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Abstract
Background The search for quantitative trait loci (QTL) affecting traits of interest in mammals is frequently limited to 
autosomes, with the X chromosome excluded because of its hemizygosity in males. This study aimed to assess the 
importance of the X chromosome in the genetic determinism of 11 complex traits related to milk production, milk 
composition, mastitis resistance, fertility, and stature in 236,496 cows from three major French dairy breeds (Holstein, 
Montbéliarde, and Normande) and three breeds of regional importance (Abondance, Tarentaise, and Vosgienne).

Results Estimates of the proportions of heritability due to autosomes and X chromosome (h²X) were consistent 
among breeds. On average over the 11 traits, h²X=0.008 and the X chromosome explained ~ 3.5% of total genetic 
variance. GWAS was performed within-breed at the sequence level (~ 200,000 genetic variants) and then combined 
in a meta-analysis. QTL were identified for most breeds and traits analyzed, with the exception of Tarentaise and 
Vosgienne and two fertility traits. Overall, 3, 74, 59, and 71 QTL were identified in Abondance, Montbéliarde, 
Normande, and Holstein, respectively, and most were associated with the most-heritable traits (milk traits and stature). 
The meta-analyses, which assessed a total of 157 QTL for the different traits, highlighted new QTL and refined the 
positions of some QTL found in the within-breed analyses. Altogether, our analyses identified a number of functional 
candidate genes, with the most notable being GPC3, MBNL3, HS6ST2, and DMD for dairy traits; TMEM164, ACSL4, 
ENOX2, HTR2C, AMOT, and IRAK1 for udder health; MAMLD1 and COL4A6 for fertility; and NRK, ESX1, GPR50, GPC3, and 
GPC4 for stature.

Conclusions This study demonstrates the importance of the X chromosome in the genetic determinism of complex 
traits in dairy cattle and highlights new functional candidate genes and variants for these traits. These results could 
potentially be extended to other species as many X-linked genes are shared among mammals.
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Background
Since the late 2000s, significant efforts have been made to 
decipher the genetic determinism of complex traits using 
genome-wide association studies (GWAS) or meta-anal-
yses of GWAS results in different species, in particular 
in humans [1]. To date, the largest GWAS have focused 
on human height, which is a highly heritable and easily 
measured trait and thus one for which very large datasets 
are available [2, 3]. Despite all these efforts, in all human 
GWAS results published so far—including a very recent 
study that examined human height in more than five mil-
lion individuals [3]—a portion of the heritability of the 
studied traits remains unexplained [4, 5]. The percentage 
differs among studies, but even small amounts of unex-
plained variability can be detrimental to our understand-
ing of the biological mechanisms underlying traits of 
interest. Furthermore, a lack of information on some of 
the genetic variants associated with complex traits, such 
as some diseases for example, can decrease the accuracy 
of predictions of genetic risk at the population or indi-
vidual level [6].

In livestock species, the bovine genome was one of the 
first to be sequenced, in 2009 [7]. As in humans, consid-
erable efforts have been made in the last decade to dis-
cover the genes and genomic variants that are involved 
in the genetic determinism of various complex traits of 
interest [8, 9], including stature, for which a large-scale 
meta-analysis was conducted [10] as part of the 1000 Bull 
Genomes project [11]. One of the expected benefits in 
cattle, and in livestock species in general, is improving 
the prediction of complex traits for breeding programs 
[12].

However, in most GWAS conducted in mammals, 
and in particular in the large-scale GWAS of stature in 
cattle [10] and humans [13], the focus has mainly been 
on autosomes, with the X chromosome often excluded 
due to its unique mode of inheritance. Genetic studies 
of the X chromosome are complicated by two factors: 
male hemizygosity (XY) in the non-pseudoautosomal 
region (non-PAR), which covers the majority of the X 
chromosome in mammals [14, 15], and dosage compen-
sation, i.e., the inactivation of one X chromosome, in XX 
females during early development, which ensures equiva-
lent X-linked gene expression in cells of animals of both 
sexes [16]. Although it has been much less studied than 
in humans or model species, the phenomenon of dosage 
compensation has also been demonstrated in cattle [17]. 
Consequently, in order to include the X chromosome in 
a genetic study, researchers must use different or sepa-
rate treatments for bulls and cows and make assump-
tions about dosage compensation [18, 19], which is 
rarely done. However, the X chromosome is the second-
largest chromosome in the bovine genome and contains 
1132 annotated genes (Ensembl release 107 - Jan 2023 

[20]), i.e., more than 4% of all annotated genes in the 
entire genome, with most (1098) located in the non-PAR 
region. Therefore, the exclusion of the X chromosome 
from efforts to decipher the genetic determinism of com-
plex traits or to improve the breeding values of animals 
may mean that a significant number of relevant genes are 
missed, and may result in a loss of efficiency in genomic 
selection [19].

In France, programs of genomic selection have been 
active since 2009 for the national dairy breeds Montbé-
liarde, Normande, and Holstein [21], and since 2016 for 
the regional dairy breeds Abondance, Tarentaise, and 
Vosgienne [22]. As a result, data are available for sev-
eral thousand to several hundred thousand cows in these 
breeds, including phenotypes for various complex traits 
of economic interest as well as genotypes from the bovine 
EuroGMD chip [23]. Although X-chromosome variants 
have not yet been incorporated into genomic prediction 
equations for estimating the breeding values of animals, 
more than 1000 SNPs located in this region are included 
on the bovine Illumina EuroGMD chip. Here, we lever-
aged this large dataset to assess the relative importance 
of the X chromosome in the genetic determinism of com-
plex traits in dairy cattle and to identify candidate caus-
ative X-linked genes and variants.

Specifically, we investigated 11 traits related to milk 
production, mastitis resistance, fertility, and stature that 
were measured in 236,496 cows of the six breeds (Mont-
béliarde, Normande, Holstein, Abondance, Tarentaise, 
and Vosgienne), with three objectives: [1] to estimate the 
respective proportions of heritability due to autosomes 
and the X chromosome in each breed and for each trait, 
[2] to perform within-breed association analyses that 
evaluated the effects of X-chromosome variants on each 
trait using genotypes imputed at the sequence level, and 
[3] for each trait, to combine the results obtained in the 
six different breeds in a meta-analysis.

