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Abstract
Background There is a mutual hemodynamic and pathophysiological basis between the heart and brain. Glutamate 
(GLU) signaling plays an important role in the process of myocardial ischemia (MI) and ischemic stroke (IS). To further 
explore the common protective mechanism after cardiac and cerebral ischemic injuries, the relationship between 
GLU receptor-related genes and MI and IS were analyzed.

Results A total of 25 crosstalk genes were identified, which were mainly enriched in the Toll-like receptor signaling 
pathway, Th17 cell differentiation, and other signaling pathways. Protein-protein interaction analysis suggested that 
the top six genes with the most interactions with shared genes were IL6, TLR4, IL1B, SRC, TLR2, and CCL2. Immune 
infiltration analysis suggested that immune cells such as myeloid-derived suppressor cells and monocytes were 
highly expressed in the MI and IS data. Memory B cells and Th17 cells were expressed at low levels in the MI and IS 
data; molecular interaction network construction suggested that genes such as JUN, FOS, and PPARA were shared 
genes and transcription factors; FCGR2A was a shared gene of MI and IS as well as an immune gene. Least absolute 
shrinkage and selection operator logistic regression analysis identified nine hub genes: IL1B, FOS, JUN, FCGR2A, IL6, 
AKT1, DRD4, GLUD2, and SRC. Receiver operating characteristic analysis revealed that the area under the curve of 
these hub genes was > 65% in MI and IS for all seven genes except IL6 and DRD4. Furthermore, clinical blood samples 
and cellular models showed that the expression of relevant hub genes was consistent with the bioinformatics 
analysis.

Conclusions In this study, we found that the GLU receptor-related genes IL1B, FOS, JUN, FCGR2A, and SRC were 
expressed in MI and IS with the same trend, which can be used to predict the occurrence of cardiac and cerebral 
ischemic diseases and provide reliable biomarkers to further explore the co-protective mechanism after cardiac and 
cerebral ischemic injury.
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Introduction
Cardiac and cerebral damage caused by ischemic-
hypoxic-reperfusion injury from cardiopulmonary 
resuscitation, severe compound injuries, and complex 
cardiovascular diseases are the major causes of acute 
mortality and chronic disability in patients [1]. This type 
of injury is an extremely complex pathophysiological cas-
cade response process that includes a variety of damage 
repair mechanisms, such as neuronal autophagy, apop-
tosis, inflammatory damage, mitochondrial damage, 
and intracellular calcium overload [2–4]. Many studies 
have been conducted in the last decade on the treatment 
of ischemia-reperfusion injury in the heart and brain. 
Many studies have been conducted on the treatment of 
ischemic-reperfusion injury; for example, measures to 
enhance the perfusion, reduce oxygen consumption, and 
prevent ischemic-hypoxic damage to cardiac and cerebral 
cells have been used for the prevention and treatment of 
perioperative ischemic-hypoxic injury. However, there 
has been no fundamental improvement in prognosis after 
cardiac arrest. It is important to find effective preventive 
and therapeutic measures to prevent the damage caused 
by ischemic-hypoxia-reperfusion injury. Although there 
are significant functional and structural differences 
between the heart and brain, studies have found striking 
similarities in the mechanisms of injury between them, 
such as a common pathology: atherosclerosis [5] and 
the finding that most of the molecular events that occur 
after neurological injury are also present after myo-
cardial injury [6], suggesting a common mechanism of 
injury between these two organs. The discovery of such 
mechanisms will provide new ideas for the complete and 
thorough elucidation of the molecular mechanisms of 
cardiac and cerebral injury and more effective protective 
measures. Therefore, it is an urgent and complex research 
topic in the field of organ protection to strengthen the 
joint protection of the heart and brain and to explore tar-
gets and measures for the prevention and treatment of 
ischemia-hypoxia-reperfusion injury in these two organs.

Many studies have confirmed that one of the mecha-
nisms of cerebral ischemia-hypoxia-reperfusion injury 
is glutamate (GLU) excitotoxicity [7, 8], and that GLU 
receptors (GLuR) play an important role as major excit-
atory neurotransmitters in the central nervous system 
during ischemic stroke (IS). After the onset of ischemia 
and hypoxia, extracellular fluid GLU rises significantly, 
activating many GLuR and leading to inward calcium 
flow, resulting in GLU excitotoxicity and death signal 
activation. GLuR are also found in peripheral tissues 
such as the heart, pancreas, and bone [9–12]. We have 
previously reported that N-methyl-D-aspartate recep-
tor can induce apoptosis of cardiomyocytes through 
the p38MAPK signaling pathway after myocardial isch-
emia (MI) and hypoxia. The GLuR blocker MK-801 not 

only showed a significant protective effect on the CA1 
region of the rabbit hippocampus but also a significant 
reduction in cardiomyocyte apoptosis and a significant 
decrease in troponin I in a rabbit cardiac arrest cardio-
pulmonary resuscitation model, demonstrating a sig-
nificant effect of cardio-cerebral protection. Moreover, it 
was found to be a signal transduction mechanism in MI-
reperfusion injury [13–15]. These studies demonstrate 
that GLU signaling plays an important role in both cere-
bral and MI-hypoxia-reperfusion injuries.

The present study aimed to analyze the target genes 
and biological processes related to MI, IS, and GLuR 
using bioinformatics to identify common injury mecha-
nisms and targets for heart and brain ischemia-hypoxia-
reperfusion injury, to intervene and treat cardio-cerebral 
ischemia-hypoxia-reperfusion injury at an early stage, 
and to reduce its lethality and disability.

Results
Project flow chart
In the current study, we analyzed the MI-related datas-
ets GSE66360 and GSE48060, and the IS-related datasets 
GSE16561 and GSE22255. The differentially expressed 
genes (DEGs) were intersected with GLuR genes, and 
the crosstalk genes were subjected to reciprocal network 
construction, immune infiltration analysis, intersection 
gene-transcription factor (TF), pathway intersection 
gene/immune gene reciprocal network construction, and 
least absolute shrinkage and selection operator (LASSO) 
model construction. Finally, the key GLuR-related genes 
in MI and IS were obtained and validated by clinical 
specimens and cellular models (Fig. 1).

DEG analysis
The expression profiles of GSE66360 and GSE48060 from 
the MI-related dataset were combined after debatch-
ing, and PCA was performed on the expression values 
of the pre-corrected samples (Fig.  2A). The differences 
between the corrected samples were reduced (Fig.  2B). 
The expression profiles of GSE16561 and GSE22255 from 
the IS-related dataset were also debated, and PCA was 
performed on the expression values of the pre-corrected 
samples (Fig.  2C), whereas the differences between the 
post-corrected samples were reduced (Fig. 2D; Table 1).

To analyze the effect of gene expression values on MI 
and IS samples relative to normal samples, we obtained 
DEGs for both datasets using the limma package differ-
ential analysis (Table 2) and created volcano plots against 
DEGs. A total of 10,602 DEGs were obtained from the 
MI data, including 5039 upregulated and 5563 downreg-
ulated genes (Fig. 2E). In addition, 2789 DEGs were iden-
tified from the IS data, including 1659 upregulated and 
1130 downregulated genes (Fig. 2F).
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Identification of intersecting genes
To investigate the interaction between MI and IS, we 
examined the intersections of DEGs and GLuR-related 
genes from the MI and IS data to obtain 25 intersecting 
genes and plotted Venn diagrams (Fig. 3A). To investigate 
the types of these intersecting genes and their expression 
in different samples, we used the pheatmap package to 
analyze the expression of genes in the MI-related- and 
IS-related datasets (Fig.  3B and C). In the MI-related 
dataset, the 25 intersecting genes contained nine upregu-
lated and 16 downregulated genes. In the IS dataset, the 
25 intersecting genes contained eight upregulated and 17 
downregulated genes. Among the 25 intersecting genes, 
the expression trends were the same in the MI and IS 

datasets, except for AKT1, DRD4, and GLUD2, which 
showed opposite trends.

