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Introduction
Sepsis is life-threatening organ dysfunction caused by 
a dysregulated host response to infection. Sepsis and 
septic shock are major healthcare problems affecting 
about 20 million of people worldwide each year with the 
mortality as high as 20% [1]. Despite its impact, effec-
tive treatments for sepsis remain elusive [2, 3]. Recent 
advancements in high-throughput technologies, coupled 
with the availability of a vast number of publicly available 
data and sophisticated algorithms, have opened up possi-
bilities for mining disease-related genes [3–8]. However, 
previous studies have primarily focused on individual 
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Abstract
Sepsis is a life-threatening condition characterized by a harmful host response to infection with organ dysfunction. 
Annually about 20 million people are dead owing to sepsis and its mortality rates is as high as 20%. However, no 
studies have been carried out to investigate sepsis from the system biology point of view, as previous research 
predominantly focused on individual genes without considering their interactions and associations. Here, we 
conducted a comprehensive exploration of genome-wide expression alterations in both mRNAs and long non-
coding RNAs (lncRNAs) in sepsis, using six microarray datasets. Co-expression networks were conducted to identify 
mRNA and lncRNA modules, respectively. Comparing these sepsis modules with normal modules, we observed 
a homogeneous expression pattern within the mRNA/lncRNA members, with the majority of them displaying 
consistent expression direction. Moreover, we identified consistent modules across diverse datasets, consisting of 
20 common mRNA members and two lncRNAs, namely CHRM3-AS2 and PRKCQ-AS1, which are potential regulators 
of sepsis. Our results reveal that the up-regulated common mRNAs are mainly involved in the processes of 
neutrophil mediated immunity, while the down-regulated mRNAs and lncRNAs are significantly overrepresented in 
T-cell mediated immunity functions. This study sheds light on the co-expression patterns of mRNAs and lncRNAs in 
sepsis, providing a novel perspective and insight into the sepsis transcriptome, which may facilitate the exploration 
of candidate therapeutic targets and molecular biomarkers for sepsis.
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gene functions in sepsis, disregarding the fact that genes 
tend to work together to carry out cellular processes and 
regulate signaling pathways [9–11]. From a system biol-
ogy perspective, disease-related genes are frequently 
co-expressed across a set of samples, indicating their 
collaborative role rather than functioning independently 
[12–16].

Moreover, while numerous studies have explored 
the expression patterns of coding genes in sepsis, the 
comprehensive assessment of long non-coding RNAs 
(lncRNAs) and their potential biological functions in 
sepsis remains largely unexplored [17–19]. lncRNAs are 
non-protein-coding transcripts exceeding 200 nucleo-
tides in length and have been discovered to function as 
regulators involved in various biological processes [20–
22]. Emerging evidence suggests that lncRNAs play sig-
nificant roles in several immunological processes [20, 23]. 
However, to date, no systematic studies have investigated 
the importance of lncRNAs in sepsis responses.

As large-scale network data become pervasive in bio-
logical omics studies, algorithms for detection of molecu-
lar modules from networks are of critical importance. 
Although dozens of algorithms have been developed 
for module identification, including MCODE, Clus-
terONE, SMILE, LTOP, WGCNA, etc., no single type of 
approach is inherently superior [13, 14, 24]. Molecular 
Complex Detection (MCODE) detects densely intercon-
nected clusters from protein-protein interaction (PPI) 
networks that may represent protein complexes. It uses 
vertex weighting (a form of the clustering coefficient) to 
extend clusters from an initial vertex of high local weight 
by iteratively adding neighboring vertices with similar 
weights. Clustering with Overlapping Neighborhood 
Expansion (ClusterONE) is a graph clustering algorithm 

that is able to handle weighted graphs and readily gen-
erates overlapping clusters [25]. It is especially useful for 
detecting protein complexes in PPI networks with asso-
ciated confidence values. ClusterONE takes into account 
the confidence values and readily generates overlapping 
clusters, showing decent correspondence with the MIPS 
catalogue of protein complexes in complex prediction. 
Cheng et al. proposed subcellular module identification 
with localization expansion (SMILE) to detect super 
modules that consist of several subcellular modules per-
forming specific biological functions among cell com-
partments [13]. Super modules are more functionally 
diverse and have been verified to be more associated with 
known protein complexes and biological pathways in 
multiple PPI resources. Locational and topological over-
lap model (LTOM) requires the topological overlaps of a 
pair of proteins to be annotated in the same subcellular 
localization [14]. The module identified has good cor-
respondence with the reference protein complexes and 
shows more relevance to cancers based on both human 
and yeast datasets.