Results
In the six breeds examined here— Montbéliarde, Nor-
mande, Holstein, Abondance, Tarentaise, and Vosgienne 
—a number of traits are routinely measured for breeding, 
including traits related to milk production and composi-
tion (milk yield (MY), protein yield (PY), fat yield (FY), 
protein content (PC), and fat content (FC)), udder health 
(clinical mastitis (MAST) and somatic cell score (SCS)), 
fertility (interval between calving and first fertilizing arti-
ficial insemination (ICFI), heifers’ conception rate (HCR), 
and lactating cows’ conception rate (CCR)), and stature 
(STAT). To complement these phenotypes, genotypes 
are available for a subset of cows, typically based on one 
of several medium-density SNP chips used in the last 12 
years, especially the Illumina EuroGMD chip. The num-
ber of cows for which both phenotypes and genotypes are 
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available varies greatly among breeds, from 2555 cows 
in Vosgienne to 81,815 cows in Holstein (Table 1). Note 
that, due to computational limitations, we restricted the 
sample size of the two largest breeds by randomly sam-
pling 61,881 Montbéliarde and 81,815 Holstein cows 
from the available 162,419 Montbéliarde and 315,674 
Holstein cows with both phenotypes and genotypes.

Heritability due to autosomes and X chromosome
To estimate heritabilities due to autosomes (h²AUT) 
and the X chromosome (h²X), we first used a restricted 
maximum likelihood (REML) approach that included 
two random polygenic effects estimated using genomic 
relationship matrices (GRM), which were derived from 
53,469 autosomal and 1147 X-linked SNPs, respec-
tively. In all breeds, the most heritable traits were 
STAT (0.42–0.72) and milk composition traits, i.e., PC 
(0.52–0.75) and FC (0.52–0.72), while MAST and fertil-
ity traits (ICFI, HCR, and CCR) were the least heritable 
(0.01–0.09). SCS, MY, PY, and FY presented intermedi-
ate heritability, with h² estimates ranging from 0.22 to 
0.40 (Table  2). For all breeds and traits, h²AUT ranged 
from 0.008 (ICFI in Vosgienne) to 0.74 (PC in Vosgi-
enne), while h²X ranged from 0.000 (MAST, HCR, and/
or CCR in multiple breeds; STAT in Tarentaise) to 0.04 
(PC in Tarentaise). For the most-heritable traits, h² was 
mainly explained by autosomes; instead, the proportion 
of genetic variance explained by the X chromosome was 
higher for SCS, HCR, and CCR in Tarentaise and for ICFI 
in Vosgienne. The standard error of estimates ranged 
from 0.002 to 0.035 for h²AUT and from 0.0004 to 0.019 
for h²X. On average across all breeds, around 3.5% of the 
total genetic variance of each trait was explained by the X 
chromosome.

Within-breed linkage disequilibrium on X chromosome
Linkage disequilibrium data, calculated for chromosomes 
2 and X in the 6 breeds, revealed an expected decline in 
r2 as the distance between markers increased (Fig. S1). 
Remarkably, the X chromosome generally exhibited 

higher linkage disequilibrium levels irrespective of 
marker distance. Moreover, regional breeds (Abondance, 
Tarentaise, and Vosgienne) exhibited higher levels of 
linkage disequilibrium, consistent with their lower effec-
tive population size.

Within-breed and meta-analyses of association
For all cows with both genotypes and phenotypes, 
sequence-level genotypes were imputed from the 50k 
EuroGMD genotypes via an intermediate HD density 
step; details on the imputation procedure can be found in 
the Materials and Methods. A multibreed sample of 2712 
sequenced bulls, which included between 4 (Vosgienne) 
and 1019 (Holstein) bulls of each of the six breeds, was 
used as a reference for sequence-level imputation. After 
we removed variants with a MAF lower than 0.005 and 
an imputation accuracy lower than 0.2 (as assessed by 
the R squared (R²) value generated by Minimac software 
[24]), the mean imputation accuracy ranged from 0.69 for 
Abondance to 0.82 for Normande (Table 3).

For each trait, we first conducted within-breed asso-
ciation analyses and then combined the within-breed 
results in a meta-analysis using the fixed effects method. 
The number of QTL and their confidence intervals 
were defined from both within-breed and meta-analysis 
results using an iterative procedure that evaluated link-
age disequilibrium (LD) between the variant with the 
most significant effect, referred to as the lead variant, and 
variants located ± 10 Mbp around the lead variant (Fig. 1). 
The most plausible candidate genes were identified by 
considering the location of variants with the most signifi-
cant effects in the QTL peaks.

Within-breed association analyses detected vari-
ants with significant effects (-log10(P) ≥ 7.3) in all breeds 
except Tarentaise and Vosgienne, and for all traits except 
HCR and CCR (Table 4, Table S2, Figs. S1 and S2). The 
number of QTLs identified in each breed varied widely, 
with 3 QTL detected in Abondance compared to 59, 71, 
and 72 QTL in Normande, Holstein, and Montbéliarde, 
respectively. The number of breed x trait combinations 

Table 1 Number of cows with both genotypes and phenotypes per trait and breed
Trait Abbr. Abondance Tarentaise Vosgienne Montbéliarde Normande Holstein
Milk yield MY 6311 3326 2478 61,881 62,629 81,815

Protein yield PY 6311 3326 2477 61,881 62,619 81,815

Fat yield FY 6310 3326 2475 61,881 62,612 81,815

Protein content PC 6310 3326 2475 61,881 62,615 81,815

Fat content FC 6306 3326 2473 61,881 62,600 81,815

Somatic cell score SCS 6703 3615 2555 61,881 65,105 81,815

Clinical mastitis MAST 5411 2989 0 61,881 42,859 81,815

Interval between calving and first artificial insemination ICFI 5845 2926 2284 61,881 57,012 81,815

Heifers’ conception rate HCR 5868 3402 2297 61,881 69,695 81,815

Lactating cows’ conception rate CCR 5067 2707 2216 61,881 52,816 81,815

Stature STAT 4782 2887 2013 61,881 39,872 81,815
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with significant effects also varied greatly depending on 
the trait analyzed: for example, 1 QTL was identified for 
MAST (in Abondance), while 19 were found for SCS 
(4, 4, and 11 in Montbéliarde, Normande and Holstein, 
respectively) and 35 for STAT (8, 13, and 14 in Mont-
béliarde, Normande and Holstein, respectively). Meta-
analyses detected QTL for 8 of the 11 traits: 9 for PC, 15 
for SCS and ICFI, 23 for PY, 24 for FY, 26 for STAT, and 
27 for MY, but none for MAST, HCR, or CCR (Table 4, 
Table S3, Figs. S1 and S2).