Functional enrichment analysis of intersecting genes
To analyze the relationship between the biological pro-
cesses, molecular functions, cellular components, bio-
logical pathways, and diseases of the crossover genes, we 
performed gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) functional enrichment 
analyses of the crossover genes (Fig.  4; Tables  3 and 4). 
The GO functional enrichment analysis revealed that the 
crossover genes were mainly enriched in responses to 
lipopolysaccharide and molecules of bacterial origin, pos-
itive regulation of lymphocyte and leukocyte activation, 

Fig. 1 Flow chart of overall project analysis
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Fig. 2 Data pre-processing and differential expression analysis. (A) PCA results before correction of gene expression profiles in MI data. (B) PCA results 
after correction of gene expression profiles in MI data. (C) PCA results before correction of gene expression profiles in IS data. (D) PCA results after cor-
rection of gene expression profiles in IS data. (E) MI expression profile data case vs. control differential expression volcano plot, horizontal coordinate is 
log2FoldChange, vertical coordinate is -log10 (p.adjust). Red nodes indicate upregulated DEGs, blue nodes indicate downregulated DEGs, and grey nodes 
indicate genes that are not significantly differentially expressed. (F) IS expression profile data case vs. control differential expression volcano plot, horizon-
tal coordinate is log2FoldChange, vertical coordinate is -log10 (p.adjust), red nodes indicate upregulated DEGs, blue nodes indicate downregulated DEGs, 
and grey nodes indicate genes that are not significantly differentially expressed
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cell-cell adhesion, cell activation, and other biological 
processes (Fig. 4A). The genes were also enriched in the 
external side of the plasma membrane, secretory granule 
membrane, plasma membrane signaling receptor com-
plex cellular fractions (Fig. 4B), immune receptor activity, 
cytokine receptor activity, growth factor receptor bind-
ing, amyloid-beta binding, NAD + nucleosidase activ-
ity, NAD(P) + nucleosidase activity, and other molecular 
functions (Fig. 4C; Table 3). Pathway enrichment analy-
sis of the intersecting genes showed enrichment in the 
Toll-like receptor (TLR) signaling pathway, Th17 cell 

Table 1 GEO data summary
Series Platforms Case Control Total

MI GSE66360 GPL570 49 50 99

GSE48060 GPL570 31 21 52

IS GSE16561 GPL6883 39 24 63

GSE22255 GPL570 20 20 40

Table 2 Summary of differential gene information
Disease Up Down Total
MI 5039 5563 10,602

IS 1659 1130 2789

Fig. 3 Identification of intersecting genes. (A) Wayne diagram of intersecting genes; blue circles are IS DEGs, purple circles are MI DEGs, yellow circles 
are GLuR-related genes. (B) Heat map of expression of intersecting genes in MI. (C) Heat map of intersecting gene expression in IS. IS: ischemic stroke; MI: 
myocardial ischemia; GLuR: glutamate receptor
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differentiation, TNF signaling pathway, PD-L1 expres-
sion, PD-1 checkpoint pathway in cancer, IL17 signaling 
pathway, AGE-RAGE signaling pathway in diabetic com-
plications, and other KEGG pathways (Fig. 4D; Table 4).

Construction of intersecting gene interaction networks
To analyze the interactions between intersecting genes, 
we used the STRING database for protein interaction 
analysis of intersecting genes and constructed a protein-
protein interaction (PPI) network related to intersect-
ing genes, containing a total of 25 nodes and 105 edges, 
including the two isolated nodes CD320 and EDNRB. 
The results from the STRING database were imported 
into the Cytoscape software and the obtained data were 
evaluated for presentation, where the node size was pro-
portional to the connectivity of the nodes (Fig. 5A). The 
cytoHubba plug-in was then used to analyze the connec-
tivity to obtain the top 10 hub genes, with darker colors 
indicating greater connectivity of the node; the more 
nodes that were connected to the node, the more impor-
tant it was in the network (Fig.  5B). The top six genes 
with the most interactions with the intersecting genes 

were IL6 (interactions with 17 intersecting genes), TLR4 
(interactions with 17 intersecting genes), IL1B (interac-
tions with 17 intersecting genes), SRC (interactions with 
16 intersecting genes), TLR2 (interactions with 16 inter-
secting genes), and CCL2 (interactions with 15 intersect-
ing genes).

Immunological infiltration analysis
To analyze the role of immune genes in the MI ver-
sus IS data, we used single-sample gene set enrichment 
analysis (ssGSEA) to quantify the relative abundance of 
each immune cell infiltrate by labeling each infiltrating 
immune cell type. The infiltration scores of immune cells 
in the MI and IS data are displayed using a heat map to 
examine the expression of immune cells (Fig. 6A and B). 
The results showed that immune cells such as MDSC, 
monocytes, central memory CD4 + T cells, and plasma-
cytoid dendritic cells (pDCs) were highly expressed in 
the MI and IS data. Immune cells such as memory B cells, 
Th17 and Th2, mast cells, and macrophages were weakly 
expressed in the MI data and highly expressed in the IS 
data.

Fig. 4 GO and KEGG enrichment analysis. Enrichment results for (A) biological process, (B) cellular component, (C) molecular function, and (D) KEGG 
pathway. For all graphs, y-axes are top 10 GO terms, node size indicates number of genes enriched in pathway, and node color indicates -log10 (p.adjust)
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We used the R package vioplot to create violin plots 
to show the distribution of the fraction of each immune 
cell in the two diseases, and used Wilcox rank-sum test 
algorithm to calculate the difference in the degree of infil-
tration of the same immune cells in the two disease sam-
ples. Over 90% of the immune cells were differentially 
expressed in the MI and IS data, that is, with the excep-
tion of pDCs, the remaining immune cells were signifi-
cantly different between the two diseases (Fig. 6C).

To investigate the relationship between immune cells 
in MI and IS, we analyzed immune cell correlations and 
plotted correlation heat maps using the R package cor-
rplot to determine whether the correlation trends were 
consistent among immune cells in different diseases 

(Fig. 6D and E). In MI, pDCs were positively correlated 
with neutrophils (COR = 0.840), macrophages were posi-
tively correlated with neutrophils (COR = 0.816), and 
central memory CD4 + T cells were highly correlated 
with activated DCs (COR=-0.570). In the IS, immature 
B cells were highly positively correlated with activated 
B cells (COR = 0.642), effector memory CD8 + T cells 
were positively correlated with activated CD8 + T cells 
(COR = 0.612), and CD56 bright natural killer cells were 
highly negatively correlated with Th17 cells (COR = 
-0.631).

Construction of TF-intersegmental gene networks and 
pathway intersegmental/immune gene networks
To investigate the regulatory relationship between inter-
secting genes and TF, we downloaded the relationship 
between TF and target genes from a TF-related data-
base and extracted the TF corresponding to intersecting 
genes. A TF-intersecting gene network was established 
using Cytoscape software, and the topological proper-
ties of the TF target network were analyzed (Fig. 7A). The 
network comprised 192 nodes and 397 edges. We also 
mapped 782 immune genes to the TF-intersection gene 
network and identified significant nodes based on topo-
logical analysis to illustrate the relationships between 
TFs, intersection genes, and immune genes. From the 
network, we found that genes such as JUN, FOS, and 
PPARA are intersection genes and TFs that regulate 
other genes to influence biological functions. LRP1 is an 

Table 3 GO enrichment analysis
ONTOLOGY ID Description p.adjust
BP GO:0032496 response to lipopolysaccharide 2.48E-10

BP GO:0002237 response to molecule of bacterial origin 2.48E-10

BP GO:0051251 positive regulation of lymphocyte activation 8.88E-09

BP GO:0002696 positive regulation of leukocyte activation 1.86E-08

BP GO:0022409 positive regulation of cell-cell adhesion 1.86E-08

BP GO:0050867 positive regulation of cell activation 1.87E-08

BP GO:0022407 regulation of cell-cell adhesion 2.85E-08

BP GO:0071222 cellular response to lipopolysaccharide 2.95E-08

BP GO:0071219 cellular response to molecule of bacterial origin 4.14E-08

BP GO:0050870 positive regulation of T cell activation 4.14E-08

CC GO:0009897 external side of plasma membrane 0.011341482

CC GO:0030667 secretory granule membrane 0.018458697

CC GO:0098802 plasma membrane signaling receptor complex 0.018458697

MF GO:0140375 immune receptor activity 0.00018479

MF GO:0004896 cytokine receptor activity 0.000803343

MF GO:0070851 growth factor receptor binding 0.002342202

MF GO:0001540 amyloid-beta binding 0.00568427

MF GO:0003953 NAD + nucleosidase activity 0.00568427

MF GO:0050135 NAD(P) + nucleosidase activity 0.00568427

MF GO:0061809 NAD + nucleotidase, cyclic ADP-ribose generating 0.00568427

MF GO:0070412 R-SMAD binding 0.006992841

MF GO:0016493  C-C chemokine receptor activity 0.006992841

MF GO:0038187 pattern recognition receptor activity 0.006992841

Table 4 KEGG enrichment analysis
ID Description p.adjust
hsa04620 Toll-like receptor signaling pathway 3.02E-07

hsa04659 Th17 cell differentiation 7.07E-06

hsa04668 TNF signaling pathway 7.52E-06

hsa05235 PD-L1 expression and PD-1 checkpoint 
pathway in cancer

3.92E-05

hsa04657 IL-17 signaling pathway 4.85E-05

hsa04933 AGE-RAGE signaling pathway in diabetic 
complications

6.29E-05

hsa04625 C-type lectin receptor signaling pathway 7.30E-05

hsa04613 Neutrophil extracellular trap formation 9.15E-05

hsa04060 Cytokine-cytokine receptor interaction 9.54E-05

hsa04380 Osteoclast differentiation 0.000165879
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immune gene and TF, and RARA is an intersection and 
immune gene, as well as a TF that influences immune 
functions by regulating other genes.