On top of this methods, weighted gene co-expression 
network analysis (WGCNA) is a widely used module 
identification method especially for studying biological 
networks based on pairwise correlations between tran-
scriptome discoveries [26]. It classifies the transcriptome 
into biologically meaningful modules of co-expressed 
genes linked to specific cell types, organelles, and biologi-
cal pathways. Co-expression modules also link to disease 
processes in which the most centrally connected genes 
are highly enriched for key drivers that play prominent 
roles in disease pathogenesis.

In this study, we aim to investigate the expression 
homogeneity of co-expression modules for both coding 
and non-coding genes in sepsis. We constructed gene 
co-expression networks and identified gene modules 
using WGCNA based on differentially expressed findings 
from six sepsis datasets. Subsequently, we characterized 
the co-expression pattern of lncRNAs and mRNAs and 
compared the homogeneity of the co-expression mod-
ules between sepsis and normal state. Finally, we selected 
modules that shared the highest number of genes across 
datasets as consistent modules associated with sepsis, 
and we identified common genes within these modules 
for further functional analysis and discussion.

Materials and methods
Preprocessing of raw data
We collected three adult microarray expression datasets, 
GSE28750, GSE57065, and GSE95233, and three chil-
dren datasets, GSE8121, GSE9692, and GSE13904, from 
the Gene Expression Omnibus (GEO) database [27]. All 
these datasets were based on the Affymetrix GPL570 

Table 1  Dataset characteristics
Dataset Tissue Sepsis 

number
Control 
number

Platform

GSE95233 Whole 
blood

51 22 Affymetrix Human 
Genome U133 
Plus 2.0 Array

GSE57065 Whole 
blood

28 25 Affymetrix Human 
Genome U133 
Plus 2.0 Array

GSE28750 Whole 
blood

10 20 Affymetrix Human 
Genome U133 
Plus 2.0 Array

GSE13904 Whole 
blood

52 18 Affymetrix Human 
Genome U133 
Plus 2.0 Array

GSE9692 Periph-
eral 
blood

30 15 Affymetrix Human 
Genome U133 
Plus 2.0 Array

GSE8121 Whole 
blood

15 60 Affymetrix Human 
Genome U133 
Plus 2.0 Array
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platform (Affymetrix Human Genome U133 Plus 2.0 
Array). The characteristics of these datasets is provided 
in Table  1. The raw data for each dataset was normal-
ized by means of the Robust Multi-Array Average (RMA) 
using the “affy” package of Bioconductor platform in in 
R environment (version 3.61) [28, 29]. Replicated genes 
were averaged and genes with multiple symbols were 
filtered out [30, 31], resulting in 21,655 genes for subse-
quent analysis.

Reannotation of microarray platform
To explore how the lncRNAs are expressed in sepsis, 
we reannotated lncRNAs based on the six microarray 
datasets, which were originally built for quantifying the 
expression intensity of mRNAs. The Affymetrix GPL570 
platform has been widely used for gene expression pro-
filing of a variety of diseases and it has the most com-
prehensive coverage of the annotated human lncRNAs. 
Using the latest NetAffx Annotation File, HG-U133_
Plus_2 Annotations (Release 35, 04/16/15) [32], we rean-
notated the lncRNAs of these datasets as follows [33–35]: 
(1) The Refseq ID labeled with NR_ or XR_, indicative of 
non-coding RNAs, are retained; (2) the Ensemble gene 
IDs annotated with antisense, processed transcripts, 
sense overlapping, non-sense mediated decay, sense 
intronic or lincRNA are retained; and (3) pseudogenes, 

rRNAs, microRNAs, and other small RNAs including 
tRNAs, snRNAs and snoRNAs are filtered out. Finally, 
5,016 probesets were detected as lncRNAs representing 
3,640 unique lncRNAs. For the replicated lncRNAs, we 
summarized them using the average expression values.