Features of all the QTL detected in within-breed analy-
ses (Table S2) and in meta-analyses (Table S3) are sum-
marized in Table 5. On average, the -log10(P) of the lead 
variant of a QTL was higher in Holstein, Montbéliarde, 
and the meta-analyses (13.8–14.2) than in Normande 
(11.2) and Abondance (8.6). Both in terms of the num-
ber of variants included and the length in Mbp, the aver-
age size of the confidence intervals of QTL was higher in 
Abondance (5.7 Mbp and 733 variants) and Montbéliarde 
(5.0 Mbp and 274 variants), lower in Holstein (2.8 Mbp 
and 151 variants) and Normande (2.5 Mbp and 96 vari-
ants), and lowest in the meta-analyses (1.7 Mbp and 65 
variants). For each trait, Fig.  2 depicts the numbers of 
variants located within the confidence intervals of the 
QTL that were shared between the different within-breed 
analyses and the meta-analyses.

Functional annotation of the lead variants for all QTL 
revealed that, both in within-breed and meta-analyses, 
the majority were intergenic (121 and 108, respectively) 
or intronic (61 and 34, respectively). Less frequently, 
lead variants were located in upstream regions (15 and 
6, respectively), downstream regions (5 and 6, respec-
tively), exons (missense: 2 and 1, respectively; synony-
mous: 2 in within-breed analyses), and 3’UTR regions 
(1 in within-breed analyses). The missense lead variants 
affecting ENSBTAG00000006384 (FC in Montbéliarde), 
NRK (STAT in Normande), and PLXNB3 (STAT in meta-
analyses) genes were predicted to have SIFT moderate 
effects.

Milk production and composition
Across all of the within-breed association analyses, 
the QTL with the most significant effect was identi-
fied for PC in Montbéliarde, with the lead variant 
located at 15,665,045  bp (-log10(P) = 97.5). In the three 
other breeds for which QTL were detected, as well as 
in the meta-analyses, the QTL with the most signifi-
cant effect was also found for PC, with the lead variant 
located at 17,846,562 bp in Abondance (-log10(P) = 10.4), 
17,977,632 bp in Holstein (-log10(P) = 51.2), 16,169,349 bp 
in Normande (-log10(P) = 17.1), and 16,429,402  bp in 
meta-analyses (-log10(P) = 111.9) (Fig. 3). The confidence 
intervals of these QTLs were small in the meta-analysis 
(50 kbp with 19 variants), Holstein, and Normande (~ 200 Ta
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kbp with 18 and 93 variants, respectively), but larger in 
Montbéliarde (1.9 Mbp with 73 variants) and Abon-
dance (6.2 Mbp with 440 variants). Within the confidence 
intervals, the respective number of positional candidate 
genes was 2, 6, 4, 7, and 26. In all analyses but Holstein, 
the lead variant was located in an intergenic region; in 
Holstein, instead, it was located in the upstream region 
of the MIR363 gene. In the vicinity of the lead intergenic 
variants, we identified the genes GPC3, Metazoa_SRP, 
OR13H1, ENSBTAG00000051508, RAP2C, MBNL3, and 
HS6ST2 (Table S2). Across the different analyses, numer-
ous other QTL were detected for PC (Fig.  2) and other 
milk production (MY, PY, and FY) and composition 
(FC) traits (Tables S2 and S3; Figs. S1 and S2). Similar to 

the QTL with the most significant effect on PC, several 
QTL detected for a given milk trait in different breeds 
were identified in neighboring regions, but only a few 
had their lead variants located in the same gene or close 
to the same gene in different breeds (Tables S2 and S3; 
Fig.  3). We note three in particular: (1) a QTL for FC 
detected in Normande and Montbéliarde with the lead 
variants located in an intronic region of HS6ST2 (at 
16,679,506 bp) and 250-kb upstream (at 16,420,927 bp), 
respectively; (2) a QTL for FY in both Normande and 
Holstein with lead variants located in introns of DMD, 
at 110,665,296 and 111,032,759  bp, respectively; and 
(3) a QTL for PY found in Holstein and Normande 
with the lead variants located in the same intergenic 

Table 3 Features of populations and sequence variants analyzed
Breed # 50k genotypes # HD genotypes # WGS animals2 # variants after filtering1 Mean1 imputation R² Mean1 MAF
Abondance 7449 199 9 154,966 0.69 0.18

Tarentaise 3969 179 12 181,473 0.79 0.19

Vosgienne 2910 181 4 170,560 0.77 0.20

Montbéliarde 61,881 522 63 186,368 0.81 0.18

Normande 78,472 526 45 190,280 0.82 0.17

Holstein 81,815 804 1059 201,554 0.81 0.17
1 Variants with a MAF ≥ 0.005 and with a Minimac imputation R² ≥ 0.20; 2 2712 multi-breed sequences used for imputation (Table S1)

Table 4 Number of QTL detected for the different traits in within-breed and meta-analyses of association
MY PY FY PC FC SCS MAST ICFI STAT Total

Abondance 0 0 1 1 0 0 1 0 0 3

Montbéliarde 14 11 6 13 11 4 0 7 8 74

Normande 12 8 4 9 6 4 0 3 13 59

Holstein 6 7 10 10 12 11 0 1 14 71

Meta-analyses 27 23 24 9 18 15 0 15 26 157

Fig. 1 Iterative procedure for defining QTL and their confidence intervals
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region between DDX53 and ENSBTAG00000049480, 
at 120,448,964 and 120,590,087  bp, respectively. Inter-
estingly, HS6ST2, DMD, and DDX53 were also the 
most plausible positional candidate genes for QTL 

detected in the meta-analyses for FC, FY, and PY, 
respectively, but with different lead variants, located at 
16,409,330 bp (intergenic), 110,665,443 bp (intronic), and 
119,923,321 bp (intergenic), respectively.