To analyze the association of intersecting genes in 
important pathways, we extracted the top 10 KEGG path-
ways important for enrichment analysis and obtained all 
genes in these pathways using the R package clusterPro-
filer. These gene sets may contain a combination of inter-
secting, immune, or other genes in the pathway. We built 
a pathway gene network based on these gene properties 
using Cytoscape software (Fig. 7B) and used the pathways 
as a bridge to discover relationships between the inter-
secting and immune genes. FCGR2A is the intersection 
gene of MI and IS as well as the immune gene, regulating 
the osteoclast differentiation and neutrophil extracellular 
trap formation pathways. Genes in the pathway, inter-
secting genes, and immune genes influence the occur-
rence of MI and IS, providing the potential for crosstalk.

Model construction and validation
To better investigate the relationship between MI and IS 
and to predict the two diseases, we further screened the 
25 intersecting genes. Based on the R package glmnet, 
intersecting genes were further screened using LASSO 
logistic regression for MI expression profile data and IS 
expression profile data (Fig.  8A, B, C, and D). Thirteen 
intersecting genes in MI and 14 in IS were obtained by 
screening, and they shared nine intersecting genes, IL1B, 
FOS, JUN, FCGR2A, IL6, AKT1, DRD4, GLUD2, and 
SRC, which were considered as potential biomarkers. The 
expression of these nine genes was significantly different 
between the disease and normal samples for both dis-
eases, and most of the genes showed the same expression 

trend, with high expression levels in MI and IS disease 
samples (Fig. 8E and F), as plotted using the ggplot func-
tion for the differences in potential biomarkers in MI and 
IS. To investigate the predictive efficacy of these nine 
genes for both diseases, we performed receiver operating 
characteristic (ROC) analysis (Fig. 8G and H) and found 
that the area under the curve (AUC) of the remaining 
seven genes was > 65% for both MI and IS, except for IL6 
(MI: 84.0%; IS: 63.3%) and DRD4 (MI: 63.4%; IS: 73.2%), 
indicating that the expression values of these genes for 
the prediction of MI and IS were reliable.

Blood samples to verify the expression of hub genes
A total of 45 blood samples were collected, including 12 
patients with acute IS, 12 with acute MI, nine with car-
diopulmonary resuscitation, and 12 with normal physical 
examination; RT-qPCR results showed that the expres-
sion levels of IL1B, FOS, JUN, and SRC were significantly 
elevated in all groups of patients compared with normal 
physical examination (Fig.  9A, B, C, and E). FCGR2A 
expression levels were significantly elevated in patients 
with acute IS and cardiopulmonary resuscitation com-
pared to that in normal subjects, while no significant 
abnormalities were observed in acute MI (Fig. 9D).

Cellular model to verify the expression of hub genes
We successfully established hypoxic reoxygenation mod-
els of PC12 and H9c2 cells using CCK-8 and flow cyto-
metric assays for cell viability and apoptosis (Fig.  10A). 
CCK-8 results suggested that cell viability decreased after 
in both models (Fig.  10C and D). Flow cytometry indi-
cated increased apoptosis (Fig. 10B, E, and F). Immuno-
fluorescence staining was used to detect the expression 

Fig. 5 Intersecting gene interaction networks. (A) Graph of protein-protein interaction networks constructed from intersecting genes; node size indi-
cates connectivity of nodes in network, larger nodes denote greater connectivity. (B) Graph of top 10 nodes in connectivity ranking; darker, larger nodes 
denote higher connectivity
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Fig. 6 Immunocyte infiltration analysis. (A) Heat map of 28 types of immune cell infiltration in (A) MI and (B) IS datasets; x-axes represent 28 types of im-
mune cells and warmer colors represent higher degree of immune infiltration. C: Box plot of immune cell expression differences between MI and IS; x-axis 
indicates 28 immune cell types and y-axis indicates degree of immune cell infiltration. Heat maps of immune cell correlation in (D) MI and (E) IS; x- and 
y-axes indicate 28 immune cell types and color indicates correlation; purple is positive correlation, green is negative correlation, and asterisks indicate 
correlation p-values. *p < 0.05; **p < 0.01; ***p < 0.001. IS: ischemic stroke; MI: myocardial ischemia
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Fig. 7 TF-intersecting gene network and pathway-intersecting gene/immune gene network. (A) TF-intersecting gene network; pink circles are inter-
secting genes, purple circles are intersecting genes-immune genes, blue circles are intersecting genes-TF, green circles are intersecting genes-immune 
genes-TF, yellow circles are TF, orange circles are TF-immune genes, and node size is positively correlated with node connectivity. (B) Pathway intersection 
gene/immune gene network; pink circles are intersection genes, purple circles are intersection genes-immune genes, green circles are immune genes, 
yellow squares are KEGG pathway, grey circles are other genes in the pathway, and node size is positively correlated with node connectivity. TF: transcrip-
tion factor
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Fig. 8 Model construction and validation. (A, B) MI and IS characteristic gene change curves; y-axis (above) is remaining number of variable genes whose 
variable coefficient is not zero at current logarithm of lambda. (C, D) MI and IS cross-check lambda results; there are two dashed lines in plot: one is mini-
mum mean squared error and other is standard error of minimum mean squared error. (E, F) Box plot of differences in gene expression between MI and 
IS for IL1B, FOS, JUN, FCGR2A, IL6, AKT1, DRD4, GLUD2, and SRC; *p < 0.05; **p < 0.01; ***p < 0.001 (G, H) ROC curves for IL1B, FOS, JUN, FCGR2A, IL6, AKT1, 
DRD4, GLUD2, and SRC genes in MI and IS. IS: ischemic stroke; MI: myocardial ischemia
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of hub genes IL1B, FOS, JUN, FCGR2A, and SRC; their 
expression levels were significantly higher in PC12 cells 
after modeling compared with the controls, and the dif-
ferences were statistically significant. The expression lev-
els of FOS, IL1B, FCGR2A, and SRC were significantly 
elevated after modeling H9c2 cells, and the difference 
was statistically significant, whereas the difference in 
JUN expression was not significant (Fig. 10G, H, and I); 
negative control images are presented in Supplementary 
Material (Additional file 1: Figure S1).

Discussion
Cardiocerebrovascular disease is a serious threat to 
human health. Despite extensive efforts to improve treat-
ment, its protective effect on the heart and brain, as well 
as its prognosis, has not fundamentally improved [1]. 
The heart and brain, as terminally differentiated organs, 
are highly sensitive to injury and are difficult to repair 
after injury. The proportion of patients with comor-
bid cardiovascular disease is estimated to be > 70%, and 
a growing number of studies have confirmed that most 

molecular events that occur after neurological injury 
also occur after myocardial injury, suggesting a common 
mechanism of injury between the heart and brain [6, 16]. 
Therefore, it is crucial to explore the common injury sig-
naling pathways in the heart and brain and to establish 
timely and early means and strategies for the protection 
of the heart and brain in the early stages of cardiac and 
cerebral injury. Cardiocerebral injury can occur in vari-
ous ways; however, ischemia-hypoxia-reperfusion is the 
most important initiating factor leading to cardio-cere-
bral injury [17]. Many studies have confirmed that an 
important mechanism of ischemic-reperfusion injury 
is the excitatory neurotoxicity of GLU, which is further 
refined at the cellular level. The molecular events that 
occur after injury are complex and include oxidative 
stress, mitochondrial dysfunction, altered cell perme-
ability, calcium overload, impaired energy metabolism, 
activation of apoptotic signals, and the release of inflam-
matory factors involved in the process of cell death after 
injury [18, 19]. GLU is a nonessential amino acid that 
maintains neuronal survival and synaptic plasticity under 

