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Abstract
Background  Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition, and 
progresses to liver cirrhosis, and even hepatocellular carcinoma. However, the invasive diagnosis of NAFLD with 
histopathological evaluation remains risky. This study investigated potential genes correlated with NAFLD, which may 
serve as diagnostic biomarkers and even potential treatment targets.

Methods  The weighted gene co-expression network analysis (WGCNA) was constructed based on dataset 
E-MEXP-3291. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed 
to evaluate the function of genes.

Results  Blue module was positively correlated, and turquoise module negatively correlated with the severity 
of NAFLD. Furthermore, 8 driving genes (ANXA9, FBXO2, ORAI3, NAGS, C/EBPα, CRYAA, GOLM1, TRIM14) were 
identified from the overlap of genes in blue module and GSE89632. And another 8 driving genes were identified 
from the overlap of turquoise module and GSE89632. Among these driving genes, C/EBPα (CCAAT/enhancer 
binding protein α) was the most notable. By validating the expression of C/EBPα in the liver of NAFLD mice using 
immunohistochemistry, we discovered a significant upregulation of C/EBPα protein in NAFLD.

Conclusion  we identified two modules and 16 driving genes associated with the progression of NAFLD, and 
confirmed the protein expression of C/EBPα, which had been paid little attention to in the context of NAFLD, in the 
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Background
Nonalcoholic fatty liver disease (NAFLD), characterized 
by excessive liver fat deposition, is a continuous disease 
spectrum, including simple steatosis, nonalcoholic ste-
atohepatitis (NASH), relevant liver cirrhosis, and even 
hepatocellular carcinoma in severe cases [1, 2]. NAFLD 
accounts for 75% of chronic liver disease cases, and is 
also a common cause of liver transplantation [3–5]. 
With changes in modern lifestyles, such as high energy 
intake and sedentary activities, the incidence of NAFLD 
is rapidly increasing [6]. In addition, NAFLD increases 
susceptibility to chronic kidney disease, sarcopenia, 
hyperuricemia, type 2 diabetes and other metabolic dis-
eases and malignancies [7, 8]. Hence, NAFLD is paid 
much attention and many efforts have been made for its 
diagnosis and treatment [9].

The current gold standard for diagnosing NAFLD is 
histopathological evaluation of liver tissue biopsy, which 
is invasive and risky and with sampling errors [10]. It is 
challenging and yet tempting to seek non-invasive diag-
nostic biomarkers with easy detection and high accuracy 
for diagnosis and even potential treatment of NAFLD 
[11].

Thanks to the great strides made in bioinformatics in 
recent decades, we can analyze large and complex gene 
sequencing data, which has been accepted as an impor-
tant method in life science research [12–15]. Weighted 
gene coexpression network analysis (WGCNA) is a 
novel bioinformatics method that explores the correla-
tions between or within different genomes, as well as 
the correlations between genes and clinical features, by 
establishing co-expression modules or gene networks 
[16–18]. The modules are established based on differ-
ences in expression profiles and driving genes that are 
critical in triggering key cell signaling pathways in impor-
tant types of cells [19]. It recognizes highly correlated 
modules, characteristics of gene modules and driving 
genes. WGCNA contributes to establishing correlations 
between gene modules and samples and to calculating 
module membership [20]. At present, WGCNA has been 
successfully applied in analyses of cancers (e.g., breast 
cancer, glioblastoma and prostate cancer) [21–23]. By 
investigating the correlations between tissue microarray 
data and clinical features, WGCNA predicts the survival 
outcomes of cancer patients and identifies candidate bio-
markers or therapeutic targets of cancers [24, 25].

In the present study, we analyzed the E-MEXP-3291 
dataset using WGCNA. After establishing the correla-
tions between gene modules and clinical data of NAFLD, 

it was found that the blue module was positively cor-
related with the severity of NAFLD. Subsequently, the 
overlap of genes in blue module and upregulated genes 
in GSE89632 was searched, and 8 driving genes, such 
as CCAAT/enhancer binding protein (C/EBPα), etc., 
was identified. After establishing a NAFLD model in 
mice, immunohistochemical data validated significantly 
upregulated C/EBPα in the liver tissues of NAFLD mice. 
We also identified turquoise module and 8 driving genes 
to be negatively associated with the severity of NAFLD, 
indicating the regression of the disease. Taken together, 
our findings provide novel directions and therapeutic tar-
gets of NAFLD.

