transcript and metabolite 
abundance patterns, they can’t identify direct transcript 
and metabolite associations. Alternatively, network/
pathway-based approaches are an excellent tool to asso-
ciate transcripts with their corresponding metabolites, 
but are limited to metabolites and transcripts that can 
be mapped to functionally characterized pathways, ulti-
mately limiting their application to model organisms. In 
fact, only 16.3% of metabolites from the Human Metabo-
lome Database have been detected and quantified, and 
few of them can be mapped to pathways [28]; and this 
number becomes negligible for non-model organisms 
like C. rosea. As such, applying pathway-based tran-
script and metabolomic data integration is impractical. 
However, IntLIM (Integration through Linear Model-
ing), a publicly available R package data integration tool, 
was specifically developed to identify novel direct rela-
tionships between gene and metabolite pairs potentially 
governing phenotypic- or genotypic- specific variations 
among biological samples. Favourably, the availability of 
a well curated genomic and metabolomic database isn’t 
a prerequisite to integrate multiple high-throughput data 
using IntLIM [27].
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Consistent with their functional similarities, the 
genomes of the C. rosea strains ACM941 and 88–710 
are highly conserved [4, 5]. Thus, the subtle differences 
in relative mycoparasitism and PGP activities between 
these strains are likely the result of fairly limited varia-
tion in their encoded genetic material, which in turn 
manifests as differential metabolite accumulation. In this 
current study, we tested the hypothesis that genetic and 
metabolic factors underlying the mycoparasitic property 
differences between strains ACM941 and 88–710 could 
be correlated using transcriptomic and metabolomic 
data integration tools developed for non-model organ-
isms such as IntLIM. Here we report the outcomes of this 
investigation, highlighting metabolites and gene asso-
ciations that could potentially serve as biomarkers for 
mycoparasitism.

Results
C. rosea ACM941 and 88–710 exometabolite fractions show 
temporal variations in growth inhibition activity against F. 
graminearum
Initially the biological activity of spent media exome-
tabolite extracts from strains ACM941 and 88–710 were 
investigated. While similar F. graminearum growth inhi-
bition levels were observed arising from exometabolites 
extracted from 7-day old cultures (Fig. 1 (also see Addi-
tional file 1: Fig. S1)), a significant increase in inhibition 
was observed for day-14 ACM941 extracts. This effect 

was maintained for day-21 ACM941 extracts. In con-
trast, while strain 88–710 extracts did eventually achieve 
increased F. graminearum growth inhibition, this only 
became detectable in extracts obtained from 21-day old 
cultures.

Exometabolite accumulation profiles highlight temporal 
variations between C. rosea strains ACM941 and 88–710
In order to identify C. rosea metabolites whose accumu-
lation patterns might match the observed F. graminearum 
growth inhibition trends, we used untargeted metabolo-
mics profiling. Overall, both C. rosea strains (ACM941 
and 88–710) secreted a core set of common metabolites, 
although the number of different metabolites detected 
and their accumulation levels showed significant differ-
ences depending on the strain and fermentation time 
period. In general, ACM941 was a more vigorous strain 
producing higher levels and a more diversified set of 
compounds than 88–710. After 7 days of culturing, the 
levels of detected exometabolites secreted by ACM941 
were 2–3 fold higher than 88–710, and it maintained its 
higher production levels up to day 21 (Fig. 2 (solid lines)). 
With respect to strain 88–710, although metabolite accu-
mulation was slower to start, levels increased by 21 days 
of culturing (Fig. 2 (dashed lines)).

Overall, two major groups of metabolites were 
observed from both strains. The group of metabolites 
eluting in the 3.5–4.5 min range were already present at 
high levels by day 7 and their production levels did not 
fluctuate much throughout the 21  day experiment. Any 
involvement of these metabolites in inhibiting F. gra-
minearum growth was therefore deemed unlikely. On 
the other hand, the metabolites eluting in the 6–7  min 
range showed an accumulation level that appeared to 
correspond to the growth inhibition pattern observed in 
Fig.  1(also see Additional file 1: Fig. S2A&B). The clear 
inhibition activity of the day 14 ACM941 extract, and the 
delayed inhibition response of 88–710 to day 21 extracts 
matches the increased concentration of these metabolites 
in the culture media at these time-points (Additional file 
1: Fig. S3A&B). Thus, it is possible that one or a subset of 
these exometabolites may be involved in F. graminearum 
growth inhibition.

The molecular weight range of the secreted metabo-
lites together with gene cluster analyses, described 
below, provided a first step in predicting the types of 
compounds secreted by ACM941 and 88–710 (Fig.  3). 
The vast majority of the metabolites were high molecu-
lar weight compounds (> 500 amu). In particular, com-
pounds detected in the molecular weight range 500–1000 
amu were predicted to potentially belong to polyketides 
synthase (PKS) natural products, non-ribosomal peptides 
(NRPs) or PKS-NRP hybrids. Those exhibiting molecular 
weights > 1500 amu, typically produced doubly charged 

Fig. 1 Growth inhibition of F. graminearum strain GZ3639 by exometabo-
lites of C. rosea strain ACM941 (1) and 88–710 (2) fermented in Czapek Dox 
media for 7 days, 14 days and 21 days as indicated
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ions, a hallmark of larger peptides. It is interesting to 
note that in general, the larger peptide-like metabolites 
eluted early, in the 3.5–4.5  min range. These peptide-
like metabolites were also secreted early in the culturing 
time, and thus did not match the biological activity of the 
extracts that had increased inhibitory properties at 21 
days. Whereas the biological activities of ACM-941 and 
88–710 were more clearly correlated with the accumula-
tion of compounds that eluted later in the 6–7 min range 
and in the molecular weight range 500–1250 amu. It is 
therefore likely that the metabolite(s) of interest belonged 
to the PKS, NRP or PKS-NRP class of natural products.