Fig. 9 Blood samples to verify expression of hub genes. mRNA expression levels of (A) IL1B, (B) FOS, (C) JUN, (D) FCGR2A, and (E) SRC in blood specimens 
from patients with acute IS, acute MI, CPR, and normal physical examination. nsp>0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Ctrl: Control; IS: 
ischemic stroke; MI: myocardial ischemia; CPR: cardiopulmonary resuscitation
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Fig. 10 Cellular models to verify expression of hub genes. (A) Morphological changes of PC12 and H9c2 cells before and after cell modeling. PC12 cells 
had reduced cell morphology and longer tentacles compared with normal cells after modeling. H9c2 cells had reduced cell morphology and fullness 
compared with normal cells after modeling. (B) Flow cytometry detection of apoptosis of PC12 and H9c2 cells before and after cell modeling. (C, D) CCK-8 
assay of cell viability before and after modeling of PC12 and H9c2 cells showed a decrease in cell viability after modeling. (E, F) Significant apoptosis 
was observed after modeling of PC12 and H9c2 cells. (G) Immunofluorescence staining detected expression of key genes in PC12 and H9c2 cells and 
hypoxia-reoxygenated cell models (bar = 50 μm). (H, I) Expression levels of IL1B, FOS, JUN, FCGR2A, and SRC genes were significantly higher in PC12 cells 
after modeling compared with controls, and differences were statistically significant. Expression levels of FOS, IL1B, FCGR2A, and SRC were significantly 
elevated after modeling of H9c2 cells, and the difference was statistically significant, whereas difference in JUN expression was not. Nuclei were stained 
blue with DAPI. nsp>0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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physiological conditions. However, under pathogenic 
conditions, the massive release of extracellular GLU can 
stimulate GLuR, induce inward calcium flow, and acti-
vate calcium-dependent death signaling pathways. In 
turn, GLU toxicity in cells and tissues is not immediately 
alleviated after resuscitation and may further exacer-
bate the damage [20–23]. Therefore, the two are closely 
related and may share a common mechanism of injury 
based on the mutual hemodynamic and pathophysiologi-
cal mechanisms between the heart and brain. Combined 
with the currently identified role of GLuR in the process 
of cardiac and cerebral ischemia-hypoxia-reperfusion, 
the present study explored the relevant roles and mecha-
nisms of GLuR-related crossover genes in the process of 
cardiac and cerebral ischemia and explores the role of 
GLuR-related crossover genes in the process of cardiac 
and cerebral ischemia through LASSO model construc-
tion. The current study investigated the role and mecha-
nism of GLuR-related crossover genes in MI and IS and 
explored the common crossover genes in MI and IS using 
LASSO model construction, blood samples, and cellular 
models to verify the expression of hub genes and predict 
the common regulatory pathways of both diseases.

In the present study, we obtained four datasets, 
GSE66360, GSE48060, GSE16561, and GSE22255, 
applied bioinformatic methods to first analyze the DEGs 
for MI and IS, and then took intersections with GLuR 
genes to obtain 25 intersecting genes. Interplay network 
construction, immune infiltration analysis, intersection 
gene-TF, and pathway intersection gene/immune gene 
interplay network construction were also performed on 
the intersection genes, and the roles and mechanisms 
of the GLuR-related intersection genes in MI and IS 
were explored. Finally, through LASSO model construc-
tion, nine genes, including IL1B, FOS, JUN, FCGR2A, 
IL6, AKT1, DRD4, GLUD2, and SRC, were identified as 
potential biomarkers. Furthermore, the differential box 
line plots of potential biomarkers in MI and IS were plot-
ted by the ggplot function, and it was found that except 
for AKT1, DRD4, and GLUD2, the expression of the 
remaining six genes were significantly different between 
disease samples and normal samples. To investigate the 
predictive efficacy of these nine genes for the two dis-
eases, we performed ROC analysis and found that except 
for IL6 (MI: 84.0%; IS: 63.3%) and DRD4 (MI: 63.4%; IS: 
73.2%), the AUC of the remaining seven genes was > 65% 
in both MI and IS. It was further confirmed by clinical 
blood samples and cellular models that the expression 
of relevant hub genes was consistent with the bioinfor-
matics analysis. Taken together, these results suggest that 
IL1B, FOS, JUN, FCGR2A, and SRC can be potential bio-
markers for combined cardiocerebral injury, laying the 
foundation for the discovery of new targets and thera-
peutic options.

IL1B is a member of the IL1 cytokine family, which is 
produced by activated macrophages as a pre-protein, 
and is hydrolyzed by cystathionine aspartase 1 into its 
active form. This cytokine is an important mediator of 
the inflammatory response and is involved in a variety of 
cellular activities including cell proliferation, differentia-
tion, and apoptosis through the NF-κB and TLR signaling 
pathways [24, 25], which induces prostaglandin synthesis, 
neutrophil inflow and activation, T cell activation, cyto-
kine production, B cell activation, antibody production, 
fibroblast proliferation, collagen production, and Th17 
cell differentiation [26, 27]. IL1B is an important marker 
of inflammation, and disruption of IL1B homeostasis 
plays a crucial role in the development of atherosclerosis 
[28]. Previous studies have shown that ischemia/reperfu-
sion injury to the central nervous system can lead to the 
activation of inflammatory factors, which induces the 
release of pro-inflammatory factors and chemokines that 
exacerbate the inflammatory response and ultimately 
lead to neuronal death [29]. A biochemical analysis of 
acute myocardial infarction identified IL1B as a bio-
marker of acute myocardial infarction that mediates the 
inflammatory response after acute myocardial infarction 
[30–32]. These studies are consistent with the present 
study, indicating that IL1B can participate in the biologi-
cal process after ischemia-reperfusion injury in cardio-
vascular and cerebrovascular diseases, thereby changing 
the endpoint of cardiovascular and cerebrovascular dis-
ease events.

The FOSgene, also known as the AP-1 transcription 
factor subunit, encodes a leucine zip protein that dimer-
izes with proteins of the JUN family to form the tran-
scription factor complex AP-1. FOS is thought to prevent 
the inflammatory response and neuronal death that 
occur during IS and brain injury and is a neuroprotective 
factor [33, 34], and c-FOS is activated during myocardial 
remodeling after MI-reperfusion injury, thereby prolong-
ing apoptosis in cardiomyocytes, and is considered to 
be an anti-apoptotic factor [35, 36], suggesting that FOS 
plays an equal role in MI and IS.

The JUN gene, also an AP-1 transcription factor sub-
unit, encodes a protein that is highly similar to viral 
proteins and interacts directly with specific target DNA 
sequences to regulate gene expression. It is involved in 
cell growth, development, and differentiation under nor-
mal conditions but is expressed at low levels. In the early 
stages of MI, researchers have found elevated expression 
levels of c-FOS and c-JUN, referred to as immediate early 
genes [37], endoplasmic reticulum stress and soluble 
epoxide hydrolase activation after MI-reperfusion injury 
are closely associated with the phosphorylation levels of 
JUN [38]. Similarly, in animal models of cerebral isch-
emia-reperfusion injury, a previous study found that JUN 
can be a marker for the progression of cellular injury, and 
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after IS, the number of significantly expressed JUN-posi-
tive cells increased, and hypothermia can slightly reduce 
cerebral infarction after ischemia for reasons related to 
JUN expression [39, 40].

The FCGR2A (Fc fragment of the immunoglobulin G 
receptor IIa) gene encodes a member of the immuno-
globulin FC receptor gene family found on the surface of 
many immune-responsive cells. The protein is a cell sur-
face receptor found on phagocytes such as macrophages 
and neutrophils, which are involved in the phagocyto-
sis and clearance of immune complexes. FCGR2A is an 
inflammation-related gene. Similar to the association 
of the rs1137101 gene polymorphism with myocardial 
infarction [41], the gene polymorphism of FCGR2A has 
also been confirmed to be associated with susceptibil-
ity to IS in people of different races [42, 43]. C-reactive 
protein (CRP) plays a critical role in atherosclerosis, 
and FCGR2A is its main receptor. When bound to CRP, 
FCGR2A induces monocyte-endothelial cell interactions, 
upregulates the expression of monocyte chemotactic 
protein 1 and endothelin-1 in endothelial cells, induces 
the release of cytokines from monocytes, stimulates the 
release of matrix metalloproteinases, and increases the 
phagocytosis of oxidized low-density lipoproteins by 
macrophages [44]. Calverley et al. [45] found increased 
expression levels of platelet surface FCGR2A in patients 
with unstable angina, acute myocardial infarction, IS, and 
in high-risk individuals carrying two or more atheroscle-
rotic risk factors. The expression of FCGR2A on platelet 
surfaces is also increased in individuals with two or more 
risk factors for atherosclerosis and is more pronounced 
in patients with diabetes. In the present study, we found 
that FCGR2A is a crossover gene between MI and IS and 
an immune gene that regulates osteoclast differentiation 
and neutrophil extracellular trap formation pathways.