Methods
Dataset acquisition and data preprocessing
The RNA microarray dataset GSE89632 [25,581,263] 
and the E-MEXP-3291 [21,737,566] profile were down-
loaded from the GEO (Gene Expression Omnibus) 
database (https://www.ncbi.nlm.nih.gov/geo) and Array-
Express (https://www.ebi.ac.uk/arrayexpress/). The gene 
expression level of 24 healthy controls, 20 cases with 
simple steatosis and 19 cases with NASH were included 
in GSE89632, besides the steatosis percentage, fibrosis 
stage, lobular inflammation severity, ballooning inten-
sity, NAFLD activity score, age, sex, liver arachidonic acid 
level, liver eicosapentaenoic acid level, and liver doco-
sahexaenoic acid level. The gene expression level of 19 
normal liver, 10 simple hepatic steatosis sample, 9 NASH 
with fatty liver and 7 NASH without fatty liver, contain-
ing gender and age, were included in the E-MEXP-3291. 
The summary of the datasets was provided in supplemen-
tary Table 1. In the present study, 19 normal liver, 10 sim-
ple hepatic steatosis sample and 9 NASH with fatty liver 
expression profile was used to construct the WGCNA 
network, and the obtained results were further validated 
using the GSE89632 dataset.

Establishment of the NAFLD mouse model
Animal procedures were strictly performed based on the 
ethics review of experimental animals and were approved 
by the Ethics Committee of Xiamen University. All 
methods were carried out in accordance with relevant 
guidelines and regulations of the Ethics Committee, and 
were reported in accordance with ARRIVE guidelines 
(Animal Research: Reporting of In Vivo Experiments, 
https://arriveguidelines.org) for the reporting of animal 
experiments.

present study. Our study will advance the understanding of NAFLD. Moreover, these driving genes may serve as 
biomarkers and therapeutic targets of NAFLD.
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Male adult C57BL/6J mice weighing 24 ± 2 g was habit-
uated to a standard environment [temperature: 21 ± 2 °C, 
humidity: 60 ± 10%, light/dark cycle: 12 h/d (8:00–20:00)]. 
Mice were given free access to water and diet. They were 
randomly assigned into two groups and fed either a nor-
mal diet or a high-fat diet.

Immunohistopathological characterization of liver.
Livers were sectioned from mice, washed with PBS, 

fixed with 4% paraformaldehyde/PBS and paraffin 
embedded. For C/EBPα immunofluorescences, cross-
sections were treated for antigen retrieval and incubated 
with primary antibodies (1:100) followed by fluorescent 
secondary antibody. Peroxidase activity was revealed 
by 3-30-diamino- benzidinetetrahydrochloride (DAB, 
Dako). Images were captured using an Upright Metallur-
gical Microscope (Leica DM4B, Germany). Negative con-
trols were carried out by omitting the primary antibody.

Construction of WGCNA
The WGCNA R software package was constructed. In 
brief, genes with expression values > 10 in 43 samples 
were utilized to draw a hierarchical clustering tree (den-
drogram) using the fashClust function. The soft-thresh-
olding power selected by the pickSoft Threshold function 
was a standard value in the scale-free topology network 
to make the established network a power-law distribu-
tion. It reduced errors and made the results more char-
acteristic of biological data by strengthening strong 
correlations and weakening weak correlations in a scale-
free network feature. The scale-free topology fit index 
presented an exponential change. Therefore, a good cor-
relation (R2 = 1) indicated that the data network was in a 
scale-free topological distribution.

Clinically significant modules
Key modules were screened out by calculating the cor-
relations between module eigengenes and clinical traits. 
In the linear regression between gene expression and 
clinical information, log10 transformation of the P-value 
(GS = lgP) was considered gene significance (GS). The 
average GS of all genes in one module was considered 
module significance (MS). The module with the highest 
MS among all modules was believed to be the one that 
has a most significant correlation with clinical traits.

Function enrichment analysis
To obtain further insight into the function of genes in 
key modules, Gene Ontology (GO) enrichment analy-
sis was performed for modules with the KOBAS tool 
(http://kobas.cbi.pku.edu.cn/kobas3). The gene lists of 
modules were uploaded, and we obtained the results 
of BP and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses. An adjusted p-value < 0.05 
was regarded as significant.

Validation of driving genes
The “limma” R package was used to screen the differen-
tially expressed genes (DEGs) between healthy control 
samples and NASH samples in dataset GSE89632 for val-
idation. The cutoff value was log2

|FC|>1, with an adjusted 
P-value < 0.05. The construction of the volcano plot and 
hierarchical clustering analysis were carried out using the 
R packages ggplot2 and pheatmap, respectively. A Venn 
diagram was created using the online tool jvenn (http://
jvenn.toulouse.inra.fr/app/example.html) to overlap the 
genes in key modules and differentially-expressed genes 
(DEGs).