Udder health
While only one QTL was found for MAST (in Abon-
dance), we detected 4, 4, and 11 QTL for SCS in Montbé-
liarde, Normande, and Holstein, respectively. These QTL 
were located in different regions in the different breeds, 
with ACSL4, TMEM164, LHFPL1, AMOT, and ENOX2 
as the most plausible positional candidate genes. Simi-
larly, meta-analyses did not detect any QTL for MAST 
but did reveal 15 distinct QTL regions for SCS, with 
the one with the most significant effect located at 63.1 
Mbp (intergenic lead variant between bta-mir-1911 and 
HTR2C). In the vicinity of this region we also found the 
QTL with the most significant effects in Montbéliarde, 
with the lead variant located at 61,232,885  bp, 20 kbp 
downstream AMOT; however, the meta-analysis peak 

Table 5 Features of QTL detected for all traits in each within-
breed and meta-analysis of association

Confidence Interval
-log10(P) max # variants # size in kbp

# 
QTL

Mean 
[min-max]

Mean 
[min-max]

Mean 
[min-max]

Abondance 3 8.6 [7.3–10.4] 733 
[5–1754]

5775 
[47–11,053]

Montbéliarde 74 13.8 [7.3–97.5] 274 
[1–1411]

5064 
[0–13,518]

Normande 59 11.2 [7.3–31.4] 96 [1–957] 2504 
[0–13,190]

Holstein 71 14.2 [7.3–51.2] 151 [2–963] 2795 
[7.7–13,425]

Meta-analyses 157 13.8 [7.3–111.9] 65 [1–570] 1743 
[0–14,228]

Fig. 2 UpSet diagrams for variants within the confidence intervals of QTL detected in within-breed and meta-analyses of association. (a) milk 
yield (MY), (b) fat yield (FY), (c) protein yield (PY), (d) fat content (FC), (e) protein content (PC), (f ) somatic cell score (SCS), (g) interval between calving and 
first insemination (ICFI), and (h) stature (STAT).
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Fig. 3 Results of within-breed and meta-analyses of the X chromosome for protein content (PC): Manhattan plot for the entire chromosome 
and LocusZoom graph for the QTL with the most significant effects. Within-breed association analyses in Abondance, Montbéliarde, Normande, and 
Holstein cows (Manhattan plot in blue); fixed effects meta-analyses (Manhattan plot in gray, variants with effects in the same direction in all within-breed 
analyses are highlighted in green); and corresponding LocusZoom graphs for the 20-Mb interval centered around the variant with the most significant 
effect
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appeared much narrower, with a confidence interval of 
671 kbp compared to 11.8 Mbp in Montbéliarde (Fig. 4). 
Other positional candidate genes that were identified in 
the meta-analyses for SCS included ATG4A, TMEM47, 
ENSBTAG00000012533, TMEM187, IRAK1, PPP1R2C, 
and PPP4R3C.

Fertility
ICFI was the only fertility trait for which we detected 
QTL: 7 in Montbéliarde, 3 in Normande, 1 in Holstein, 
and 15 in the meta-analyses. As we observed in the SCS 
analyses, although the confidence intervals of some QTL 
overlapped between Montbéliarde and Normande, the 

Fig. 4 Results of within-breed and meta-analyses of the X chromosome for somatic cell score (SCS): Manhattan plot for the entire chromo-
some and LocusZoom graph for the QTL with the most significant effects. Within-breed association analyses in Montbéliarde, Normande, and 
Holstein cows (Manhattan plot in blue); fixed effects meta-analyses (Manhattan plot in gray, variants with effects in the same direction in all within-breed 
analyses are highlighted in green); and corresponding LocusZoom graphs for the 20-Mb interval centered around the variant with the most significant 
effect
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lead variants were distinct. In addition, the QTL with the 
most significant effects were located in different regions 
in Montbéliarde, Normande, and Holstein (Fig. 5). In the 
within-breed analyses, the most significant QTL were 
highlighted in Montbéliarde: these included one intronic 
variant in MAMLD1 and two intergenic variants between 
ENSBTAG00000054511 and PRR32 and between 

ENSBTAG00000050383 and ENSBTAG00000042114, 
respectively. The meta-analysis revealed new QTL 
regions that were not found in within-breed analyses, 
with the most significant lead variant located between 
ENOX2 and ARHGAP36.

Fig. 5 Results of within-breed and meta-analyses of the X chromosome for interval between calving and first insemination (ICFI): Manhattan 
plot for the entire chromosome and LocusZoom graph for the QTL with the most significant effects. Within-breed association analyses in Mont-
béliarde, Normande, and Holstein cows (Manhattan plot in blue); fixed effects meta-analyses (Manhattan plot in gray, variants with effects in the same 
direction in all within-breed analyses are highlighted in green); and corresponding LocusZoom graphs for the 20-Mb interval centered around the variant 
with the most significant effect
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Stature
STAT was the trait for which the highest number of 
QTL was detected: 8 in Montbéliarde, 13 in Normande, 
14 in Holstein, and 26 in the meta-anayses (Fig.  6). 
In Normande, Montbéliarde, and Holstein, the QTL 
with the most significant effects had their lead variant 
located in the downstream region of IDS, in an intron 

of COL4A6, and in the intergenic region between ENS-
BTAG00000000567 and ENSBTAG00000052795, respec-
tively. The COL4A6 gene was also the most plausible 
positional candidate gene for another QTL detected in 
Normande, with a synonymous lead variant. Another 
gene, TRPC5, was highlighted in two breeds, but with 
two different intronic lead variants, at 60,006,622  bp in 

Fig. 6 Results of within-breed and meta-analyses of the X chromosome for stature (STAT): Manhattan plot for the entire chromosome and Lo-
cusZoom graph for the QTL with the most significant effects in meta-analyses. Within-breed association analyses in Montbéliarde, Normande, and 
Holstein cows (Manhattan plot in blue); fixed effects meta-analyses (Manhattan plot in gray, variants with effects in the same direction in all within-breed 
analyses are highlighted in green); and corresponding LocusZoom graphs for the 20-Mb interval centered around the variant with the most significant 
effect in both the within-breed Montbéliarde analysis and meta-analysis
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Normande and at 60,092,981  bp in Holstein. The most 
significant QTL detected in the meta-analysis had an 
intergenic lead variant located at 53,156,112 bp, between 
ESX1 and ENSBTAG00000053380, and a large confidence 
interval (52.2–63.1 Mbp) that contained different QTLs 
than those found in the within-breed analyses, in particu-
lar those located near COL4A6 and TRPC5. Certain can-
didate genes highlighted for STAT were also identified 
for other traits: two for PC (MBLN3 and GPC3) and one 
for SCS (PPP4R3C). Finally, as mentioned above, the mis-
sense variants in NRK (g.54,703,522  C > T, p.714R > W) 
and PLXNB3 (g.36994420G > A, p.1600 > H) genes were 
also noteworthy because for each of the QTL for which 
they were positional candidates, they are the variants 
with the most significant effect on STAT.