Co-expression network construction and module detection
A gene or a lncRNA is considered as significantly differ-
entially expressed if the two tailed t-test p value was less 
than 0.05 and the absolute fold change was larger than 
1.5. Weighted correlation network analysis (WGCNA) 
was used for co-expression network construction and 
module detection [14, 26]. We first calculated the Pear-
son Correlation Coefficients (PCC) between any possible 
pair of genes to generate a co-expression network. Then, 
a power function f (x) = xb  was applied to adjust the 
co-expression network to be scale-free. A common lin-
ear model that regressed the network degree is used to 
evaluate whether the degree distribution follows a power 
law. After that, the weighted co-expression network (or 
adjacent matrix) is transformed into a topological overlap 
matrix (TOM), which is a classical algorithm consider-
ing both direct and indirect interactions of all the ver-
texes (mRNAs or lncRNAs) in the network, resulting in 
biologically more meaningful modules. The co-expressed 
modules were identified using hierarchical clustering tree 

Fig. 1  Module identification and definition. (A) Flowchart of the study. Both mRNAs and lncRNAs are investigated. (B) Identification of co-expression 
modules from the topological overlap matrix of GSE95233 using WGCNA. Modules are colored by the side bars. (C) Expression pattern of the genes in 
three representative modules, an up-regulated, a down-regulated, and a mixed one. Cyan and pink bars on top of the heatmap represent normal and 
sepsis samples, respectively. (D) Three sub-networks representing up-regulated, mixed, and down-regulated module, respectively. Modules containing 
over 90% up-regulated genes were defined as up-regulated modules while modules including more than 90% down-regulated genes were down-
regulated modules
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with different colors, and the module structure was dis-
played by both topological overlapping matrix and co-
expression network.

We built the co-expression networks of differentially 
expressed mRNAs (DEGs) and lncRNAs (DELs) for 
sepsis samples and healthy samples, respectively. The 
minimum module size is set as ten for mRNA data and 
five for lncRNA data, due to lncRNA is much less than 
mRNAs. A module is defined as up-regulated (or down-
regulated) if more than 95% of the module members are 
up-regulated (or down-regulated) (Fig. 1C, D). The gene 
pairs with the absolute PCC > 0.7 for DEGs and (abso-
lute PCC > 0.5 for DELs) were considered to be strongly 
co-expressed. The co-expression module networks were 
visualized by Cytoscape (version 3.1.0) [36].

Identification of common modules
To select genes for further analyses, modules shar-
ing common genes in different datasets were iden-
tified. These genes are consistently involved in the 

co-expression modules and working together to perform 
specific biological functions, which might play important 
roles in the pathogenesis and prognosis of sepsis. The 
main procedure to detect the common module among 
multiple datasets consists of the three steps: (1) identify 
the overlapping genes among all datasets; (2) calculate 
the percentage of overlapping genes in each module, 
i.e., the number of overlapping genes over the mod-
ule size; and (3) identify common modules with a high 
overlapping percentage. Finally, we obtained three com-
mon co-expression modules among five datasets except 
GSE28750, one up-regulated module with 8 overlapping 
DEGs, one down-regulated module with 11 overlapping 
DEGs, and one down-regulated module with 2 overlap-
ping DELs.