Gene expression profile of C. rosea strain ACM941 
compared to strain 88–710
Changes in gene expression underlying observed changes 
in the exometabolome have been shown to precede 

metabolite accumulation by up to several days [11]. 
Thus, toward investigation of the mechanisms underly-
ing observed metabolic and functional differences at day-
14, a comparison of ACM941 versus 88–710 strain gene 
expression profiles at day-11 was conducted. A total of 
5,301 differentially regulated ACM941 genes (p < 0.05) 
were detected, of which 3,064 were upregulated (fold 
change (FC) ≥ 2.0) and 2,090 were downregulated (FC ≤ 
-2.0) (Fig. 4) compared to 88–710. The RT-qPCR results 
of selected genes correlated very well with the RNA-
seq, confirming reliability (Additional file 1: Fig. S2). To 
reduce the complexity of downstream analyses of upreg-
ulated and downregulated genes, only genes with aver-
age normalized read counts (RPKM) of |≥ 0.5| and fold 
changes (FC) of |≥ 5.0| were considered further. This 
reduced the number of up- and downregulated ACM941 
genes compared to 88–710, to 460 and 301, respectively.

Fig. 2 Differential exometabolic profiles of C. rosea strain ACM941 (solid lines) and 88–710 (dotted lines) after 7-, 14- and 21-days fermentation in Czapek 
Dox media, compared to unused medium. The LC-MS chromatogram of all three biological replicates (BR) at each time point are shown
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A number of SM biosynthesis and membrane transport 
related genes were among the most highly upregulated 
genes in ACM941 when compared to 88–710. For exam-
ple, of the top 50 upregulated genes, 17 encode SM bio-
synthesis related proteins, 1 encodes a major facilitator 
superfamily homolog and 18 of them encode hypotheti-
cal proteins (Additional file 2: Table S1). The upregulated 
gene library was initially screened for non-ribosomal 
peptide synthase (NRPS) and polyketide synthase (PKS) 
anchored gene clusters (Additional file 3: Table S2 see 
NRPS and PKS Tabs), based on the recognized role of 

such metabolites in biocontrol. Interestingly, every gene 
member of a C. rosea putative epidithiodiketopipera-
zine (ETP) gene cluster was found to satisfy the strin-
gent selection criteria for upregulation (average RPKM 
cut off value of 0.5 and FC ≥ 5.0), where ETPs are fungal 
alkaloids with proven cellular toxicity [29–31]. In par-
ticular, the ETP cluster anchor gene encoding an NRPS 
homolog protein, scf_095.g187 is among the most sig-
nificantly upregulated genes detected in this study 
(RPKM = 37, FC = 70.1 and FDR p-value = 0). Two more 
NRPS homologs, scf_077.g266 (RPKM = 2.1, FC = 136, 
FDR p-value = 0) and scf_029.g101 (RPKM = 0.6, FC = 52 
and FDR p-value = 3.29E-03) were also identified based 
on their putative role in C. rosea in vitro antagonism. 
Scf-077.g266 encodes a putative fumisoquin gene clus-
ter anchor gene NRPS [7], also with all genes comprising 
the cluster upregulated. Another putative NRPS encod-
ing gene scf_070.g317 (RPKM = 1.3, FC = 57.3 and FDR 
p-value = 0) satisfied the selection criteria but was not 
surrounded by associated upregulated genes. In addi-
tion, an uncharacterized cluster anchored by the NRPS 
homolog gene, scf_001.g638 (RPKM = 1.1, FC = 1.1, FDR 
p-value = 0.8) was identified as an upregulated gene clus-
ter because surrounding genes met our stringent selec-
tion criteria even though the NRPS homolog did not.

Six gene clusters anchored by PKS genes were also 
identified in the upregulated transcriptomic library based 
on the expression level of PKS homologs meeting the 
selection criteria (Additional file 3: Table S2 PKS Tab). 
Of these, four were surrounded by associated upregu-
lated genes. Scf_059.g219 (homolog to the highly reduc-
ing polyketide synthase alnA) was upregulated 242-fold 
(RPKM = 0.8, FDR p-value = 6.65E-08), while scf_023.

Fig. 4 Differential expression of C. rosea strain ACM941 genes. Colors rep-
resent ACM941 genes significantly up- or down-regulated (red) and those 
that are not significantly regulated (black) in comparison to gene expres-
sion in strain 88–710 (set to zero). Volcano plot was obtained using the 
DESeq2 tool

 

Fig. 3 The detected secretomes of C. rosea strains ACM941 and 88–710. (A) Day 14 culture extracts. The secretome of strains ACM941 (filled circles with 
black (BR 1) green (BR 2) and red (BR 3)) and 88–710 (empty triangles, with purple (BR 1), orange (BR2) and blue (BR3)) have an overall similar profile, al-
though some metabolites unique to ACM941 (red arrows) and 88–710 (black arrows) are detected. (B) Day 21 culture extracts. More diverse metabolites 
were detected for both strains, with ACM941 producing more unique metabolites than 88–710
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g116 (homolog to the highly reducing polyketide syn-
thase alt5; RPKM = 2.0, FDR p-value = 0) and scf_064.
g288 (homolog to Lovastatin diketide synthase mokB; 
RPKM = 0.7, FDR p-value = 7.79E-15), were upregulated 
187 and 161-fold in ACM941, when compared to 88–710, 
respectively. Similarly, scf_091.g78, a putative PKS homo-
log protein encoding gene, also met selection criteria 
(RPKM = 1.52, FC = 13.8 and FDR p-value = 2.14E-12). 
On the other hand, scf_004.g153 (RPKM = 0.07, FC = 12.6 
and FDR p-value = 4.26E-03) was identified as part of an 
upregulated gene cluster because although it did not, sur-
rounding genes did meet the selection criteria. Finally, 
scf_042.g174 (FC = 145.4 and FDR p-value = 9.52E-03) 
satisfied our selection criteria but wasn’t surrounded by 
upregulated genes.