Discussion
In mammals, the non-PAR region of the X chromo-
some differs from autosomes because it is hemizygous 
in males (XY). In females (XX), mechanisms of dosage 
compensation inactivate one copy of the X chromosome 
and thereby ensure the equal expression of these genes in 
both sexes. The complex mechanisms of X chromosome 
inactivation have been less extensively studied in cows 
than in other mammalian species but, in the absence 
of mutations affecting the Xist locus [25], both copies 
appear to be equally expressed in the mammary gland, 
which suggests random inactivation of either copy [17]. 
Because of these unique features, the X chromosome is 
usually excluded from genetic analyses. In cattle, previ-
ous efforts to test for genetic associations with the X 
chromosome examined reproductive traits in beef cattle 
at the 50k [26] and the HD [27–31] level. In the pres-
ent study, instead, we focused on how the X chromo-
some affects the genetic determinism of 11 complex 
traits related to milk production and composition, udder 
health, fertility, and stature in six dairy cattle breeds. For 
each trait, we first estimated the proportion of genetic 
variance explained by this chromosome and then iden-
tified potential X-linked candidate genes and variants at 
the sequence level through within-breed and meta-anal-
yses of association.

For the different traits and the different breeds, over-
all heritabilities—as estimated with genomic relation-
ship matrices derived from EuroGMD autosomal and 
X-linked SNPs—were similar or higher to previous esti-
mations obtained from pedigrees [32]. For each trait, the 
phenotypes used were yield deviations, i.e., mean perfor-
mances adjusted for environmental effects. One poten-
tial issue with this approach is that, when records are 
repeated, the phenotype has a reduced residual variance 
and therefore a higher heritability. However, this phe-
nomenon applies to all chromosomes equally and does 

not affect the proportion of genetic variance explained by 
the X chromosome.

Depending on the breed and trait in question, the gain 
in heritability due to inclusion of the X chromosome 
ranged from 0 to 0.04 points (+ 0.008 on average), indi-
cating that the X chromosome can play an important 
role in the genetic determinism of traits of interest in 
dairy cattle. Generally speaking, values of h²X were larger 
in the regional breeds with the lowest numbers of cows 
(Tarentaise and Vosgienne), and this was particularly true 
for the traits with the lowest heritabilities (MAST, CCR, 
HCR and ICFI). However, these results should be inter-
preted with caution due to the relatively large degrees 
of error associated with these estimates (e.g., h²X = 
0.011 ± 0.012 for ICFI in Vosgienne). Directly comparable 
results previously published are scarce for dairy cattle. 
In Holstein, VanRaden et al. [33] found the X chromo-
some accounted for about 1% of genetic variance of most 
of the 27 traits recorded in US and Canadian bulls while 
Su et al. [19] reported that using X chromosome SNPs 
resulted in a gain in the reliability of estimated breeding 
values averaged over 15 milk, fertility, udder health, and 
type traits (+ 0.3 to + 0.5% depending on the model used). 
Similarly, the heritability of female and male reproductive 
traits in beef cattle was estimated to increase by + 0.02 to 
+ 0.09 as a result of the inclusion of X chromosome SNPs 
[34].

GWAS resolution is influenced by linkage disequi-
librium. Overall, we show here higher levels of linkage 
disequilibrium on the X chromosome compared to an 
autosome of equivalent length (chromosome 2). More-
over, smaller breeds with reduced effective population 
size exhibited higher linkage disequilibrium. This dis-
tinction from autosomes is expected due to the greater 
genetic drift experienced by the X chromosome, as sup-
porting by literature (e.g., [36]). Notably, the absence of 
segregation and recombination in male X chromosomes 
further impacts the mapping resolution of GWAS.

In our analyses, we considered paternal and maternal 
X chromosomes to be equally expressed at the popula-
tion level and did not consider any potential effects of 
paternal versus maternal origin. In our association anal-
yses, we applied the mixed model used for autosomes, 
which includes both the additive fixed effect of the vari-
ant tested and a vector of random polygenic effects to 
adjust the data for population structure. To capture the 
structure of the population and avoid detecting spuri-
ous associations, polygenic effects were estimated using 
a genomic relationship matrix calculated with the 50k 
SNPs of the autosomes only. We accounted for relat-
edness using a leave-one-chromosome-out (LOCO) 
approach, i.e., excluding the chromosome tested from the 
GRM. Although this approach may inflate test statistics 
[35], we chose to use it in order to avoid over-correction 
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of the data and a consequent decrease in detection 
power, which was especially critical here because of the 
increased long-range LD on the X chromosome com-
pared to autosomes [36]. The best option would have 
been to employ a leave-one-segment-out, or LOSO [37], 
approach that excluded the flanking region of the variant 
tested, but this was not computationally feasible due to 
the large number of animals and traits analyzed.

Regardless of the region of the genome studied, defin-
ing QTL regions (number and confidence intervals) from 
GWAS results is challenging and relies on a variety of 
more-or-less arbitrary approaches (e.g., LOD drop-off 
method [38]). In this study, we implemented a proce-
dure that evaluated LD between the lead variant and 
variants in the surrounding region to (1) select variants 
to keep within the confidence interval and (2) search for 
other QTL on the chromosome after excluding the vari-
ants whose effects could be explained by that of the lead 
variant. This procedure, which can be compared to the 
COJO approach in GCTA software [39], has the advan-
tage of being easily automated. Compared to autosomes, 
LD has a particularly strong influence in the non-PAR 
region of the X chromosome because no recombination 
occurs in males [36, 40]. Indeed, it is worth noting that 
the high number of QTL defined for some trait x breed 
combinations (up to 26 for STAT in meta-analyses), may 
be inflated due to the extreme LD in this region, which 
may have extended farther than the length of the window 
(20 Mbp) we used to define QTL. Increasing the size of 
the interval would have reduced the number of QTL but, 
because of the sequence-level resolution of our analyses, 
would also have caused computational issues. The num-
ber of QTL detected in this study is therefore probably 
an overestimate, but the procedure we developed would 
likely produce more accurate results in autosomes where 
the LD is less extensive.

We successfully identified QTL for most breeds and 
traits, with the exception of the two breeds with the low-
est number of cows (Tarentaise and Vosgienne) and two 
fertility traits (HCR and CCR). As expected, due to the 
very different numbers of cows analyzed in each breed, 
the number of QTL was higher in the largest breeds, and 
these QTL presented more-significant effects. A higher 
number of QTL with more-significant effects was also 
found for the most heritable traits (milk production, milk 
composition, and stature).

Between breeds, we identified QTL with overlapping 
confidence intervals but the variants with the most sig-
nificant effects were never the same, and were only rarely 
located in the same genes. This result has also been 
observed in autosomes (e.g., [41]), but appears to be 
more pronounced in the non-PAR region of the X chro-
mosome, probably because of the heightened influence 
of within-breed LD. By combining different populations 

with different LD patterns, meta-analyses generally 
increase both the power and resolution of association 
analyses (e.g., [42]). Indeed, here this approach detected 
more breed x trait combinations with significant effects 
(n = 157), and, on average, more precise locations (65 
variants in 1.7 Mbp), than any of the within-breed asso-
ciation analyses, for which the highest number of QTL 
detected was 74 (in Montbéliarde) and even the small-
est confidence interval still contained 96 variants (in 2.5 
Mbp in Normande).