Function enrichment analysis
Gene Ontology (GO) is the most widely used biological 
ontology that consists of three domains, biological pro-
cesses, cellular components, and molecular functions 

Table 2  Summary of differentially expressed mRNAs and lncRNAs.
Datasets Differentially ex-

pressed genes(%)
Up-regulated 
DEGs(%)

Down-regulated 
DEGs(%)

Differentially ex-
pressed lncRNAs(%)

Up-regulated 
DELs(%)

Down-
regu-
lated 
DELs(%)

GSE28750 2382(10.99) 1155(48.49) 1227(51.51) 280(8.70) 104(37.14) 176(62.86)

GSE57065 2578(11.90) 1156(44.84) 1422(55.16) 316(9.81) 122(38.61) 194(61.39)

GSE95233 3497(16.15) 1888(53.99) 1609(46.01) 431(13.39) 206(47.80) 225(52.20)

GSE8121 2085(9.63) 846(40.58) 1239(59.42) 245(7.60) 75(30.61) 170(69.39)

GSE9692 2507(11.58) 1148(45.79) 1359(54.21) 277(8.60) 110(39.71) 167(60.29)

GSE13904 1385(6.40) 771(55.67) 614(44.33) 140(4.35) 61(43.57) 79(56.43)
The table represents the numbers (and percentages in parenthesis) of DEGs and DELs between patients with sepsis and healthy people. The direction of regulation 
(up or down-regulation) of the genes was also specified

Table 3  Summary of mRNA coexpression modules
Datasets Sepsis 

modules
Up-regulated 
modules(%)

Mixed gene 
modules(%)

Down-regulated 
modules(%)

Normal 
modules

Up-regulated 
modules(%)

Mixed gene 
modules(%)

Down-
regulated 
modules(%)

GSE28750 57 3(5.26) 48(84.21) 6(10.52) 34 4(11.76) 29(85.3) 1(2.94)

GSE57065 54 15(27.78) 21(38.89) 18(33.33) 49 3(6.12) 42(85.7) 4(8.16)

GSE95233 55 26(47.27) 13(23.64) 16(29.09) 60 9(15.00) 42(70.0) 9(15.00)

GSE8121 32 13(40.62) 7(21.88) 12(37.50) 43 9(20.93) 20(46.5) 14(32.56)

GSE9692 55 17(30.91) 12(21.82) 26(47.27) 41 3(7.31) 34(82.9) 4(9.76)

GSE13904 29 17(58.62) 2(6.90) 10(34.48) 33 16(48.48) 13(39.4) 4(12.12)

Table 4  Summary of lncRNA coexpression modules
Datasets Sepsis 

modules
Up-regulated 
modules(%)

Mixed gene 
modules(%)

Down-
regulated 
modules(%)

Normal 
modules

Up-regulated 
modules(%)

Mixed gene 
modules(%)

Down-
regulated 
modules(%)

GSE28750 15 1(6.67) 10(66.67) 4(26.67) 13 1(7.69) 9(69.23) 3(23.08)

GSE57065 17 6(35.29) 8(47.06) 3(17.65) 13 0(0) 12(92.31) 1(7.69)

GSE95233 17 8(47.06) 2(11.76) 7(41.18) 24 6(25.00) 13(54.17) 5(20.83)

GSE8121 12 3(25.00) 1(8.33) 8(66.67) 14 3(21.43) 6(42.86) 5(35.71)

GSE9692 13 3(23.08) 5(38.46) 5(38.46) 13 1(7.69) 11(84.62) 1(7.69)

GSE13904 5 1(20.00) 4(80.00) 0(0) 6 2(33.33) 2(33.33) 2(33.33)
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[37]. GO enrichment analysis was usually carried out to 
facilitate elucidating the biological implications of a set of 
interesting coding genes, such as differentially expressed 
genes [38]. We used an R package clusterProfiler to per-
form the enrichment analysis to achieve related biologi-
cal processes for a given set of genes [39]. The number of 
genes detected by the platform (GPL570, n = 21,655) was 
used as the background gene list.

Thus far, no ontology has been developed for direct 
enrichment analysis of lncRNAs, owing to the incom-
pleteness of lncRNA annotation. In this study, we 
annotated lncRNAs according to the functions of their 
co-expressed mRNAs. Specifically, Pearson Correlation 
Coefficients (PCCs) were calculated between a lncRNA 
and all the mRNAs, and then the top 15 mRNAs with 
the highest absolute PCCs were selected to represent the 
lncRNA for functional enrichment.