SRC is a non-receptor tyrosine kinase that can be 
activated in vivo by cytokine receptors, tyrosine kinase 
receptors, G protein-coupled receptors, integrin recep-
tors, and a variety of cellular emergency signals to par-
ticipate in cell adhesion migration, proliferation and 
differentiation, angiogenesis, and intracellular transport 
[46, 47]. In brain injury, SRC kinases participate in the 
destruction of the vascular barrier, formation of cerebral 
edema, and neovascularization after IS through various 
signaling pathways and target genes. For example, SRC 
expression levels are increased after IS, and SRC kinases 
can mediate the over-activation of NMDA receptors 
[48]. Numerous studies have shown that SRC is involved 
in signal transduction during major pathophysiologi-
cal processes in the heart and that SRC activity is closely 
related to the maintenance of cardiovascular homeo-
stasis. The phosphorylation status of SRC is altered in 
response to various injurious factors or stress stimuli 
and regulates different cardiac pathological states, such 

as hypertension, coronary heart disease, ischemic heart 
disease, MI-reperfusion injury, arrhythmias, and cardio-
myopathy, by modulating cell growth, differentiation, 
motility, function, and electrophysiological signaling. 
Hypoxia/reoxygenation promotes the autophosphoryla-
tion of SRCs associated with the surface of neonatal rat 
cardiac myocytes at an early stage [49], and the JNK/
SAB/SRC/ROS pathway reduces mitochondrial-phos-
phorylated SRC expression and increases mitochon-
drial ROS levels [50]. Moreover, SRC activation plays an 
important protective role against MI-reperfusion injury 
and is a potential target for its treatment [51].

GO functional enrichment analysis showed that the 
intermingled genes were mainly enriched in the outer 
plasma membrane, secretory granule membrane, the 
cellular fraction of the plasma membrane signaling 
receptor complex, through immune receptor activ-
ity, cytokine receptor activity, growth factor receptor 
binding, amyloid-β binding, NAD + nuclease activity, 
NAD(P) + nuclease activity, other molecular functions 
mainly involved in responses to lipopolysaccharide and 
bacterial-derived molecules, positive regulation of lym-
phocyte and leukocyte activation, intercellular adhesion, 
and cell activation, among other biological processes. 
KEGG analysis showed that the intersecting genes were 
mainly involved in the TLR signaling pathway, Th17 cell 
differentiation, and TNF, which are a class of pattern rec-
ognition proteins that play an integral role in the regula-
tion of systemic inflammatory responses and play a key 
role in activating the inflammatory cascade after hypoxic-
ischemic events, and subsequently contribute to the 
neuroprotective or deleterious effects of CVD-induced 
neuroinflammation. They also play key roles in the devel-
opment and progression of atherosclerosis. After the 
onset of IS and MI, TLR signaling pathways and down-
stream cascades trigger immune responses through the 
production and release of various inflammatory media-
tors and are expected to be targeted for the treatment 
of cardiovascular and cerebrovascular diseases [52, 53], 
which is consistent with our findings. Th17 cells differ-
entiate from CD4 + T cells in response to TGF-β and IL6 
and can produce proinflammatory cytokines. However, 
unstable plastic Th17 cells can also transdifferentiate into 
Tregs, thereby reducing inflammation, and in myocar-
dial infarction disease, myocardial infarction-associated 
transcripts can promote cellular differentiation of Th17 
by upregulating Th17-related genes, again suggesting a 
role for Th17 cell differentiation in MI [54]. Thus, Th17 
cells play a dual role in the post-ischemic inflammatory 
response. Previous studies have shown that Th17 cells 
are closely associated with cognitive impairment, stroke 
recurrence, and mortality in acute stroke patients [55]. In 
acute myocarditis, Th17 cells characterized by the pro-
duction of IL17 were similarly found to be a feature of 
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the acute phase [56], but whether they can be involved 
in regulating the cardio-cerebral co-protection process 
needs to be further explored. In the present study, we 
also reported other related enrichment pathways that 
provided ideas for our subsequent study on cardio-cere-
bral co-protection.

The results of the PPI network associated with inter-
section genes suggested that the top six genes with the 
most interactions with intersection genes were IL6 
(interactions with 17 intersection genes), TLR4 (interac-
tions with 17 intersection genes), IL1B (interactions with 
17 intersection genes), SRC (interactions with 16 inter-
section genes), TLR2 (interactions with 16 intersection 
genes), and CCL2 (these results are consistent with our 
model construction and functional enrichment results, 
which can be used as a reference for further studies).

The results of the immune infiltration analysis sug-
gested that 90% of the immune cells were differentially 
expressed in the MI and IS data, and immune cells such 
as MDSC, monocytes, central memory CD4 T cells, and 
pDCs were highly expressed in the MI and IS data. Mem-
ory B cells and MDSC, including immature granulocytes, 
macrophages, and DCs at different stages of differentia-
tion, are well-known immunosuppressive cells that play 
a decisive role in many disease states [57]. Recent stud-
ies have reported that MDSC can be recruited to the 
infarcted myocardium during the acute phase of acute 
myocardial infraction to induce the secretion of protein 
hydrolases and promote apoptosis [58–60]. In a mouse 
IS model, IS was found to increase the number of PMN-
MDSC-LCs in the bone marrow, spleen, and ischemic 
hemisphere, further suggesting an important role of 
MDSC in cardiac and cerebral ischemia [61]. The absence 
of CD4 + T cells leads to an increase in monocyte count 
in infarcted myocardial cells, suggesting that CD4 + T cell 
infiltration into the myocardial infarct site may induce 
pro-inflammatory monocyte differentiation [62]. Regu-
latory T cells (Tregs) have an important role in cardiac 
tissue repair after myocardial infarction, thereby regulat-
ing the post-infarction inflammatory response and severe 
ventricular remodeling, protecting cardiomyocytes from 
apoptosis, and promoting myocardial healing [63, 64]. 
These findings suggest that the infiltration of different 
immune cell types is closely related to the progression of 
cerebral ischemia and myocardial ischemic diseases. It is 
worthwhile to further explore the immune mechanisms 
associated with the immune infiltration results found in 
the current study.

This study had some limitations. To obtain more 
accurate conclusions and bioinformatics analysis veri-
fication, more datasets are required. We are currently 
conducting relevant sample collection and sequenc-
ing work. Furthermore, we only verified the expression 
of the hub genes in blood samples and cell models and 

did not further confirm their mechanisms of action. The 
conclusions drawn here should be verified in subsequent 
experiments. Since the nature of the study design was 
retrospective, some important clinical information could 
not be obtained and analyzed in combination with clini-
cal information, such as the relationship between related 
genes and onset time, and the relationship with progno-
sis. Further analysis combined with clinical information 
is one of the purposes of our study, which can provide a 
direction and basis for future clinical studies.

Conclusions
In the current study, we found that the GLuR-related 
genes IL1B, FOS, JUN, FCGR2A, and SRC were 
expressed in MI and IS with the same trend, which can 
be used to predict the occurrence of cardiac and cerebral 
ischemic diseases and provide reliable biomarkers to fur-
ther explore the co-protective mechanism after cardiac 
and cerebral ischemic injuries.

Materials and methods
Data acquisition and acquisition of GLuR-related genes
From the Gene Expression Omnibus (GEO https://www.
ncbi.nlm.nih.gov/geo/) database [65] using the GEO-
query package [66]. The MI-related datasets GSE66360 
[67] and GSE48060[68] were downloaded. The GSE66360 
dataset from Homo sapiens on GPL570 contained 99 
samples 50 controls and 49 diseased), and the GSE48060 
dataset from Homo sapiens on GPL570 contained 52 
samples (21 controls, and 31 diseased).

The IS-related dataset GSE16561 was downloaded 
using R packages GEOquery [69]and GSE22255[70]. The 
GSE16561 dataset from Homo sapiens on the data plat-
form GPL6883, contains 63 samples, including 24 control 
and 39 disease samples. Because the expression profile 
provided by GSE16561 is quantile-normalized data and 
contains negative values, the original expression matrix 
of GSE16561 (GSE16561_RAW.txt.gz) was downloaded 
from the GEO database, log-transformed, and normal-
ized using the R package limma [71]. The GSE22255 
dataset from Homo sapiens on the data platform GPL570 
contains 40 samples (20 controls and 20 diseased). 
Because both MI and IS had two sets of data available, 
we combined them separately for subsequent analyses. 
To reduce variation across the combined samples, the R 
package sva was used [72], and the ComBat method was 
used to de-batch the combined data. After calibration, 
the MI data contained 80 disease and 71 control samples, 
whereas the IS data contained 59 disease and 44 control 
samples.