Functional annotation of the putative C. rosea ETP gene 
cluster
There were 14 upregulated genes in the C. rosea puta-
tive ETP gene cluster with homology to genes in known 
ETP gene clusters including verticillin from C. rogersoni-
ana [29], chaetocin from Aspergillus fumigatus [30] and 
leptosin C from Preussia typharum [31] (Table  1). The 
first upregulated gene, scf_095.g183 (FC = 105.4, FDR 
p-value = 0), showed homology to the cytochrome P450 
monooxygenase verB (verticillin cluster), chaB (chaeto-
cin cluster) and lepB (leptosin C cluster). Scf_095.g185, 
a hypothetical protein homolog, didn’t have homologous 
counterparts in the verticillin and chaetocin gene clus-
ters but showed 58% similarity to a hypothetical pro-
tein in the leptosin C gene cluster. Scf_095.g184, on the 

other hand showed 67 and 53% similarity with verZ and 
Gene15 of verticillin and leptosin C gene cluster mem-
bers, respectively. Scf_095.g186 showed homology to two 
verticillin gene cluster members: verG and verJ and their 
counterparts in the chaetocin (chaG and chaJ) and lep-
tosin C (lepG and lepJ) gene clusters. It is likely that the 
alignments of verG/chaG/lepG and verJ/chaJ/lepJ with 
scf_095.g186 don’t overlap, because scf_095.g186 is an 
assembly artifact of two genes predicted as one. In par-
ticular, verG, chaG and lepG aligned with the first 700 bp 
of scf_095.g186 while verJ, chaJ and lepJ were aligned 
with sequences after the 700th bp, respectively. Scf_095.
g187, a 2374 aa long NRPS encoding gene, shows strong 
homology to verP, chaP and lepP with 75, 65 and 65% 
similarities, respectively. Further, nrps specific structural 
analysis on scf_095.g187 using antiSMASH fungal ver-
sion [32] showed that scf_095.g187 contains both N and 
C-terminal peptidyl carrier proteins (PCPs), with dual-
condensation (dual condensation/epimerisation domain) 
and adenylation (AMP-binding) domains in between 
in this respective order. This is consistent with the lepP 
gene from the leptosin C gene cluster which contains 
the N-terminal PCP, a condensation domain linking a 
L-amino acid to a peptide ending with a D-amino acid 
(condensation-DCL) and an AMP-binding domain in this 
respective order, but lacking the C-terminal PCP domain. 
The chaetocin gene cluster nrps homolog chaP, on the 
other hand, contains both PCPs and the condensation-
DCL, AMP-binding, another PCP-binding, condensation 
domain linking an L-amino acid to a peptide ending with 

Table 1  C. rosea putative ETP gene cluster annotation based on homology with other known fungal ETPs.
C. rosea puta-
tive ETP cluster 
member gene 
ID

Homolog in 
P. trypharum 
leptosin C 
gene cluster

Simi-
lar-
ity 
(%)

Homolog in C. 
rogersoniana 
verticillin gene 
cluster

Simi-
lar-
ity 
(%)

Homolog in 
Gliocladium 
spp chaetocin 
gene cluster

Simi-
lar-
ity 
(%)

Putative function Fold change FDR 
p-value

scf_095.g183 ptlepB 66 crverB 90 chaB 80 Cytochrome P450 
monooxygenase

105.3831962 0

scf_095.g184 Gene15 53 crverZ 67 - - Transcription factor 26.99595784 0

scf_095.g185 Gene16 58 - - - - Hypothetical protein 6.901224128 2.46E-09

scf_095.g186* ptlepJ 82 crverJ 88 chaJ 79 Dipeptidase 7.985410071 7.79E-15

scf_095.g186* ptlepG 89 crverG 93 chaG 90 Glutathione S-transferase 7.985410071 7.79E-15

scf_095.g187 ptlepP 65 crverP 79 chaP 65 Nonribosomal peptide 
synthetase

70.87984034 0

scf_095.g188 ptlepC 70 crverC 81 chaC 69 Cytochrome P450 
monooxygenase

89.35346975 0

scf_095.g189 ptlepI 70 crverI 76 - - Aminotransferase 89.31396971 0

scf_095.g190 ptlepN 71 crverN 86 chaN 63 N-methyltransferase 89.14872847 0

scf_095.g191 ptlepM 81 crverM 91 chaM 78 O-methyltransferase 98.18660262 0

scf_095.g192 Gene11 87 crverL 91 chaE 50 Cytochrome P450 
monooxygenase

98.08712138 0

scf_095.g193 ptlepT 76 crverT 89 chaT 83 Thioredoxin reductase 101.0477764 0

scf_095.g194 ptlepA 77 crverA 88 chaA 73 ABC-type transmembrane 
transporter

14.83370549 4.27E-12

scf_095.g195 Unknown 8.215857431 2.57E-10
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an L-amino acid (condensation-LCL) and a PKS-PP bind-
ing domain in this respective order.

‘*’ scf_095.g186 seems to be an artifact of two genes 
covering ptlepJ (49% coverage, aligns after first 700  bp) 
and ptlepG (36% coverage, aligns with the first 700 bp out 
of 1845), or covering crverJ (50% coverage, aligns after 
first 700  bp) and crverG (37% coverage, aligns with the 
first 700 bp out of 1845), respectively. ‘-‘: represents miss-
ing genes.

The remaining genes, scf_095.g188 – g194 showed 
76–91% similarity to verC, verI, verN, verM, verL, verT 
and verA, respectively. Similarly, these proteins showed 
76–87% similarity with lepC, lepI, lepN, lepM, gene11, 
lepT and lepA of the leptosin C gene cluster. With the 
exception of the putative aminotransferase encoding 
gene scf_095.g189, which did not find a homologous 
counterpart in the chaetocin gene cluster, the remain-
ing genes exhibited 50–83% similarity with chaC, chaN, 
chaM, chaE, chaT and chaA (Table  1). Overall, the C. 
rosea putative ETP gene cluster members maintained sig-
nificantly high sequence similarity with their verticillin 
gene cluster counterparts compared to those from lep-
tosin C and chaetocin (Table  1). Interestingly, although 
Gliocladium spp are genetically closer to C. rosea than 
P. trypharum, the C. rosea putative ETP cluster mem-
bers maintained high sequence similarity to their coun-
terparts in both chaetocin and leptosin C gene clusters. 
Finally, scf_095.g195 that encodes for a hypothetical pro-
tein is missing from the three gene clusters.