As previously mentioned, the X chromosome has 
often been excluded from association analyses due to its 
unique pattern of inheritance, but it also suffers from a 
lower quality assembly and poorer functional annota-
tion compared to autosomes, in particular in the previ-
ous UMD3.1 assembly [14, 17]. GWAS that examine 
the X chromosome are therefore rare, in particular at 
the sequence level. In the present study, by combining 
within-breed and meta-analyses of association at the 
sequence level on a large number of animals from six 
breeds and for a wide panel of traits, we are able to pro-
pose a list of candidate genes that could be responsible 
for the largest effects observed on the X chromosome.

Based on literature and human databases, the function 
of the positional candidate genes – or their association 
with traits similar to those investigated in this study – was 
examined in order to highlight the best functional candi-
dates. Although we were not able to identify a clear func-
tional link to milk production and composition traits, 
four of the best positional candidate genes associated 
with the most significant QTL for these traits warrant 
special attention: GPC3 (glypican 3), MBNL3 (muscle-
blind like splicing regulator3), HS6ST2 (heparan sulfate 
6-o sulfotransferase 2), and DMD (dystrophin). GPC3, 
which was one of the best candidates for PC in our study, 
has been previously associated to longevity [43] and met-
abolic disorders [44] in Holstein cows; both traits could 
be related to milk composition. A more recent study, 
conducted at the whole-genome sequence level, identi-
fied a QTL for milk urea nitrogen (which is genetically 
correlated with milk PC [45]), in which the lead SNP was 
located between MBNL3 and HS6ST2 at 16,376,624  bp 
[46], i.e., close to the lead variants we found for several 
QTL for PC in Normande (at 16,169,349  bp), and FC 
in Montbéliarde (at 16,420,927  bp) and Normande (at 
16,679,506  bp). Furthermore, HS6ST2 knockout mice 
showed glucose and insulin metabolism disorders [47]. 
Mutations in the DMD gene, leading to the absence 
or dysfunction of the dystrophin protein causing mus-
cular dystrophies in humans, were associated with 
muscle fat replacement [48]. In a Chinese Holstein 
population, genome-wide association analyses of milk, 
protein, and fat yields, conducted with SNPs of the Illu-
mina BovineSNP150 BeadChip, identified rs135780687, 
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located at 127,465,011 bp on the X chromosome, as the 
lead SNP for a QTL detected for FY [49]. The authors 
identified GRPR, encoding a gastrin-releasing peptide 
receptor, as a functional candidate gene in this region. 
In the present, sequence-level, study, we detected QTL 
in this region for multiple traits but the most plausible 
positional candidate genes were generally different from 
GRPR, with the exception of two QTL identified in meta-
analyses for MY and PY, for which the lead variants 
were located in the intergenic region between the GRPR 
and AP1S2 genes (at 127,509,209 and 127,507,371  bp, 
respectively).

Notably, among the positional candidate genes iden-
tified for udder health, three encode transmembrane 
proteins (TMEM164, TMEM47, and TMEM187) and 
two encode protein phosphatase regulators (PPP1R2C 
and PPP4R3C). The lead variant of the QTL with the 
most significant effect on SCS in Holstein was located 
close to TMEM164, which was found to be differentially 
expressed in mammary infections due to E. coli and S. 
aureus in cattle [50] and associated with improved sur-
vival and increased immune cell infiltration in patients 
with pancreatic cancer [51]. ACSL4 (acyl-CoA synthetase 
long chain family member4), which is involved in fatty 
acid metabolism, is another positional candidate gene 
for the most significant QTL identified in Holstein. This 
gene was reported to be upregulated in late lactation, 
resulting in an increased concentration of triglycerides 
in bovine mammary epithelial cells [52]; interestingly, 
Genini et al. [50] demonstrated that lipid metabolism was 
significantly affected during the cattle-specific response 
to mastitis infection, suggesting that it could be tightly 
linked to immune response. Furthermore, ACSL4 was 
found to be involved in inflammatory responses in mice 
[53]. Two other genes, candidates for the most sig-
nificant QTL identified in Normande (ENOX2, ecto-
NOX disulfide-thiol exchanger 2) and in meta-analyses 
(HTR2C, 5-hydroxytryptamine receptor 2  C), have been 
associated with ruminant health: the former was associ-
ated with innate immunity in sheep [54] while the latter 
was identified as a candidate gene for hyperketonemia 
in Holstein cows [55]. Finally, two other genes are note-
worthy: AMOT (angiomotin), associated with the most 
significant effects on SCS in Montbéliarde, promotes the 
proliferation of mammary epithelial cells in women [56] 
and IRAK1 (interleukin 1 receptor associated kinase 1), 
one of the best candidates in both Holstein and meta-
analyses, was described as a critical signaling mediator of 
innate immunity [57].

Among the genes identified for ICFI, which was the 
only fertility trait with significant results in our study, 
MAMLD1 and COL4A6 appear to be the best func-
tional candidates. MAMLD1 (mastermind-like domain 
containing 1) has been associated with disorders of sex 

development in men, as well with ovarian dysfunction in 
women [58, 59]. This gene has also been highlighted as 
a candidate for bull fertility [27] and for the number of 
piglets born alive [60]. COL4A6 (collagen type IV alpha 
6 chain) was found to be particularly expressed in the 
bovine uterus [61] and differentially expressed in the 
endometrium of high- and low-fertility heifers during the 
mid-luteal phase of the estrus cycle [62].