GLuR-related genes were collected from the Gene-
Cards (https://www.genecards.org/) database [73], which 
provides comprehensive information on human genes 
by integrating gene-centric data from approximately 150 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
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web-based sources, including genomic, transcriptomic, 
proteomic, genetic, clinical, and functional information. 
The term “glutamate receptor” was used as a search term 
to obtain a total of 5925 genes, and a screening score of 
> 20 yielded 239 genes as GLuR-related genes, as listed in 
Additional file 2: Table S1.

DEG and gene enrichment analyses (GO and KEGG)
To analyze the effect of gene expression values on MI- 
and IS-related diseases, the two sets of data were ana-
lyzed separately for differences in grouping using the R 
package limma, based on the grouping information of 
cases and controls in the data. The genes were screened 
by setting an adj.p-value < 0.01 as the threshold, where 
genes with logFC > 0 and adj.p-value < 0.01 were DEGs 
with upregulated expression and genes with logFC < 0 
and adj.p-value < 0.01 were DEGs with downregulated 
expression. The results of the DEG analysis were dis-
played as volcano plots using the R package ggplot2. The 
MI-DEGs, IS-DEGs, and GLuR were intersected, and the 
resulting intersected genes were crosstalk genes, which 
were displayed by the R package Venn plotting.

GO [74] annotation analysis and KEGG [75] path-
way enrichment analysis was performed on intersecting 
genes by using the R package cluster Profiler [76], with a 
threshold value of < 0.05 for FDR considered statistically 
significant, entry screening criteria of adj.p-value < 0.05 
and q-value < 0.05, and p-value correction by the Ben-
jamini-Hochberg method (BH).

Intersectional gene interaction network construction
The STRING database (https://string-db.org/) [77] was 
used to construct a PPI network for the intersection of 
MI DEGs, IS DEGs, and GLuR-related genes, setting 
the parameter coefficient to 0.4. The PPI results were 
exported from the STRING database, the interactions 
were detected using Cytoscape [78] visualization, and 
the CytoHubba plugin was used for [79] analysis of hub 
genes in PPI networks.

Immuno-infiltration analysis
Immune-related genes were downloaded from the litera-
ture PMID:28,052,254 [80], and the gene set contained 
782 genes and 28 cell types, such as activated CD8 + T 
cells, activated DCs, macrophages, natural killer T cells, 
Tregs, and many other human immune cell subtypes. The 
R package GSVA [81] was used to analyze the degree of 
immune cell infiltration using (single-sample gene set 
enumeration analysis) algorithm for MI and IS expres-
sion profile data. Immune infiltration heat maps were 
plotted using the R package pheatmap, vioplot plotted 
differences in immune cell expression between the MI 
and IS disease groups, and corrplot plotted immune cell 
correlations.

Intersectional gene-TF, pathway intersectional gene, and 
immune gene interaction network construction
TFs control gene expression by interacting with tar-
get genes post-transcriptionally. Transcriptional regu-
latory relationships unraveled by sentence-based text 
mining(TRRUST) (https://www.grnpedia.org/trrust/) are 
manually annotated databases of transcriptional regula-
tory networks [82]. The TRRUST database contains 800 
human and 828 mouse TFs with 8444 human and 6552 
mouse TFs target regulatory pairs. Open-access reposi-
tory of transcriptional interactions (ORTI) http://orti.
sydney.edu.au/about.html) is an integrated transcrip-
tional interaction database, and its data are obtained 
from publicly available TF-TG interaction databases (i.e., 
HTRI, TFactS, TRED, TRRD, PAZAR, and NFI regu-
lome) as well as mammalian TF and related TG retrieved 
from the literature [83]. Human transcriptional regula-
tion interactions (HTRIdb) (http://www.lbbc.ibb.unesp.
br/htri/) is a database containing experimentally vali-
dated TF-TG interactions in humans, including 284 TF, 
18,302 genes, and 51,871 TF-TG regulatory relationships 
[84].

To analyze the regulatory role of TF in intersection 
genes, we downloaded TF-TG interactions from the 
TRRUST, ORTI, and HTRIdb databases and integrated 
the contents of the three databases to extract transcrip-
tion factors targeting intersection genes and construct 
intersection gene-TF interaction networks. The intersec-
tion gene-TF interaction network was visualized using 
Cytoscape software.

To analyze the importance of intersecting genes in 
pathway enrichment, we obtained important KEGG 
pathways corresponding to intersecting genes through 
the functional enrichment analysis described above, 
extracted all genes under these pathways in the KEGG 
database using the R package clusterProfiler download, 
and tagged the genes types (intersecting, immune, and 
other pathway genes). The pathway intersection gene/
immune gene network was constructed based on these 
gene properties and visualized using Cytoscape software.

LASSO model construction
Minimizing the absolute shrinkage and selection opera-
tor LASSO regression is a machine learning algorithm 
commonly used to construct diagnostic models today, 
using regularization to address the occurrence of over-
fitting during curve fitting and to improve the accuracy 
of the model. To obtain the most relevant intersection 
genes, we used the glmnet package [85] to model MI 
and IS expression profile data, with intersection genes 
as independent variables and case/control as dependent 
variables. The model parameter is set to seed (3) and 
family = “binomial.” Intersecting genes in MI and IS were 
screened separately using LASSO regression, and shared 

https://string-db.org/
https://www.grnpedia.org/trrust/
http://orti.sydney.edu.au/about.html
http://orti.sydney.edu.au/about.html
http://www.lbbc.ibb.unesp.br/htri/
http://www.lbbc.ibb.unesp.br/htri/
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intersecting genes were tagged as potential biomark-
ers. The expression values of potential biomarkers were 
extracted from all MI and IS samples, and difference box 
line plots were plotted using the ggplot2 package to ana-
lyze whether there were significant differences between 
the disease and control samples. ROC analysis of poten-
tial biomarkers was performed using the pROC package 
[86] to predict the disease prediction efficiency.

Collection of human blood samples
A total of 45 relevant human blood samples were col-
lected from March to December 2022, including 12 
patients with acute IS, 12 with acute MI, 9 with cardio-
pulmonary resuscitation, and 12 with the normal physical 
examination; all blood specimens were collected accord-
ing to the time of patient onset and were controlled 
within 24 h of onset, stored at 4  °C after collection, and 
processed within 24  h, using blood: red blood cell lysis 
solution (R1010, Solarbio China) (volume ratio) = 1:3, 
lysed on crushed ice for 30 min, centrifuged at room tem-
perature, centrifuged at 3000 rpm for 10 min, discarded 
the red supernatant, added 1–2 mL TRIzol (CW0580S, 
CWBIO China), and frozen at -80 °C until.

RT-qPCR validation
The mRNA levels of the selected genes were deter-
mined using RT-qPCR. A ultrapure RNA extraction kit 
(CW0581M; CWBIO, China) was used, according to the 
manufacturer’s instructions. cDNA was obtained using 
a HiScript II Q RT SuperMix for qPCR Reverse Tran-
scription Kit (R223-01; Vazyme, China) according to the 
manufacturer’s protocol. RT-qPCR was performed using 
ChamQ Universal SYBR qPCR Master Mix (Q711-02, 
Vazyme China) according to the manufacturer’s protocol 

on a fluorescent PCR instrument (CFX Connect™ Real-
Time, Burroughs Life Medical Products Co., Shanghai, 
China) Briefly, each reaction contained 5 µL of premix 
(2X), forward and reverse primers (1000 nM each), 10 
ng of cDNA and an appropriate amount of nuclease-free 
water brought to a final volume of 10 µL. Three replicates 
were analyzed for each sample. Reactions were run with 
the following thermal cycling parameters: pre-denatur-
ation 95 °C for 10 min for 10 s (denaturation), 60 °C for 
30  s (annealing), and 72  °C for 30  s (extension). A final 
dissociation curve (melting curve) was then made and the 
PCR plates were kept at 4  °C until being removed from 
the machine. β-actin was used as the endogenous refer-
ence and the relative expression of the selected genes was 
calculated using the 2−ΔΔCt method. The primers used in 
this study are listed in Table 5.