Statistical analysis
The results were expressed as the mean ± S.E.M. Sta-
tistical analysis was performed using unpair T test for 
comparisons between two groups followed by the Stu-
dent-Newman-Keuls test (Prism 5 for Windows, Graph-
Pad Software Inc., USA). P values < 0.05 were considered 
statistically significant.

Results
Expression value analysis of microarray data
The E-MEXP-3291 profile containing 43 cases was down-
loaded from ArrayExpress, including 20 healthy controls, 
15 cases with steatosis and 8 cases with NASH. Using the 
R package, raw data of the E-MEXP-3291 profile were 
processed for background correction and normalization. 
Probes and gene symbols were matched using R package 
annotation. For the multi-matched genes, the median 
level was regarded as the final expression value. A total 
of 23,486 genes were identified, and those with an aver-
age expression level > 5 were selected for the following 
analysis. Ultimately, 6,731 eligible genes were included 
for cluster analysis. As shown in Fig. 1A, three clusters of 
43 samples were classified.

Construction of WGCNA and identification of key modules
An appropriate soft threshold value was screened out to 
make the established network a scale-free distribution. 
The network topology analysis was conducted on the top 
20 thresholding powers, aiming to identify the relatively 
balanced scale independence and mean connectivity of 
the WGCNA. The power value (β) was confirmed to be 
9 (Fig. 1B and C) to produce a hierarchical clustering tree 
of 6731 genes.

The obtained adjacent and topological modules were 
subjected to a gene clustering function using dissimi-
larity. Subsequently, modules were cut by the dynamic-
prune algorithm for the establishment of the WGCNA 
network. Similar modules were merged as the MEDis-
sThres set for 0.25, and 7 modules were generated 
(Fig.  2A and B). Notably, the gray module represented 
genes that were unable to be allocated to modules. 

http://kobas.cbi.pku.edu.cn/kobas3
http://jvenn.toulouse.inra.fr/app/example.html
http://jvenn.toulouse.inra.fr/app/example.html
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According to hierarchical clustering, different colors rep-
resent different modules, and those on the top are initially 
obtained modules through the dynamic-prune algorithm, 
while those on the bottom are the final merged modules. 
In detail, there were 609, 1154, 653, 1701, 1234, 527 and 
853 genes in the black, blue, brown, green, grey, red and 
turquoise modules, respectively.

Correlation between modules and key module 
identification
Interaction association was analyzed among the seven 
modules, and a network heatmap was depicted (Fig. 3A). 
It is concluded that every module was validated indepen-
dently to each other, indicating a relative independence 
of different genes in different modules. Subsequently, 
co-expression similarity in modules was investigated 

Fig. 1  Sample clustering and soft-thresholding power determination. A Clustering was based on the expression data of E-MEXP-3291, and the color 
intensity was proportional to disease status (healthy controls, simple steatosis and NASH), sex and age. B Analysis of the scale-free fit index for various 
soft-thresholding powers (β). C Analysis of the mean connectivity for various soft-thresholding powers. In all, 9 was the most fit power value
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by calculating eigengenes and clustering them based on 
the correlation, and two main clusters were obtained 
(Fig.  3B). In addition, the heatmap of driving gene net-
work, depicted based on adjacencies, reveals similar 
results (Fig. 3C). In the present study, age, sex and stage 
were included as clinical traits. Pearson correlation anal-
ysis was performed on modules and clinical traits, where 
modules (clinical traits) were expressed as rows and the 
status was expressed as columns. Values in the mod-
ules represent the correlation and p-value. As shown in 
Fig.  3D, the blue module was positively correlated with 
stage, and the turquoise module was negatively corre-
lated with stage, suggesting that the blue module could 
promote the progression of NASH and that the turquoise 
could inhibit the progression of NASH. The correlations 
between module membership and GS in the blue and 
turquoise modules were shown in supplementary Fig. 1. 
Therefore, blue and turquoise modules were ultimately 
selected for the following analysis.

Function enrichment analysis
As the blue module was positively correlated with dis-
ease stage, the gene in the blue was enrolled for further 
KEGG and GO analysis, p value < 0.05 and FDR < 0.05 
were considered statistically significant. A total of 62 bio-
logical processes and 57 pathways were enriched in blue 
module. The blue module was mainly enriched in the 
regulation of the Wnt, MAPK and AMPK pathways, etc. 
(Fig. 4A and B). However, we did not identify significantly 
enriched pathways in the turquoise module.