Because of its relatively high heritability and ease of 
measurement, stature (height in humans) has been exam-
ined in very large-scale GWAS and meta-analyses in 
different species, including cattle [10] and humans [3]. 
However, neither one of these studies considered the X 
chromosome, which could explain a part of the missing 
heritability observed in each case. Indeed, in the pres-
ent study, stature was the trait for which the highest 
number of QTL was detected (8 in Montbéliarde, 13 in 
Normande, 14 in Holstein, and 26 in meta-analyses) and 
we identified a number of functional candidate genes 
that might explain the effects we observed. For the QTL 
located around 53 Mbp, the confidence intervals are 
probably inflated due by the long order inversion between 
51.9 and 54.5 Mbp on the ARS-UCD1.2 bovine assem-
bly previously identified by Zhang et al. [40]. In particu-
lar, although they were predicted to have only moderate 
effects, two of the lead variants were associated with 
missense changes in the proteins encoded by NRK (nik-
related protein kinase), at 54,703,522  bp, and PLXNB3 
(plexin B3), at 36,994,420 bp. Interestingly, NRK has been 
previously linked with an X-linked form of short stature 
in humans [63], which supports its role in the genetic 
determinism of this trait. In contrast, no functional link 
with stature has yet been identified for PLXNB3. Further-
more, a larger number of positional candidate genes for 
stature were shared between breeds than any of the other 
traits we examined. Among these genes, the best posi-
tional candidates were TRPC5 (transient receptor poten-
tial cation channel subfamily C member 5), which was 
shared between Holstein and Normande, and COL4A6 
(collagen type IV alpha 6 chain), which was detected 
in both Montbéliarde and Normande. The latter gene 
was also associated with fertility in our study, but pre-
sented no obvious functional link with stature. Among 
the within-breed analyses and the meta-analysis, several 
other genes were highlighted for the QTL with the most 
significant effects, namely, GPR50 (G protein-coupled 
receptor 50), VMA21 (vacuolar ATPase assembly factor 
VMA21), IDS (iduronate 2-sulfatase), GPC4 (glypican 
4), ESX1 (ESX homeobox 1), GPC3 (glypican 3), bta-
mir-507b, PCDH19 (protocadherin 19), and SLITRK4 
(SLIT and NTRK like family member 4). Four of these 
are involved in growth disorders in humans: ESX1 and 
GPR50 were found to be involved in growth and pituitary 
hormone deficiencies [64, 65], while GPC3 and GPC4 
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were identified as genes causing Simpson-Golabi-Behmel 
syndrome, a rare X-linked syndrome characterized by 
pre‐and post‐natal overgrowth [66].

Conclusions
With its large sample size and fine-scale (sequence-
level) resolution, this study provides clear evidence for 
the importance of the X chromosome in the genetic 
determinism of complex traits in dairy cattle. These 
new insights support the inclusion of this chromosome 
in all genetic evaluation models in which it is not cur-
rently considered. Based on our results, we would expect 
that inclusion of the X chromosome would increase 
the accuracy of estimated breeding values and expedite 
genetic progress on milk production, milk composition, 
udder health, and fertility traits, which are all included 
in the breeding goals of the different dairy cattle breeds. 
Although the necessary changes to the evaluation soft-
ware and procedure would not be trivial, the relative gain 
of 3–5% in the accuracy of genomic estimated breeding 
values would justify the effort. In addition, because the 
majority of X-linked genes are shared between mammals, 
further work on the identification of X-linked genes that 
are involved in the genetic determinism of traits could be 
beneficial for our understanding of other species.

Methods
Ethics statement
All analyses were performed using data from routine milk 
recording and genotyping in commercial herds of French 
cows. We did not perform any experiments on animals 
and no ethical approval was required.

Cows, phenotypes, and genotypes
We analyzed 236,496 cows from three national breeds—
Holstein (81,815 animals), Montbéliarde (61,881 ani-
mals), and Normande (78,472 animals)—and three 
regional breeds—Abondance (7449 animals), Tarentaise 
(3969 animals), and Vosgienne (2910 animals)—for which 
phenotypes and 50k genotypes were available (Table 1).

Phenotypes were obtained for 11 traits:
  • Five milk production traits defined at the level of the 

individual lactation based on monthly records: milk 
yield (MY), protein yield (PY), fat yield (FY), protein 
content (PC), and fat content (FC);

  • Two udder health traits: average somatic cell score 
(SCS) at lactation level, computed as the mean of 
monthly records of log-transformed somatic cell 
counts, and clinical mastitis (MAST; except for 
Vosgienne) defined as 0/1 (0 = no clinical mastitis 
and 1 = at least one episode of clinical mastitis in the 
interval from 10 days before calving to 150 days after 
calving);

  • Three female reproductive traits: the interval 
between calving and the first artificial insemination 
(ICFI) which reflects the ability of a cow to initiate 
the postpartum cycle, and heifers’ (HCR) and 
lactating cows’ (CCR) conception rates, which 
represent the success/failure (1/0) of each artificial 
insemination;

  • Stature (STAT);
  • To remove the influence of environmental effects, 

all phenotypes used were yield deviations (YD), i.e., 
phenotypes adjusted for non-genetic effects and, 
for repeated records, averaged per cow. YDs are 
produced by the French national genetic evaluation 
systems for the Holstein, Montbéliarde, Normande, 
Abondance, Tarentaise, and Vosgienne populations 
using the models described at https://interbull.org/
ib/geforms [67].

Cows in the six breeds were genotyped with different 
versions of the 50 K SNP Beadchip, with the most recent 
being the EuroGMD Beadchip, which is currently used 
for genomic selection (https://www.eurogenomics.com/
actualites/the-eurog-md:-a-unique-genotyping-microar-
ray-for-cattle-.html). The standard EuroGMD Beadchip 
contains 53,469 autosomal SNPs and 1147 SNPs located 
in the non-pseudoautosomal region (non-PAR) of the X 
chromosome; all SNPs passed all quality control filters 
(individual call rate > 95%; SNP call rate > 90%; minor 
allele frequency (MAF) > 1%; genotype frequencies in 
HW equilibrium with P > 10− 4).

Imputation analyses
Missing genotypes of EuroGMD SNPs are routinely 
imputed in the French evaluation system using FImpute 
software [68]. For imputations at higher densities (HD 
and sequence levels), we considered only the X-specific 
non-PAR region, which covers the majority of the X 
chromosome (0–133.3 Mbp on the ARS-UCD1.2 refer-
ence genome [14]). To account for male hemizygosity for 
this chromosome, we assumed that all males were homo-
zygous for all non-PAR SNPs, and removed the pedigree 
information. All imputation analyses were done within-
breed. First, HD genotypes of 32,268 SNPs were imputed 
with FImpute [68] from genotypes of the 1147 non-PAR 
SNPs of the EuroGMD chip, using the 179 to 804 major 
ancestors of each breed with HD genotypes as a reference 
(Table 3). Then, 778,576 sequence variants were imputed 
using a multi-breed population of 2712 animals from the 
RUN8 reference panel of the 1000 Bull Genomes consor-
tium [10] and the Minimac algorithm [24]. The reference 
population for the sequence-level imputation comprised 
2712 Bos taurus animals from 28 different breeds, includ-
ing 1059 Holstein, 63 Montbéliarde, 45 Normande, 9 
Abondance, 12 Tarentaise, and 4 Vosgienne (S1 Table).