Interestingly, the C. rosea putative ETP gene cluster 
members showed significantly lower similarity to other 
ETP biosynthetic gene clusters. For example the NRPS 
encoding gene of the scf_095.g187 showed only 37% and 
28% similarity respectively with the gliotoxin gliP gene 
(the NRPS of the Leptosphaeria maculans glitoxin gene 
cluster), and sirodesmin sirP gene (the NRPS of the A. 
fumigatus sirodesmin gene cluster), compared to 79%, 
65% and 65% similarity to C. rogersoniana verticillin clus-
ter gene crverP, and Gliocladium spp and P. trypharum 
leptosin C cluster gene ptverP, respectively.

IntLIM analysis
Experimental design of metabolomics and transcrip-
tomics studies plays a critical role in reducing the com-
plexity of multi‘omics data integration, particularly when 
concurrent metabolites and RNA extraction from the 
same sample is not practical. As recommended by Cav-
ill et al., [33], source-matched or split sampling designs 
are the best strategy compared to replicate-matched or 
repeated experiments to generate metabolomics and 
transcriptomics data for integration. However, protein 
translation and subsequent biosynthesis and secretion 
of exometabolites takes some amount of time following 
transcription, such that integrating exometabolomics and 

transcriptomics data generated using source-matched or 
split sampling designs may not capture the relationship 
between metabolites and transcripts. On this basis, inte-
gration of day-11 RNAseq data with day-14 exometabo-
lites was attempted. However, with data derived from 
two different experimental sets, batch effect irregularities 
were detected, which couldn’t be corrected using statis-
tical methods. Similar discrepancies have been reported 
before as well [33, 34]. Therefore, a split sampling strat-
egy with day-11 RNAseq and day-11 exometabolomics 
data derived from the same flask was implemented to 
reduce complexities arising from batch effect variability. 
This approach was validated by an observed increase in 
metabolite accumulation over the full 21-day fermen-
tation period, where the top 75 highly accumulated 
metabolites derived from the same biological replicate 
(same flask) tended to cluster together regardless of sam-
pling time (Additional file 1: Fig. S5). This is consistent 
with expected exometabolite data essentially providing 
a snapshot of an aggregated accumulation over the fer-
mentation period due to metabolite stability. Variation in 
the PCA plot for day-11 exometabolomics data further 
emphasized batch effect variability and thus the value of 
split sampling (Additional file 1: Fig. S6A).

Initial filtering of day-11 RNAseq expression profil-
ing data (ACM941 compared to 88–710) using IntLIM 
default parameters excluded the lowest 10% expressing 
genes yielding 15,826 genes to proceed with (Additional 
file 1: Fig. S7A). There were no exometabolites filtered 
by IntLIM from day-11 samples using the default exclu-
sion criteria (80% imputed values) as metabolites that 
did not meet these constraints were already removed by 
MetaboAnalystR software during normalization (Addi-
tional file 1: Fig. S7B). The first order principal compo-
nent analysis (PC1 = 68.4%) showed good separation 
between C. rosea strain ACM941 and 88–710 transcrip-
tomic data (Additional file 1: Fig. S6B). However, rep-
licate 1 of ACM941 exometabolites was an outlier at 
PC1, 54.5% of the variation (Additional file 1: Fig. S6A), 
because the overall metabolite concentration of ACM941 
replicate 1 was very low compared to all other ACM941 
and 88–710 replicates. Despite this variation, at PC2 
(27.61% of the observed variation), all ACM941 replicates 
did cluster separately from 88 to 710 replicates. Based on 
their genomic similarity level, ACM941 and 88–710 are 
expected to produce similar metabolites with more subtle 
differences in accumulation patterns dictating their phe-
notype. Therefore, we decided to continue with the anal-
ysis as the PC2 separation pattern was deemed relevant. 
IntLIM correlation analysis, with a p-value cut off set at 
0.05 and correlation difference of 0.5, produced 1,589,504 
gene-metabolite pairs (Additional file 1: Fig. S8A). With 
further filtering of the output using a p-value cut off of 
0.01 and correlation difference of 0.05, the pairing was 
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reduced to 2,679 gene-metabolite pairs (Additional file 1: 
Fig. S8B).

On the assumption that C. rosea mycoparasitism 
against F. graminearum is likely determined by SMs, 
gene-metabolite pairings linked with SM encoding gene 
clusters were targeted for further analysis. We screened 
the gene-metabolite pairs table for NRPS anchored gene 
clusters (described above) that showed significant lin-
ear correlation with selected metabolites, paying special 
attention to metabolites possibly linked to the upregu-
lated putative ETP gene cluster identified by IntLIM. 
In this regard, two genes from the cluster anchored by 
scf_095.g187 (the putative NRPS encoding gene in the 

C. rosea ETP cluster), showed a significant correlation. 
In this instance, the methyltransferase homolog scf_095.
g190 (Fig.  5A) and the thioredoxin reductase homo-
log scf_095.g193 (Fig.  5B) showed strong correlation 
with the metabolite m/zobs 679.43774 ([M + H]+) in the 
extraction ion chromatogram (EIC; centered within a 
5 ppm window) that eluted at 7.23  min (Additional file 
1: Fig. S9). Interestingly, another metabolite with m/zobs 
621.43481 ([M + H]+), was found to co-elute with the 
m/zobs 679.43774 ([M + H]+) at 7.23  min (Additional file 
1: Fig. S10). Both of these metabolites showed a doubling 
trend every 7 days. The nature of the structural rela-
tionship between these two compounds remains to be 
determined.