Identification of driving genes in the blue module
The GSE89632 dataset was downloaded from the GEO 
database to identify the expression of driving genes. 
DEGs were screened out (log2FC>|1| and P < 0.05) as 
described [26, 27], which are depicted as volcano plots 
(Fig. 5A) and shown in a hierarchical clustering heatmap 

(Fig. 5B). Subsequently, a Venn diagram was constructed 
for the overlapping upregulated genes and genes in the 
blue module, and 8 overlapping driving genes (ANXA9, 
FBXO2, ORAI3, NAGS, C/EBPα, CRYAA, GOLM1, 
TRIM14) were obtained (Fig.  5C). The expression lev-
els of the 8 driving genes in healthy controls and NASH 
cases from GSE89632 are shown in Fig. 5D, and C/EBPα 
was the most upregulated gene (log2FC = 3.33).

Likewise, the overlapping upregulated genes in 
GSE89632 and genes in the turquoise module were ana-
lyzed, and 8 overlapping driving genes (GPR3, FOSL1, 
ETNK1, C2CD4B, CSF3, FOXC1, SOX17, IER5L) were 
obtained (Fig. 5E).

Experimental validation of driving genes in the blue 
module
To verify our identifications, the expression of CCAAT/
enhancer binding protein-alpha (C/EBPα), the most 
upregulated gene in blue module, was determined in the 
NASH model mouse and normal controls. In Fig. 6A, the 
brown color represents the positive staining of C/EBPα. 
The intensity was recognized and read using the image J 
software, and the value was then divided by the mean of 
that in normal group, resulting in the fold change of nor-
mal group (Fig.  6B). The immunohistochemistry result 
showed that the protein level of C/EBPα was upregulated 
in the NASH group compared with the control group in 
this mouse model, consistent with our bioinformatics 
analysis.

Discussion
NAFLD has emerged as the leading cause of chronic liver 
disease in many countries worldwide. NAFLD represents 
a spectrum of disease severity, ranging from simple ste-
atosis to NASH, cirrhosis, and hepatocellular carcinoma 
(HCC) [28]. Compared with the general population, 
NAFLD patients are at increased risk of liver-related, 

Fig. 2  Co-expression module construction using the WGCNA package in R. A The cluster dendrogram of module eigengenes. B The cluster dendrogram 
of genes in E-MEXP-3291. Each branch in the Fig. represents one gene, and each color represents one coexpression module
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kidney-related, cardiovascular and all-cause mortality 
[29, 30]. However, with complex multifactorial patho-
genesis, the genes or proteins related to progression of 
NAFLD remain obscure.

In recent years, the identification of key genes of a cer-
tain disease using WGCNA has become popular [31]. 
Establishing a WGCNA network contributes to screen-
ing and identifying key modules and genes that are 

Fig. 3  Correlation between modules and key module identification. A Interaction relationship analysis of coexpressed genes. Different colors of the 
horizontal and vertical axes represent different modules. The brightness line in the middle represents the degree of connectivity of different modules. 
There was no significant difference in interactions among different modules, indicating a high-scale independence degree among these modules. B 
Hierarchical clustering of module genes that summarize the modules yielded in the clustering analysis. The modules with similarity over 0.2 was incor-
porated before clustering. C Heatmap plot of the adjacencies in the driving gene network. D Heatmap of the correlation between module eigengenes 
and the disease status of NAFLD. The turquoise module was the most negatively correlated with status, and the blue module was the most positively 
correlated with status
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responsible for specific features of a disease [32]. Tra-
ditional gene analysis mainly focuses on strong effector 
molecules rather than weak ones, although they are of 
significance as well [33, 34]. WGCNA is a supplemental 
method for data mining of weak effector molecules. It 
strengthens the correlation of strong effector molecules 
after power function processing and conversely weakens 
that of weak effector molecules in the same processing, 
thus leading to a scale-free topology criterion of net-
works [35].

In the current study, we apply WGCNA on two data-
sets, that is E-MEXP-3291 and GSE89632. Both of them 
contain samples of healthy controls, simple steatosis and 
NASH. Although simple steatosis and NASH are parts of, 
not identical to, NAFLD, they are important components 
of NAFLD, and studies of E-MEXP-3291 and GSE89632 
also use the term NAFLD to include simple steatosis and 
NASH [36, 37], hence in the current study, we use expres-
sion of NAFLD to describe the clinical information/trait 
of the disease status in these datasets.