Establishment of cell culture and hypoxia-reoxygenation 
model
Rat neuronal PC12 cells (CL-0481; ProCell Life 
Science&Technology Co. Ltd., Wuhan, China) and rat 
cardiomyocytes H9c2 cells H9c2 (iCell-r012; iCell Bio-
science Co. Ltd. Shanghai, China) were used, cultured in 
DMEM medium containing 10% fetal bovine serum, and 
passaged in an incubator at 37℃ and 5% CO2, and the 
medium was changed once at an interval of two days, and 
cells with 80% growth fusion were taken for passaging. 
Cells were divided into control and model groups with 
reference to previous methods [87].To establish a hypoxic 
reoxygenation model, cells were placed in sugar-free 
medium for 30 min, incubated in a hypoxic incubator (1% 
O2, 5% CO2, and 94% N2) for 6 h, and then the medium 
was replaced with a high-sugar medium containing 15% 
fetal bovine serum and 1% penicillin. Finally, cells were 
reoxygenated and reglycemic incubated for 6 h.

CCK-8 for cell viability assay
Cells were seeded into 96-well cell culture plates with 100 
µL of cell culture medium per well and treated according 
to the control and model groups. CCK-8 solution (10 µL) 
was added to each well and incubated at 37℃ for 2.5 h. 
The OD was determined at 450 nm. The cell survival rate 
of the control group was set to 100%, and changes in the 
cell survival rate of the remaining groups were analyzed.

Flow cytometry
Flow cytometry was performed to detect apoptosis in 
each group. The cells were suspended in ice-cold PBS 
solution, and 1 × 106 cells were collected from each group, 
centrifuged at 1000  rpm for 5  min, collected, mixed 
thoroughly with 300 µL of Binding buffer. Next, 5 uL of 
Annexin V-FITC and 10 uL of propidium iodide were 
added for 20 min under light-proof conditions. Finally, an 
additional 200 µL of Binding buffer was added and mixed 

Table 5 Primer sequences
Primer Primer sequences (5’-3’) Product 

length(bp)
Annealing 
temperature(℃)

IL1B F ATGATGGCTTATTACAGTG-
GCAA

132 60

IL1B R GTCGGAGATTCGTAGCTGGA

FOS F GGGGCAAGGTGGAACAGTTAT 126 60

FOS R CCGCTTGGAGTGTATCAGTCA

JUN F CGCAAACCTCAGCAACTT 248 60

JUN R TCCGCTCCTGGGACTCCA

FC-
GR2A F

TTTGAGATGAGTAATCCCAGC-
CA

112 60

FC-
GR2A F

TCAGGCCCCAGTCTCCATTTTA

SRC F TGGCAAGATCACCAGACGG 100 60

SRC R GGCACCTTTCGTGGTCTCAC

β-actin 
F

TGGCACCCAGCACAATGAA 186 60.8

β-actin 
R

CTAAGTCATAGTCC-
GCCTAGAAGCA
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thoroughly before performing flow cytometry (NovoCyte 
2060R, Eisen Bio, Co., Ltd. Hangzhou, China).

Immunofluorescence
Immunofluorescence was used to detect the positivity 
rate of selected molecules in each group of cells. The cells 
were fixed with 4% paraformaldehyde for 15  min, After 
the cell antigen was repaired and penetrated by Triton 
X-100 for 10 min, the cells were incubated with the fol-
lowing primary antibodies against: IL1B (AF7209; Beyo-
time China), FOS (ab222699; Abcam, Waltham, MA, 
USA), JUN (ab40766; Abcam), FCGR2A (HPA010776; 
Atlas Antibodies, Sweden), SRC (ab47505; Abcam), and 
IL6 (SAB5700632; Sigma-Aldrich, Germany) at 37  °C 
for 2  h. Primary antibody dilutions were set as follows: 
IL-1B, 1:100; FOS, 1:100; JUN,1:100; FCGR2A, 1:200; 
SRC, 1:100; IL6,1:200. PC12 cells were incubated with 
FITC-labeled secondary antibody (Invitrogen, Waltham, 
MA, USA) and H9c2 cells were incubated with Alexa-
labeled fluorescent secondary antibody (Invitrogen) at 
37  °C for 1  h. Secondary antibody dilutions were set as 
1:200. Nuclei were stained with 0.5  µg/ml concentra-
tion of DAPI (Southern Biotech, Birmingham, Alabama, 
USA). The cells were imaged with a fluorescent micro-
scope (Nikon ECLIPSE Ni-U/DS-Ri2, Nikon Co., Ltd. 
Kanagawa, Japan). The positive cell rate (five randomly 
selected high-power fields of view with at least 100 cells/
group) was calculated as number of positive cells/total 
number of cells × 100.

Statistical analysis
The bioinformatics analysis was based on R software 
(version 4.1.1, https://www.r-projec t.org/). Correla-
tion analysis was performed using the Pearson’s method. 
Comparisons between two groups were performed 
using the Wilcoxon rank-sum test, whereas comparisons 
between three or more groups were performed using the 
Kruskal-Wallis test. ROC curves were plotted and the 
AUC was calculated using the pROC package. The results 
in Figs. 9 and 10 are presented as means ± standard devia-
tion (SD). The datasets were tested for the normality of 
distribution using the Bonferroni test. Student’s t-test 
was used to compare normally distributed data groups 
(two groups). One-way analysis of variance (ANOVA) 
was used to compare groups. If not specifically indicated, 
p < 0.05 was considered significant.

Abbreviations
MI  Myocardial ischemia
IS  Ischemic stroke
MDSC  Myeloid-derived suppressor cells
NMDAR  N-methyl-D-aspartate receptor
DEGs  Differentially expressed genes
KEGG  Kyoto Encyclopedia of Genes and Genomes
GEO  Gene Expression Omnibus
GLuR  Glutamate receptor-related genes

GO  Gene Ontology
BP  Biological process
MF  Molecular function
CC  Cellular component
BH  Benjamini-Hochberg method
PPI  protein-protein interaction
TME  The tumor microenvironment
SsGSEA  Single sample gene set enumeration analysis
TF  Transcription Factor
TRRUST  Transcriptional Regulatory Relationships Unraveled by Sentence-

based Text mining
ORTI  Open-access Repository of Transcriptional Interactions
HTRIdb  Human transcriptional regulation interactions
LASSO  Least absolute shrinkage and selection operator
ROC  Receiver operating characteristic
AUC  Area under the curve

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-023-09408-z.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
We thank all colleagues involved in the study for their contributions.

Authors’ contributions
Contributions: Conception and design: WL; Administrative support: ZL, SY, 
CH, ML, CZ; Provision of study materials: WL, JY, MZ; YD; Data analysis and 
interpretation: SH, ZL; Manuscript writing: All authors; Final approval of the 
manuscript.

Funding
This research was supported by the National Natural Science Foundation 
of China(No. 81960326), the Leading Talents Project of Jiangxi Provincial 
Science and the Technology Department’s Training Plan for Major Disciplines 
and Technical Leaders(No. 20213BCJ0001), General science and technology 
projects of Jiangxi Provincial Health Commission(No. 202210884), Science and 
Technology Projects of Jiangxi Provincial Education Department(GJ2201436).

Data availability
The datasets presented in this study can be found in online repositories. the 
names of the repository/repositories and accession number(s) can be found in 
the article/Supplementary Material.

Declarations

Conflict of interest
The authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential 
conflict of interest.

Ethics approval and consent to participate
Informed consent was obtained from all participants and approval for this 
study was given by the Ethics Committee and Institutional Review Board of 
The First Affiliated Hospital of Gannan Medical University (LLSC20220213). 
All methods were performed in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki 
Declaration and its later amendments or comparable ethical standards.

Consent for publication
Not applicable.

Author details
1Medical College of Soochow University, Suzhou, Jiangsu, China
2Department of Neurosurgery, First Affiliated of Gannan Medical 
University, Ganzhou, Jiangxi, China

https://www.r-projec
http://dx.doi.org/10.1186/s12864-023-09408-z
http://dx.doi.org/10.1186/s12864-023-09408-z


Page 20 of  22Liao et al. BMC Genomics          (2023) 24:300 

3Key Laboratory of Prevention and Treatment of Cardiovascular and 
Cerebrovascular Diseases, Ministry of Education, Gannan Medical 
University, Ganzhou, Jiangxi, China
4Department of Cardiac Surgery, First Affiliated of Gannan Medical 
University, Ganzhou, Jiangxi, China
5Heart Medical Centre, First Affiliated of Gannan Medical University, 
Ganzhou, Jiangxi, China
6Gannan Medical University, Ganzhou, Jiangxi, China

Received: 17 February 2023 / Accepted: 25 May 2023

References
1. Belohlavek J, Smalcova J, Rob D, Franek O, Smid O, Pokorna M, et al. Effect 

of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and 
Immediate Invasive Assessment and Treatment on Functional neurologic 
outcome in Refractory out-of-hospital cardiac arrest: a Randomized Clinical 
Trial. JAMA. 2022;327(8):737–47. https://doi.org/10.1001/jama.2022.1025.