Results
Differential analysis of coding and non-coding genes
We analyzed six gene expression datasets of whole 
blood and peripheral blood mononuclear cell (PBMC) 
for patients with sepsis (Fig.  1A). All of these datasets 
included control blood samples of the healthy individuals. 
To identify probes with lncRNA annotation, the probes 
were mapped to the latest NetAffx Annotation File (HG-
U133_Plus_2 Annotations, Release 35) [32]. Some probes 
originally annotated as protein-coding genes were lever-
aged to represent antisense, processed transcripts, sense 
overlapping, non-sense mediated decay, sense intronic, 
or lincRNA. Finally, 5,016 probesets were detected repre-
senting 3,640 unique lncRNAs.

By comparing the gene expression levels between sep-
sis samples and controls, differentially expressed genes 
(DEGs) and differentially expressed lncRNAs (DELs) 
were identified in each dataset. The differential analysis 

Fig. 2  Composition of mRNA modules identified from different states. Y axis represents the number of up or down-regulated mRNAs in each module. 
Different module types are separated by the dashed lines. The embedded pie shows the proportions of each type of modules
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reported statistically significant alterations (P-value < 0.05 
and fold-change > 1.5) in 6.4-16.15% of mRNAs (11.12% 
in average) and 4.35–13.39% of lncRNAs (8.74% in aver-
age). Specifically, 2382, 2578, 3497, 2085, 2507, and 
1385 DEGs were screened from GSE28750, GSE57065, 
GSE95233, GSE8121, GSE9692, and GSE13904, respec-
tively (Table  2). 412 up-regulated and 300 down-reg-
ulated genes out of them were consistently detected 
as DEG in all the six datasets (Supplementary Fig.  1). 
Additionally, we identified 280, 316, 431, 245, 277, and 
140 DELs from the six datasets, respectively, and 70 (31 
up-regulated and 39 down-regulated) out of them were 
commonly detected by all these datasets. The ratio of dif-
ferentially expressed discoveries for lncRNAs is slightly 
lower than that of mRNAs (1.92% vs. 3.29%).

Homogeneity of mRNA modules in sepsis
For each gene expression dataset, sepsis co-expres-
sion networks and normal co-expression networks 

were separately conducted based on the differentially 
expressed mRNAs. Modules were identified from these 
co-expression networks using WGCNA [26] (Fig.  1B). 
Each color represented a type of module and we extracted 
the gene in each module (Tables  3 and 4). In the sepsis 
state, 57, 54, 55, 32, 55 and 29 gene modules were iden-
tified from GSE28750, while the numbers were 34, 49, 
60, 43, 41, and 33 in the normal state. The modules were 
stratified into three groups, up-regulated, down-regu-
lated and mixed modules, based on the proportion of up- 
and down-regulated genes (Fig. 1D). Modules containing 
over 90% up-regulated genes were defined as up-regu-
lated modules while modules including more than 90% 
down-regulated genes were down-regulated modules.

In Fig. 2, the bar chart shows the number of up-regu-
lated DEGs (red) and down-regulated DEGs (cyan) in 
each module, while the pie graph represents the percent-
age of the up-regulated module (red), down-regulated 

Fig. 3  Composition of lncRNA modules identified from different states. Y axis represents the number of up or down-regulated lncRNAs in each module. 
Different module types are separated by the dashed lines. The embedded pie shows the proportions of each type of modules
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module (cyan), and mixed module (yellow) in each data-
set. We observed that the sepsis gene modules tend to 
be more homogeneous than the normal ones. Namely, a 
majority of sepsis gene modules are either up-regulated 
or down-regulated and only a small fraction of them with 
mixed expression direction, whereas the normal modules 
consist of more mixed modules and the proportion of up- 
and down-regulated modules are relatively low (Fig.  2). 
Specifically, 15 (27.78%) up-regulated, 18 (33.33%) down-
regulated, and 21(38.89%) mixed modules were detected 
in the sepsis state for dataset GSE57065, while the figures 
are 3 (6.12%), 4 (8.16%), and 42 (85.7%) in the normal 

state. Similar findings were produced for all the other 
datasets except GSE28750.