The RNA-seq dataset E-MEXP-3291 was downloaded 
from the ArrayExpress database. A total of 6, 731 genes 
were screened out after excluding genes with an average 
expression level < 5, and these genes were subjected to 
WGCNA. Modules correlated with NAFLD were iden-
tified through cluster analysis. The data showed that the 
blue and turquoise modules were correlated with the 
stage of NAFLD. Afterwards, the two modules were sub-
jected to GO and KEGG analysis, and they were deter-
mined to be mainly enriched in fat metabolism, insulin 
resistance and other biological processes that were of 
great significance in the development of NAFLD.

Then we investigated driving genes in each module. 
The term of driving genes is similar to hub genes and 
yet a bit different from the latter. The driving genes in 
the present study are the overlaps between modules and 
DEGs and related to the disease; however, in general, the 
hub genes refer to those genes participating in the tran-
scriptional regulation [38, 39]. To ascertain driving genes 

in each module, another dataset, GSE89632, was intro-
duced to identify differentially expressed genes between 
healthy controls and NASH patients. The GSE89632 
dataset serves as the external validation set to ensure the 
stability of the results. By overlapping upregulated dif-
ferentially expressed genes and genes in the blue mod-
ule, a total of 8 genes were obtained. Among them, C/
EBPα was the top upregulated gene. To further validate 
our findings, we detected positive expression of C/EBPα 
in liver tissues of NAFLD mice by immunohistochemical 
staining. As expected, C/EBPα was significantly upregu-
lated in NAFLD mice compared with mice fed a normal 
diet.

CCAAT/enhancer binding protein (C/EBP) is a eukary-
otic transcription factor containing six family members 
(C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ and C/
EBPζ) [40]. These proteins are extensively distributed in 
various types of tissues, organs and cells. Functionally, 
C/EBPα is involved in hepatocyte proliferation and adi-
pocyte differentiation [41]. C/EBPβ is necessary for the 
immune function of macrophages [42]. C/EBPδ is syner-
gistically involved in adipocyte differentiation [43]. And 
C/EBPε is specifically expressed in bone marrow cells, 
serving as a vital mediator of granulocyte production 
[44]. But C/EBPγ and C/EBPζ has been little studied.

Structurally, the basic leucine zipper (bZIP) at the 
C-terminus of C/EBP family members is highly con-
served and is responsible for dimerization and DNA 
binding [45]. Its heterodimer or homodimer regulates 
gene transcription by binding the conserved sequence 
5’-T(T/G)NNGNAA(T/G)-3’, thereby participating in 
the immune and inflammatory responses [46]. C/EBP 
binding sites exist in promoter regions of many inflam-
mation-related cytokines [47, 48]. Hence, C/EBP family 
plays a critical role in the inflammatory response. It has 
been reported that knockdown of C/EBPβ in mouse type 
II alveolar epithelial cells downregulates IL-1β-induced 
expression of IL-6 [49]. Stimulation of mouse BMDMs 
(mouse bone marrow-derived macrophages) by low-dose 

Fig. 4  GO and KEGG analysis of blue module. A GO analysis of the enriched genes in the blue module. B The KEGG pathways of the enriched genes in 
the blue module
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LPS enhances the transcriptional activity of C/EBPδ [50]. 
Knockdown of C/EBPδ alleviates LPS-induced ALI/
ARDS symptoms, mainly manifesting as decreased num-
bers of neutrophils in bronchoalveolar lavage fluid, albu-
min (reflection of vascular epithelial permeability of lung 
tissues) and cytokines [51].

It is reasonable to speculate that suppressing the tran-
scriptional activity of C/EBPα may alleviate the inflam-
matory response. However, through a literature review, 

the function of C/EBPα in the development of NAFLD 
has rarely been reported. Our bioinformatic analysis 
showed that C/EBPα was upregulated in the liver tissues 
of NAFLD, which was further confirmed in the NAFLD 
mouse model. Our result suggest that C/EBPα may 
aggravate the development of NAFLD.

In Conclusion, we identified two modules and 16 driv-
ing genes, including 8 genes positively-correlated and 8 
genes negatively-correlated with the severity of NAFLD, 

Fig. 5  Identification of driving genes in GSE89632. A Volcano plot visualizing DEGs in GSE89632 (19 with nonalcoholic steatohepatitis (NASH) and 24 
healthy controls (HC)). The green nodes are downregulated genes, and the red nodes are upregulated genes (|fold change|>2, p < 0.05). B Heatmap hi-
erarchical clustering reveals dysregulated genes in the NASH groups compared with the healthy controls. C-D Identification of common genes between 
upregulated genes and the blue module by overlapping them; C/EBPα was determined to be the most upregulated gene. E Identification of common 
genes between upregulated genes and the turquoise module by overlapping them
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which will advance the understanding of mechanism of 
NAFLD. Our findings provide novel directions and thera-
peutic targets of NAFLD.
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