https://interbull.org/ib/geforms
https://interbull.org/ib/geforms
https://www.eurogenomics.com/actualites/the-eurog-md:-a-unique-genotyping-microarray-for-cattle-.html
https://www.eurogenomics.com/actualites/the-eurog-md:-a-unique-genotyping-microarray-for-cattle-.html
https://www.eurogenomics.com/actualites/the-eurog-md:-a-unique-genotyping-microarray-for-cattle-.html


Page 15 of 18Sanchez et al. BMC Genomics          (2023) 24:338 

Linkage disequilibrium
Linkage disequilibrium (r2) were assessed for the X 
chromosome and for an autosome of equivalent length 
(chromosome 2) in each breed using a sample of cows. 
To minimize relatedness and avoid accumulation of the 
same paternal X chromosome, one daughter per sire was 
randomly selected. A total of 126 to 2279 individuals 
were included in the study, depending on the breed. High 
density SNP genotypes, either true or imputed, were 
used for a total of 15,892 and 35,723 SNPs on chromo-
somes X and 2, respectively. Variants with a minor allele 
frequency (MAF) less than 0.01 were excluded from the 
analysis. The calculated values were then averaged within 
bins based on marker distance.

Genomic relationship matrices
Three different genomic relationship matrices were con-
structed at the 50k density: the first contained 53,469 
autosomal SNPs (GA), the second contained 1147 SNPs 
of the non-PAR X chromosome (GX), and the third con-
tained both autosomal and X-chromosome SNPs, i.e., 
54,616 SNPs (GG). As all animals included in this study 
were females, no assumptions were made regarding dos-
age compensation for the X chromosome (both X chro-
mosomes active in females). All matrices were therefore 
constructed using the --make-grm option of GCTA soft-
ware [69] which was developed for autosomal SNPs.

REML analyses
To estimate the relative proportions of genetic variance 
explained by the autosomes and the X chromosome, and 
the corresponding heritabilities, within-breed REML 
analyses were carried out for each trait using GCTA soft-
ware [69] and the following model:

 y = 1µ + gA + gX + e, (1)

where y is the vector of YD; µ is the overall mean; gA~ 
N(0,GAσ²A) is the vector of random autosomal genetic 
effects, with GA the autosomal GRM and σ²A the auto-
somal genetic variance; gX~ N(0,GXσ²X) is the vector of 
random X-linked genetic effects, with GX the X-chromo-
some GRM and σ²X the X-linked genetic variance; and 
e ~ N(0,Iσ²e) is the vector of random residual effects, with 
I the identity matrix and σ²e the residual variance.

Then, we calculated the overall heritability of the traits 
(h²=(σ²A+σ²X)/(σ²A+σ²X+σ²e)) and the heritability due to 
autosomes (h²AUT=σ²A/(σ²A+σ²X+σ²e)) and the X chromo-
some (h²X=σ²X/(σ²A+σ²X+σ²e)).

Within-breed association analyses
Allele dosages of X-linked variants imputed at the 
sequence level were evaluated in within-breed associa-
tion analyses using GCTA software [69]. To adjust data 

for population structure, we estimated polygenic effects 
using the GA GRM calculated with autosomal 50k SNPs. 
All phenotypes were measured on females, which had 
two copies of the X chromosome. Therefore, we applied 
the following linear mixed model:

 y = 1µ + xb + gA + e,  (2)

where y is the vector of YD; µ is the overall mean; b is the 
additive fixed effect of the variant tested; x is the vector 
of imputed allele dosages; gA~ N(0, GA σ²A) is the vector 
of random polygenic effects, with GA the GRM based on 
autosomal SNPs and σ²A the autosomal polygenic vari-
ance; and e ~ N(0,Iσ²e) is the vector of random residual 
effects, with I the identity matrix and σ²e the residual 
variance.

We analyzed variants with a MAF ≥ 0.005 and with 
a Minimac imputation R² ≥ 0.20, which resulted in 
between 154,966 and 201,554 variants depending on the 
breed (Table 3).

Association meta-analyses
We then conducted meta-analyses for each trait by com-
bining the within-breed association results of the six 
breeds (five for MAST, which was not measured in Vos-
gienne). All variants retained after filtering (MAF ≥ 0.005 
and Minimac R² ≥ 0.20), i.e., 212,111 for MAST and 
224,073 for all other traits, were included in meta-anal-
yses. The fixed effects meta-analysis method was applied 
as implemented in METAL software [70]. This method 
assumes that the true effect of each allele is the same 
across different studies and combines the different effects 
by weighting them by the inverse of their error variance. 
Therefore, this meta-analysis method weights the differ-
ent studies by their sample size.

Identification of QTL regions
We implemented an iterative procedure to identify QTL 
regions in the within-breed association analyses and 
meta-analyses based on a threshold corresponding to 
P = 0.05 after Bonferroni correction for ~ 1 million inde-
pendent tests (-log10(P) = 7.3) [71].

For each trait, we applied the following six-step itera-
tive procedure:

1. Search for the variant with the maximal -log10(P) 
(≥ 7.3), hereafter named the lead variant;

2. Select all variants within a 20-Mb window centered 
around the lead variant;

3. Calculate LD between the lead variant and all other 
variants in the 20-Mb interval, i.e., correlations 
between allele dosages (r);

4. Define the confidence interval of the QTL by 
retaining all variants in high LD with the lead variant 
(|r| ≥ 0.7);
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5. For each variant i outside of the confidence interval 
and located in the 20-Mb window, determine if its 
effect could be explained by the effect of the lead 
variant; for this, we calculated a new test statistic, 
TNEW = (bi – bLEAD x r (i,LEAD)) / SEi, and the 
corresponding log10(PNEW) value, and selected 
variants that satisfied the following two conditions: 
(1) log10(PNEW) < 7.3 and (2) Ti (bi/SEi) and TNEW had 
the same sign;

6. Remove all variants identified in steps 4 (variants 
within the confidence interval) and 5 (variants with 
effects explained by LD with the lead variant).

This procedure, described in Fig.  1, was repeated 
until no more significant variants were found on the 
chromosome.

Functional annotation and visualization.
Variants in the confidence intervals of each QTL 

were annotated with the Ensembl variant effect predic-
tor (VEP) pipeline v81 [72] and effects of amino-acid 
changes were predicted using the SIFT tool [73]. Func-
tions of genes were investigated using GeneCards [64] 
and MalaCards [74]. Visualization of the QTL and of 
their annotation was performed using the R LocusZoom 
function [75]. Manhattan plot and UpSet diagrams were 
created using the R packages qqman [76] and UpSetR 
[77], respectively.
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