Genome level similarity analysis
Differences between C. Rosea strain ACM941 and 
88–710 genomes were restricted to a few selected contigs 
(Fig. 6A). Furthermore, genome level phylogenetic analy-
sis also showed that the three C. rosea strains (ACM941, 
88–710 and IK726) were rooted closely followed by C. 
rhizophaga strain YKD0085 and C. chloroleuca strain 
67 − 1, while C. solani strain CBS 2511 was rooted sepa-
rately (Fig. 6B).

Fig. 6 Genetic relationship among C. rosea strains ACM941. A)  C. rosea 
strain ACM941 whole genome (bottom panel) aligned against that of 88–
710 genome (top panel) using progressiveMauve. Colours denote mean 
pair wise identity where green is 100%, green-brown is at least 30% and 
under 100% identity and red represents less than 30% identity. The blue 
line shows coverage. B) Heatmap of multiple alignment among whole ge-
nome sequences of all sequenced strains and

 

Fig. 5 IntLim identified gene-metabolite pairs. Scatter plot visualiza-
tion of selected gene-metabolite pairs, colour codes red (ACM941) and 
blue (88–710). (A) NRPS anchored cluster gene scf_095.g190 vs. metabo-
lite MW 678.43305[7.219] (ACM941 corr. = -1; 88–710 corr. = -0.5; p-val-
ue = 0.0001374360) and (B) NRPS anchored cluster gene scf_095.g193 vs. 
metabolite MW 678.43305[7.219] (ACM941 corr. = -1; 88–710 corr. = -0.5; 
p-value = 0.0001055869)
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Discussion
The functional and geographic overlap of C. rosea strain 
ACM941 and 88–710 is supported by their high genetic 
similarity level compared to all other sequenced C. rosea 
strains (Fig.  6B – genome phylogeny). The pairwise 
genome comparison between C. rosea strain ACM941 
and 88–710 also revealed that their differences were 
largely restricted to few scaffolds (Fig.  6A – genome 
alignment). This was in agreement with previous reports 
where the genetic similarity between ACM941 and 
88–710 was described using different molecular meth-
ods [4, 5]. In particular, previous reports showed that 
the ACM941 genome harbours genes encoding one 
unique NRPS, one unique hybrid and two unique PKS 
genes which were missing in 88–710, while the 88–710 
genome encoded two unique PKS homologs [5]. In this 
study, comparative ‘omics techniques were applied in an 
attempt to discern any metabolic differences between the 
two strains that derive their in vitro antagonism potential 
against F. graminearum. Not surprisingly, their genomic 
variations are consistent with the observed deviation in 
terms of both unique and total number of metabolites 
detected between ACM941 and 88–710 on days 14 and 
21. For example, at day-14, 28 and 6 unique metabolites 
were detected in ACM941 and 88–710, respectively, 
although, these were reduced to 10 and 4 respectively, by 
day-21 (Additional file 4: Table S3). Interestingly, in vitro 
antagonistic differences between the 2 strains were only 
observed in day-14 extracts (Fig. 1). This implies that the 
differential F. graminearum growth inhibition observed 
with the day-14 exometabolites, is likely mediated by 
exometabolite(s) showing delayed accumulation levels 
in 88–710, compared to ACM941, rather than unique 
metabolites (Fig. 2). On this basis, focus was shifted from 
comparative genomics to comparative global expression 
profiling of ACM941 and 88–710. In particular, signifi-
cantly upregulated fungal NRPS and PKS anchored SM 
gene clusters were considered, leading to the identifica-
tion of five NRPS and six PKS anchored gene clusters 
(Additional file 3: Table S2). However, it is wroth to note 
that although ACM941 and 88–710 were cultivated in 
SM inducing media, C. rosea and F. graminearum contact 
induced metabolic differences deriving their mycopara-
sitism are beyond the scope of this study.

Correlation and logistic regression-based transcrip-
tomic and metabolomic data integration approaches gen-
erally capture co-regulation patterns to predict molecular 
interactions or phenotypic effects [15–25]. In contrast, 
IntLIM assumes co-regulation of functionally related 
genes and metabolites [35, 36] to predict novel pheno-
type specific gene-metabolite interactomes irrespective 
of well characterized genomic and metabolomic infor-
mation [27]. We opted to use IntLIM to identify in vitro 
antagonistism-specific gene-metabolite relationships that 

can potentially describe the strong in vitro antagonistism 
of ACM941 against F. graminearum because C. rosea 
lacks a well curated genomic and metabolomic database. 
One disadvantage of such numerical-based data inte-
gration approaches is associating multiple metabolites 
with multiple transcripts. In addition, linear metabolite-
gene associations don’t consider the fact that metabolite 
abundance is dependent on several structural enzymes 
along a pathway as well as many associated regulatory 
proteins. Therefore, we attempted to minimize this com-
plexity by focusing our data analysis and interpretation 
steps on members of upregulated gene clusters showing 
strong association with upregulated metabolites. Of the 
five NRPS anchored gene clusters satisfying our stringent 
upregulation criteria (Additional file 3: Table S2), one 
NRPS gene cluster was found to have significant correla-
tion with different metabolites. In particular, two genes 
belonging to the putative C. rosea ETPs gene cluster gar-
nered our attention (Fig. 5).