Homogeneity of lncRNA modules in sepsis
We draw the same conclusions from the lncRNA mod-
ules. The sepsis lncRNA modules were more homo-
geneous in comparison to the normal ones (Fig.  3). 
Specifically, 57, 54, 55, 32, 55, and 29 gene modules were 
identified from GSE28750 of sepsis state, while in the 
normal state the numbers were 34, 49, 60, 43, 41, and 

Fig. 4  Comparison of the expression patterns of mRNA and lncRNA modules in the sepsis and healthy state. In each panel, bar plot represents the distri-
bution of the modules in terms of the up-regulated ratio of the module members, while the point plot corresponds to the modules distributed on two 
dimensions, up-regulated ratio and log2 transferred module size. Horizontal axis shows log2 (module size) and vertical axis represents the up regulated 
ratio of module
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33, respectively (Table 4). In GSE57065, for instance, 15 
(27.78%) up-regulated, 18 (33.33%) down-regulated, and 
21(38.89%) mixed modules were screened in the sepsis 
state, while the numbers were 3 (6.12%), 4 (8.16%), and 42 
(85.7%) in normal condition. Similar findings were made 
for all these datasets except GSE28750.

To provide an overview of the distributions of dif-
ferent types of mRNA modules and lncRNA modules, 
we calculated the up-regulated gene ratio of each mod-
ule and sought to compare the ratio between different 
states (Fig. 4). Dataset GSE28750 was excluded due to its 
expression pattern was different from that of the other 
datasets. In Fig. 4, a square represents a module and color 
represents dataset. The vertical axis represents the up-
regulated ratio while the horizontal axis shows the num-
ber of modules. Interestingly, the lncRNAs in most of the 
sepsis modules are exclusively up-regulated or down-
regulated with an extremely high homogeneity, whereas 
the lncRNA modules are more heterogeneous in the nor-
mal state. In addition, the distributions of module num-
ber are consistent regardless of the module size in either 

the sepsis or the normal state, indicating the expression 
homogeneity is independent of the module size (Fig. 4).

Identification of consistent coding and non-coding genes
Generally, the identified differentially expressed mole-
cules and co-expression modules are inconsistent across 
different datasets. To address this issue, we screened 
the sepsis modules to obtain the ones with the maxi-
mum number of common genes across the five datasets 
(Fig.  5A). Five up-regulated consistent modules were 
identified with eight common genes, i.e., CEACAM6, 
CTSG, DEFA4, ELANE, MPO, MS4A3, PRTN3, and 
RNASE3 (Fig. 5B and C). All of those genes are involved 
in biological processes of neutrophil degranulation, neu-
trophil activation involved in immune response, neu-
trophil mediated immunity, neutrophil activation, etc., 
practically all of which are neutrophil related immune 
functions (Fig.  5D). For the identified down-regulated 
consistent modules, 11 common genes are shared, 
including EOMES, FGFBP2, GNLY, GZMA, GZMB, 
GZMH, IL2RB, KLRD1, PRF1, TBX21, and TGFBR3 
(Fig. 6). Interestingly, those genes are mainly implicated 

Fig. 5  Up-regulated mRNA modules. (A) Common up-regulated modules identified from five different datasets. (B) Venn diagram of genes from the five 
common up-regulated modules. (C) Expression heatmap of eight common up-regulated mRNAs in the five datasets. (D) Functional analysis of the eight 
common up-regulated mRNAs.
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in T cell related immune functions, such as lymphocyte 
mediated immunity, cell killing, T cell activation, and T 
cell mediate immunity.