Transcript abundance and metabolite synthesis do not 
necessarily have linear relationships. In particular, it is 
difficult to conclusively associate untargeted metabo-
lomics data, which are prone to mis-identification of 
metabolites, with transcripts. The nature of untargeted 
metabolomics data further complicates the interpreta-
tion of gene-metabolite linkages because it is difficult to 
differentiate between intermediary and final products of 
a gene cluster as well as adduct metabolites. For exam-
ple, the hypothetical molecular weight of the metabo-
lite (678.43305) associated with the methyltransferase 
and thioredoxin reductase homologs scf_095.g190 and 
scf_095.g193, respectively, from the putative C. rosea 
ETP cluster is lower than that of known ETPs: verticil-
lin A (MW 696.8), chaetocin (MW 696.8) and leptosin 
C (MW 740.9). In addition, the transcript abundance of 
scf_095.g190 and scf_095.g193 and accumulation of the 
metabolite with MW 678.43305 showed strong nega-
tive correlation (Fig.  5). We identified this relationship 
as one of the candidates for further investigation based 
on two hypotheses: firstly gene homology was given 
emphasis over the predicted relationship type and sec-
ondly the metabolite could be an intermediary product 
produced and consumed along the pathway. However 
the possibility that it is not associated with this cluster 
at all cannot be excluded. Indeed, most candidate genes 
and clusters identified in this study require experimental 
validation of the type of metabolite they produce, as well 
as their role in mediating ACM941 in vitro antagonistic 
properties against F. graminearum. Similar untargeted 
metabolomics data has been successfully used to model 
the transcript-metabolite associations in maize using the 
WGCNA software [18].

The C. rosea ETP gene cluster (Table 1) was identified 
as a primary target based on differential expression and 
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data integration results. The putative gene cluster showed 
highest sequence similarity with the verticillin gene clus-
ter from C. rogersonian [29], followed by the leptosin C 
cluster from P. typharum [31] and then the chaetocin 
gene cluster from Gliocladium spp [30]. It is worth not-
ing that verticillin, chaetocin and leptosin C, are all struc-
turally dimeric ETPs (Table 1). In contrast, gene cluster 
sequence similarity was much lower to the two known 
gene clusters that make the structurally monomeric 
ETPs, gliotoxin and sirodesmin. Thus, the putative C. 
rosea ETP gene cluster is more likely producing a dimeric 
ETP. Speculatively, the C. rosea putative ETP gene clus-
ter product is more likely to produce leptosin C because 
both it contains an additional homolog gene which is not 
present in the verticillin gene cluster. In addition, struc-
tural analysis of the putative NRPS scf.095.g187 and its 
respective homologs showed that scf.095.g187 functional 
module types and arrangements show better similarity to 
lepP than chaP. antiSMASH predicted that scf.095.g187 
contains PCP, dual condensation/epimerisation domain, 
AMP-binding and PCP domains in this order, while 
the lepP gene contains PCP, condensation-DCL and 
AMP-binding domains in this order, respectively. This 
is in contrast to chaP, which maintains the 3 domains 
identified in lepP, but also contains additional domains 

including PCP-binding, condensation-LCL and PKS-PP. 
antiSMASH failed to detect any domains for verP. None-
theless, the C. rosea ETP is likely a variation of leptosin 
C, because it contains an additional entirely novel hypo-
thetical protein.

Finally, we mapped the C. rosea putative ETP gene 
cluster against genomic regions of verticillin [29], chae-
tocin [30] and leptosin C [31] gene clusters to evaluate 
their micro-syntenic relationship using SimpleSynteny 
[37]. The results showed that except for a few missing 
regions for select genes that did not have homologs in the 
other respective gene clusters (Table  1), the differences 
were largely dominated by genomic region rearrange-
ments. Consistent with their sequence similarity level 
(Table 1), the verticillin gene cluster from C. rogersoniana 
[29] maintained a similar genetic arrangement with C. 
rosea putative ETP, while chaetocin [30] and leptosin C 
[31] gene clusters showed similar genomic arrangement 
between each other (Fig. 7).

ETPs are endowed with a myriad of biological activities 
including antifungal, anticancer, antibacterial and anti-
viral properties, and subject to intensive chemical syn-
thesis research endeavors [38, 39]. The toxicity of ETPs 
is attributed to the redox properties of their disulfide 
bond, inhibition of thioredoxin reductase and histone 

Fig. 7 Graphic representation of putative and proven ETP-type gene clusters and their microsynteny relationship. CrACM941 (C. rosea strain ACM941 
putative ETP, this study), Cr88-710 (C. rosea strain 88–710 putative ETP, this study), Gliocladium spp. (chaetocin gene cluster from C. virescens strain ATCC 
26,417 [40]), P. trypharum (leptosin C gene cluster from P. typharum [41]), and C. rogersoniana (verticillin gene cluster from C. rogersoniana [39])
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methyltransferase, ejection of zinc ions from transcrip-
tion factors as well as other mechanisms [30, 40, 41]. For 
example, leptosin C was shown to possess strong anti-
cryptococcal activity against yeasts [31], by inhibiting 
DNA topoisomerases I and/or II and inducing apoptosis 
by inactivation of Akt/protein kinase B [42]. As well, glio-
toxin has been shown to regulate the in vitro antagonistic 
property of the biocontrol agent T. virens against fungal 
pathogens including Pythium ultimum and Rhizoctonia 
solani [43, 44]. C. rosea also contains a putative gliotoxin 
biosynthetic gene cluster whose expression was not mod-
ulated (data not shown). Therefore, it is not a surprise 
that a homolog of such gene clusters is among the most 
upregulated gene clusters potentially modulating the in 
vitro antagonistism of C. rosea strain ACM941 compared 
to strain 88–710.

Conclusions
We generated transcriptomic and metabolomic data of C. 
rosea strain ACM941 and 88–710 to elucidate the genetic 
and metabolomic underpinnings of their in vitro antago-
nistism ability. Specialized metabolism and membrane 
transport related genes were among the significantly 
upregulated genes in ACM941 relative to 88–710. In 
addition, high molecular weight SMs were differentially 
secreted and the accumulation pattern of some metabo-
lites matches the growth inhibition differences displayed 
by the exometabolites of the two strains. In an attempt 
to identify statistically relevant relationships between 
upregulated genes and differentially secreted metabo-
lites, transcript and metabolomic abundance data were 
associated using IntLIM. Of the several testable candi-
date associations, a putative C. rosea ETP gene cluster 
was identified as a prime candidate based on both co-
regulation analysis and transcriptomic-metabolomic data 
association. Despite the need for additional validation by 
gene deletion or overexpression, our result suggest that a 
data integration approach may be used to identify poten-
tial biomarkers mediating the intricate functional diver-
gence between C. rosea strains ACM941 and 88–710.

Materials and methods
Comparative genomics
C. rosea strain ACM941 and 88–710 whole genomes 
[5] were aligned using progressiveMauve software with 
default parameters and HOXD default scoring matrixes 
[45]. Aligned genomes were then visualized with 
Geneious Prime® 2021.1.1. Alternatively, the alignment 
coordinates of progressiveMauve output were extracted 
using Circos: Alignments to Links software in Galaxy 
(Galaxy Version 0.69.8 + galaxy7, [46]) converted into 
circular alignment figures and visualized using Circa 
(Version 1.2.2 (1.2.2)). SimpleSynteny version 1.5 was 
used to produce the graphical representation of syntenic 

relationships among gene clusters with the following set-
tings: gapped alignment with BLAST E-value = 0.001 and 
Minimum query coverage cutoff = 30%.

F. graminearum growth inhibition by C. rosea ACM941 and 
88–710 exometabolites
C. rosea strains ACM941 and 88–710 were maintained 
as described previously [7]. Four agar plugs of actively 
growing C. rosea ACM941 and 88–710 mycelia (har-
vested using the wide end of a 1 mL sterile pipette tip for 
consistency) were inoculated into 100 mL Czapek-Dox 
broth (HiMedia, USA), in 500 mL baffled flasks and incu-
bated at 25  °C with shaking at 180 rpm. After 7, 14 and 
21 days of incubation, fungal mass was pelleted by cen-
trifugation at 4,000 × g for 10 min at 4  °C and secreted 
metabolites (exometabolites) were partially purified from 
the supernatant using amberlite XAD-2 resin (Sigma 
Aldrich, Canada). Resin was added to the supernatant 
(1 g per 100 mL culture broth) and incubated on a rotat-
ing platform at 4  °C overnight. The mixture was loaded 
into a column where the flow-through was discarded, the 
resin was washed with three initial culture volumes of 
ice-cold water and the remaining metabolites eluted with 
methanol in 1 mL fractions. Extracts were further con-
centrated by evaporation of approximately 75–80% of the 
methanol using a CentriVap vacuum concentrator. The 
concentrated eluate (100 µL) was applied to a filter disc 
for growth inhibition assays. After the indicated times of 
7, 14 or 21 days the area forming the growth inhibition 
zone quantified using ImageJ and plotted as a percent of 
the area comprising 1/3 of the total area of the plate.

C. rosea ACM941 and 88–710 exometabolome profiling
For each time point (7, 14 and 21  day), three types of 
samples were prepared, including samples of the spent 
C. rosea fermentation medium, unused (fresh) fermen-
tative medium as a background control, and procedural 
blanks consisting of methanol only. At each time point, 
three biological replicates of C. rosea cultures were set 
aside for LC-MS analysis. Five individual samples of each 
sample type were prepared to provide five independent 
technical replicates on the LC-MS. All analyses were per-
formed on a Vanquish UHPLC in tandem with an Orbi-
trap Fusion Lumos mass spectrometer. High resolution 
mass spectral data were recorded in positive mode at a 
resolution of 120 000, a maximum linear fill trap time of 
100 ms and scan ranges of m/z = 250–2000 amu respec-
tively. Samples were diluted 100-fold, prior to injection 
of a 2 µL sample on the LC-MS. Tuning parameters for 
the heated electrospray ionization (H-ESI) source was 
as follows: RF lens 55% V, capillary temperature 300  °C, 
spray voltage 3.5  kV, sheath gas flow 45 units, auxiliary 
gas flow 20 units and sweep gas flow 2 unit. Elution by 
UHPLC proceeded at 0.3 mL/min on an ACE-C18-PFP 
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column (C18, 50 × 2.1 mm, 2 μm) heated to 40 °C, using 
a mobile phase consisting of acetonitrile:water modified 
with 5 mM ammonium acetate and 0.1% formic acid, 
and the following gradient: 0–0.5  min (30% acetoni-
trile), 0.5–8 min (30 to 95% acetonitrile), 8–11 min (95% 
acetonitrile), 11.5–12  min (95 to 30% acetonitrile) and 
12–15 min (30% acetonitrile).

Differential analysis of C. rosea culture samples com-
pared to the unused medium controls were performed 
with Compound Discover 2.0 (ThermoFisher, CA). The 
.RAW files were obtained in full MS mode and were pro-
cessed directly by the software using a built-in workflow 
for untargeted metabolomics. Compounds were detected 
by retention time, a minimum peak intensity of 100 000 
and a mass tolerance of 5 ppm. Peak areas from all tech-
nical replicates were normalized to account for instru-
ment variability. The peak intensities of the detected 
compounds were compared between the C. rosea culture 
samples and the plain medium control samples. Com-
pounds displaying a Log2-fold increase of > 9 in the C. 
rosea samples compared to the plain medium control 
were considered relevant.

C. rosea ACM941 and 88–710 transcriptome profiling
Four plugs of actively growing C. rosea ACM941 and 
88–710 mycelia were inoculated into 500 mL baffled 
flasks containing 100 mL Czapek-Dox broth (HiMedia, 
USA) and incubated at 25  °C with shaking at 180  rpm 
for 11 days. Fungal mass growing on the side of the flask 
just above the media was isolated for RNA extraction and 
flash frozen with liquid nitrogen. Genomic DNA-free 
high-quality total RNA was extracted from frozen myce-
lia using a combination of TRIzol® reagent (Invitrogen™) 
and InviTrap® Spin Universal RNA mini Kit (Stratec 
molecular, Germany). Briefly, freeze-dried fungal mass 
was ground to a fine powder and homogenized in 1 mL 
TRIzol solution followed by genomic DNA removal and 
total RNA isolation using InviTrap spin columns follow-
ing the manufacturer’s protocol. Immediately following, 
the RNA concentration and purity was determined using 
a Nanodrop spectrophotometer ND-1000 (Thermo Sci-
entific), and its integrity was confirmed by agarose gel 
electrophoresis. Total RNA (4 µg/sample) was shipped to 
the National Research Council of Canada, DNA Sequenc-
ing Technologies Facility (Saskatoon, Canada) where an 
additional quality check was performed using a BioAna-
lyzer followed by short cDNA fragment synthesis using 
TruSeq Stranded RNALT kit (Illumina, USA), and finally 
sequenced on an Illumina HiSeq 2500 platform accord-
ing to the manufacturer’s guidelines (Illumina, USA). Full 
RNAseq data is available from the NCBI (Bioproject ID 
PRJNA916464). Concurrently, submerged mycelium was 
separated from the supernatant by centrifugation at 4,000 