Similarly, for the lncRNA modules, the consistent mod-
ules detected from the five datasets share two lncRNAs, 
CHRM3 antisense RNA 2 (CHRM3-AS2) and PRKCQ 
Antisense RNA 1 (PRKCQ-AS1). Their module members 
are densely connected and consistently down-regulated 
(Fig.  7). In analogy to the down-regulated genes, the 
genes co-expressed with these lncRNAs mainly repre-
sent in T cell related immune functions, including T cell 
activation, T cell deferrization, T cell reporter signaling 
pathway, lymphocyte differentiation, etc. Our findings 
indicate that the up-regulated genes are more likely to 
function in neutrophil related immune functions, while 
the genes in the down-regulated modules tend to partici-
pate in T cell related immune functions, either coding or 
non-coding genes.

Discussions
We initially identified genes and lncRNAs that exhib-
ited significant differential expression between sepsis 
and normal states in six transcriptome datasets. Using 
these differentially expressed findings, we constructed 
co-expression networks and identified gene co-expres-
sion modules. Our analysis revealed that sepsis mod-
ules displayed a more homogeneous expression pattern, 
predominantly consisting of either up-regulated or 
down-regulated genes, while a substantial portion of 
normal modules exhibited a mixed pattern, with up- and 
down-regulated genes evenly distributed. Among these 
modules, we identified eight up-regulated and 11 down-
regulated common genes that were consistently observed 
across diverse datasets, indicating shared information. 
Remarkably, all these genes were involved in human 
immunological pathways. The up-regulated genes mainly 
function in neutrophil whereas the down-regulated 
ones usually regulate T cell. Also, two down-regulated 
lncRNAs CHRM3-AS2 and PRKCQ-AS1, were deter-
mined as sepsis associated lncRNAs functioning in T cell 
activation and differentiation.

Fig. 6  Down-regulated mRNA modules. (A) Common down-regulated modules identified from five different datasets. (B) Venn diagram of genes from 
the five common down-regulated modules. (C) Expression heatmap of the 11 common down-regulated mRNAs in the five datasets. (D) Functional analy-
sis of the 11 common down-regulated mRNAs.

 



Page 10 of 13Liu et al. BMC Genomics          (2023) 24:418 

In sepsis, for either coding or non-coding modules, a 
majority of genes have the same expression direction, 
revealing that genes in a module are under- or over-
expressed together to function in some specific bio-
logical processes like immunity and inflammation. Our 
results show that ten out of the 11 genes consistently 
under-expressed in sepsis modules may function in T 
cell mediated pathways (Table  5). For instance, proteins 
encoded by EOMES may be necessary for the differen-
tiation of effector CD8 + T cells which are involved in 
defense against viral infections. The one left is TGFBR3, 
the receptor encoded by which is a membrane proteo-
glycan that often functions as a co-receptor with other 
TGFβ receptor superfamily members [40]. TGFβ has a 
wide range of activity regulating various immune cells 
with soluble TGFBR3 potentially inhibiting TGFβ signal-
ing [41, 42].

lncRNAs can bind to DNA, RNA and proteins depend-
ing on sequence and chromatin structure, thereby affect-
ing RNA splicing, stability and translation, and ultimately 
modulating the expression of target genes in numer-
ous pathophysiological processes such as disorders of 

immune system [20, 43], but their role in sepsis-induced 
immunity has not been explored. Owing to microar-
ray platforms include probes representing lncRNAs, we 
reannotated lncRNAs and established lncRNA expres-
sion profilings. Through constructing and analyzing co-
expression modules at different states using the screened 
differentially expressed lncRNAs, we found two novel 
lncRNAs are associated with sepsis, CHRM3-AS2 and 
PRKCQ-AS1. In analogy to the down-regulated genes, 
they are involved in sepsis pathogenesis pathways, such 
as T cell receptor signaling pathway, T cell, lymphocyte, 
and leukocyte differentiation, indicating the critical role 
of lncRNAs in sepsis initiation and progression. Our 
results provide evidence that lncRNAs have a significant 
impact on immune responses induced by inflammation 
in addition to mRNA (Fig. 6).