x g for 10 min at 4 °C and used for day-11 exometabolite 
extraction and profiling as described above.

Differential gene expression analysis
Low quality short reads, adapter and other Illumina-
specific sequences were filtered using Trimmomatic 
software v0.36.4 (http://www.usadellab.org/cms/index.
php?page=trimmomatic) with the following modifica-
tions to the default settings: leading low quality cutoff 
was 17; sliding window was 5 bp with a minimum aver-
age quality score of 20, and read length cutoff was 60 bp 
instead of 36 bp [47]. Trimmed C. rosea strain ACM941 
and 88–710 RNA-Seq data were aligned to the C. rosea 
strain ACM941 genome annotated with genes and tran-
scripts [5] and used to calculate differential gene expres-
sion using the CLC Genomics workbench version 20.0 
(Qiagen Corp.). Read alignment was performed using 
high stringency criteria: similarity fraction = 0.95 and 
length fraction = 0.8, mismatch cost = 2, deletion and 
insertion costs = 3 and maximum number of hits per 
read = 10. Gene expression levels were estimated as tran-
scripts per million (TPM) [48] which was calculated as: 
TPM = (RPKM x 106) / Σ RPKM, where the sum is over 
the RPKM values of all genes/transcripts. Reads per kilo-
base of exon model per million mapped reads (RPKM) 
[49] was calculated following the formula: RPKM = total 
exon reads / [mapped reads (millions) × exon length 
(KB)]. Differential gene expression or the ‘exact test’ [50] 
was implemented to compare ACM941 versus 88–710 C. 
rosea strains. Transcripts were considered as signifi-
cantly expressed when fold change was ≥ 2.0 and the false 
discovery rate (FDR) was set at p < 0.05. Alternatively, 
trimmed C. rosea strain ACM941 and 88–710 RNAseq 
reads were mapped to ACM941 and 88–710 genome [5] 
using the read mapper software HISAT2 [51]. Differential 
expression of genes was calculated using HISAT2 align-
ment as an input in the following pipeline: gene and tran-
script counts in each sample were counted using Stringtie 
[52, 53] followed by differential gene/transcript abun-
dance estimation using DESeq2 [54].

The RNAseq gene expression results were confirmed 
by qPCR, with prime IDT primer quest software (https://
www.idtdna.com/Primerquest/Home/Index) target-
ing 190–200 base-pair (bp) fragments. cDNA was syn-
thesized from total RNA stored at − 80  °C (remaining 
from sequenced samples) using the 5X All-In-One RT 
MasterMix Kit (ABM Inc., Canada). The relative tran-
script abundance of the selected genes were assessed 
by IQ™5 multicolour real-time polymerase chain reac-
tion (PCR) detection system (Bio-Rad, USA) using the 
EvaGreen Express 2X qPCR MasterMix (ABM Inc., Can-
ada) along with approximately 150 ng of cDNA template 
and 500 nM of each of the primers in a 20 µL reaction 
volume. The following program was used for real time 

http://www.usadellab.org/cms/index.php?page=trimmomatic
http://www.usadellab.org/cms/index.php?page=trimmomatic
https://www.idtdna.com/Primerquest/Home/Index
https://www.idtdna.com/Primerquest/Home/Index
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quantitative PCR (RT-qPCR): 95 °C for 1 min followed by 
40 cycles of 5  s at 95  °C and 15  s at 59  °C. Normalized 
relative expression values (ΔΔCT) of the selected candi-
dates were calculated using the formula 2−ΔΔCT [55], with 
EF1α and β-actin as reference genes [56]. Serial dilutions 
of cDNA samples (100 – 10− 5) were used to develop stan-
dard curves and confirm primer efficiency.

IntLIM analysis
Metabolomics and gene expression data were pre-pro-
cessed for IntLIM analysis based on the “NCItestinput” 
data format requirements [27]. C. rosea strain ACM941 
and 88–710 compounds (n = 5 technical and n = 3 bio-
logical replicates) detected by Compound Discover 2.0 
(ThermoFisher) were normalized using MetaboAnalystR 
[19] with the following criteria: replace sample miss-
ing values by column(sample) minimum value, miss-
ing features were replaced by the minimum value in the 
replicate, normalized by median, log transformed, and 
auto-scaled. Scaling was mean-centered and divided 
by the standard deviation of each variable. Metabolites 
with more than 50% imputed values were filtered result-
ing in input data containing 107 metabolites (identified 
by compound mass and retention time). Normalized 
metabolomic data and the list of differentially expressed 
data containing 17,585 transcripts were then organized 
using the NCI-60 data format and loaded into the IntLIM 
software [27]. An arbitrary cutoff value (10%) was used 
to filter the lowest expressing genes resulting in a total 
of 15,826 genes. Finally, a total of 107 metabolites and 
15,826 genes were integrated using the linear model data 
integration pipeline of IntLIM R package. C. rosea strain 
ACM941 was compared with strain 88–710 to identify 
putative in vitro antagonistism related metabolite-gene 
pairs [27]. R version 4.0.3 (2020-10-10) was used for the 
analysis.
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