Specifically, the protein coding by interleukin 2 recep-
tor (IL2RB), a member of the down-regulated modules, 
is interacted with PRKCQ-AS1, which has already been 
reported to be involved in T cell functions and play a key 
role in immunology [44, 45]. IL2RB is involved in T cell-
mediated immune responses and it is primarily expressed 

Fig. 7  Down-regulated lncRNA modules. (A) Common down-regulated modules identified from five different datasets. (B) Venn diagram of lncRNAs from 
the five common down-regulated modules. (C) Expression heatmap of the two common down-regulated lncRNAs in the five datasets. (D) Functional 
analysis of the two common down-regulated lncRNAs. Co-expressed mRNAs of each lncRNA are used for function enrichment
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in the hematopoietic system, which is tightly connected 
to the immune system [46]. The regulatory mechanism 
of lncRNA PRKCQ-AS1 on IL2RB need to be further 
explored to elucidate its function roles in sepsis. Pro-
teins encoded by EOMES may be necessary for the dif-
ferentiation of effector CD8 + T cells which are involved 
in defense against viral infections. lncRNA CHRM3-AS2 
has been reported to be a potential regulator of EOMES 
[45]. The diagnosis and prognosis roles of the two 
lncRNAs and other module genes are also need to be sys-
tematically evaluated in our future work [47–51].

This study concentrated on co-expression pattern of 
mRNAs and lncRNAs in sepsis, providing a novel per-
spective and insight into sepsis coding and non-coding 
genes involved. This findings may facilitate the explora-
tion of candidate therapeutic targets and molecular bio-
markers for sepsis.
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Table 5  Discription of the functions of down-regulated genes
Gene Function discription
EOMES Proteins encoded by EOMES may be necessary for the differentiation of effector CD8 + T cells which are involved in defense 

against viral infections.

FGFBP2 The encoded protein is a serum protein that is selectively secreted by cytotoxic lymphocytes and may be involved in cytotoxic 
lymphocyte-mediated immunity.

GNLY The product of GNLY is a member of the saposin-like protein (SAPLIP) family and is located in the cytotoxic granules of T cells, 
which are released upon antigen stimulation.

GZMA The encoded protein is a T cell- and natural killer cell-specific serine protease that may function as a common component neces-
sary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells.

GZMB The encoded preproprotein is secreted by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) and proteolytically processed 
to generate the active protease, which induces target cell apoptosis. This protein also processes cytokines and degrades extracel-
lular matrix proteins, and these roles are implicated in chronic inflammation and wound healing.

GZMH It is reported to be constitutively expressed in the NK (natural killer) cells of the immune system and may play a role in the cytotox-
ic arm of the innate immune response by inducing target cell death and by directly cleaving substrates in pathogen-infected cells.

IL2RB The interleukin 2 receptor (IL2RB) is involved in T cell-mediated immune responses and it is primarily expressed in the hematopoi-
etic system.

KLRD1 KLRD1 (CD94) is an antigen preferentially expressed on Natural killer (NK) cells, which are a distinct lineage of lymphocytes that 
mediate cytotoxic activity and secrete cytokines upon immune stimulation.

PRF1 Protein PRF1 is structurally similar to complement component C9 that is important in immunity. This protein forms membrane 
pores that allow the release of granzymes and subsequent cytolysis of target cells. Mutations in this gene are associated with a 
variety of human diseases.

TBX21 TBX21 is the human ortholog of mouse Tbx21/Tbet gene. Studies in mouse show that Tbx21 protein is a Th1 cell-specific transcrip-
tion factor that controls the expression of the hallmark Th1 cytokine, interferon-gamma (IFNG). Expression of the human ortholog 
also correlates with IFNG expression in Th1 and natural killer cells, suggesting a role for this gene in initiating Th1 lineage develop-
ment from naive Th precursor cells.

TGFBR3 TGFBR3 encoded receptor is a membrane proteoglycan that often functions as a co-receptor with other TGF-beta receptor super-
family members.

https://doi.org/10.1186/s12864-023-09460-9
https://doi.org/10.1186/s12864-023-09460-9
https://www.ncbi.nlm.nih.gov/geo/
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