2. Zhang Q, Jia M, Wang Y, Wang Q, Wu J. Cell death mechanisms in cere-
bral ischemia-reperfusion Injury. Neurochemical Res 2022doi:https://doi.
org/10.1007/s11064-022-03697-8.

3. Mansouri F, Seyed Mohammadzad MH. Molecular miR-19a in Acute myocar-
dial infarction: novel potential indicators of prognosis and early diagnosis. 
Asian Pac J Cancer Prev. 2020;21(4):975–82. https://doi.org/10.31557/
APJCP.2020.21.4.975.

4. Mansouri F, Seyed Mohammadzad MH. Up-Regulation of cell-free 
MicroRNA-1 and MicroRNA-221-3p levels in patients with myocardial infarc-
tion undergoing coronary angiography. Adv Pharm Bull. 2021;11(4):719–27. 
https://doi.org/10.34172/apb.2021.081.

5. Markousis-Mavrogenis G, Neurocardiology, Atherosclerosis. The effect 
of ethnic differences on heart-brain Interaction. J Neurosci Rural Pract. 
2017;8(4):504–05. https://doi.org/10.4103/jnrp.jnrp_143_17.

6. Mooe T, Eriksson P, Stegmayr B. Ischemic stroke after acute myocardial 
infarction. A population-based study. Stroke. 1997;28(4):762–7. https://doi.
org/10.1161/01.str.28.4.762.

7. Yang Y, Li Q, Miyashita H, Yang T, Shuaib A. Different dynamic patterns of 
extracellular glutamate release in rat hippocampus after permanent or 
30-min transient cerebral ischemia and histological correlation. Neuropathol-
ogy. 2001;21(3):181–7. https://doi.org/10.1046/j.1440-1789.2001.00397.x.

8. Hu YY, Li L, Xian XH, Zhang M, Sun XC, Li SQ, et al. GLT-1 Upregulation as 
a potential therapeutic target for ischemic brain Injury. Curr Pharm Des. 
2017;23(33):5045–55. https://doi.org/10.2174/1381612823666170622103852.

9. Wang F, Xie X, Xing X, Sun X. Excitatory synaptic transmission in ischemic 
stroke: a New Outlet for classical neuroprotective strategies. Int J Mol Sci. 
2022;23(16). https://doi.org/10.3390/ijms23169381.

10. Sun Y, Feng X, Ding Y, Li M, Yao J, Wang L, et al. Phased treatment strategies 
for cerebral ischemia based on glutamate receptors. Front Cell Neurosci. 
2019;13:168. https://doi.org/10.3389/fncel.2019.00168.

11. Du J, Li XH, Li YJ. Glutamate in peripheral organs: Biology and pharmacology. 
Eur J Pharmacol. 2016;784:42–8. https://doi.org/10.1016/j.ejphar.2016.05.009.

12. Perfilova VN, Tyurenkov IN. [Glutamate metabotropic receptors: structure, 
localisation, Functions]. Usp Fiziol Nauk. 2016;47(2):98–112.

13. Liu Z, Vuohelainen V, Tarkka M, Tenhunen J, Lappalainen RS, Narkilahti 
S, et al. Glutamate release predicts ongoing myocardial ischemia of 
rat hearts. Scand J Clin Lab Investig. 2010;70(3):217–24. https://doi.
org/10.3109/00365511003663655.

14. Liu ZY, Zhong QW, Tian CN, Ma HM, Yu JJ, Hu S. NMDA receptor-driven 
calcium influx promotes ischemic human cardiomyocyte apoptosis through 
a p38 MAPK-mediated mechanism. J Cell Biochem. 2019;120(4):4872–82. 
https://doi.org/10.1002/jcb.27702.

15. Liu ZY, Hu S, Zhong QW, Tian CN, Ma HM, Yu JJ. N-Methyl-D-Aspartate 
receptor-driven calcium influx potentiates the adverse Effects of Myocardial 
Ischemia-Reperfusion Injury Ex vivo. J Cardiovasc Pharmacol. 2017;70(5):329–
38. https://doi.org/10.1097/fjc.0000000000000527.

16. Rzemieniec J, Castiglioni L, Gelosa P, Muluhie M, Mercuriali B, Sironi L. Nuclear 
receptors in myocardial and cerebral ischemia-mechanisms of action and 
therapeutic strategies. Int J Mol Sci. 2021;22(22). https://doi.org/10.3390/
ijms222212326.

17. Zhao H. The protective effect of ischemic postconditioning against ischemic 
injury: from the heart to the brain. J neuroimmune pharmacology: official 
J Soc NeuroImmune Pharmacol. 2007;2(4):313–8. https://doi.org/10.1007/
s11481-007-9089-8.

18. Ma Z, Chu L, Liu CF, Liu W, Wei J. Construction of a Joint Prediction Model for 
the Occurrence of Ischemic Stroke and Acute Myocardial Infarction Based on 
Bioinformatic Analysis. Disease markers 2022, 2022:5967131.doi:https://doi.
org/10.1155/2022/5967131.

19. Mansouri F, Seyed Mohammadzad MH. Effects of metformin on changes 
of miR-19a and miR-221 expression associated with myocardial infarction 
in patients with type 2 diabetes. Diabetes Metab Syndr. 2022;16(9):102602. 
https://doi.org/10.1016/j.dsx.2022.102602.

20. Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, et al. Glutamate excito-
toxicity: potential therapeutic target for ischemic stroke. Biomed pharma-
cotherapy = Biomedecine pharmacotherapie. 2022;151:113125. https://doi.
org/10.1016/j.biopha.2022.113125.

21. Morales TI, Stearns-Yoder KA, Hoffberg AS, Khan TK, Wortzel H, Brenner LA. 
Interactions of glutamate and gamma amino butyric acid with the insulin-
like growth factor system in traumatic brain injury (TBI) and/or cardiovascular 
accidents (CVA or stroke): a systematic review. Heliyon. 2022;8(3):e09037. 
https://doi.org/10.1016/j.heliyon.2022.e09037.

22. Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotrans-
mitter metabolism in Alzheimer’s disease: integration of the glutamate/
GABA-glutamine cycle. Prog Neurobiol. 2022;217:102331. https://doi.
org/10.1016/j.pneurobio.2022.102331.

23. Xie J, Hong K. [NMDA receptor and its role in cardiovascular diseases]. 
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2017;42(11):1316–20. https://doi.
org/10.11817/j.issn.1672-7347.2017.11.012.

24. Zhu L, Ye T, Tang Q, Wang Y, Wu X, Li H, et al. Exercise Preconditioning regu-
lates the toll-like receptor 4/Nuclear Factor-κB signaling pathway and reduces 
cerebral Ischemia/Reperfusion inflammatory Injury: a study in rats. J stroke 
Cerebrovasc diseases: official J Natl Stroke Association. 2016;25(11):2770–79. 
https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.033.

25. Nordeng J, Schandiz H, Solheim S, Åkra S, Hoffman P, Roald B et al. The 
Inflammasome Signaling pathway is actively regulated and related to myo-
cardial damage in Coronary Thrombi from patients with STEMI. Mediators of 
inflammation 2021, 2021:5525917doi:https://doi.org/10.1155/2021/5525917.

26. Battaglini D, Robba C, Lopes da Silva A, Dos Santos Samary C, Leme Silva 
P, Dal Pizzol F, et al. Brain-heart interaction after acute ischemic stroke. 
Crit Care (London England). 2020;24(1):163. https://doi.org/10.1186/
s13054-020-02885-8.

27. Scheitz JF, Stengl H, Nolte CH, Landmesser U, Endres M. Neurological update: 
use of cardiac troponin in patients with stroke. J Neurol. 2021;268(6):2284–92. 
https://doi.org/10.1007/s00415-020-10349-w.

28. Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol. 
2019;73(1):22–7. https://doi.org/10.1016/j.jjcc.2018.05.010.

29. Zhao Z, Lu Z, Sun X, Zhao T, Zhang J, Zhou C, et al. Global transcrip-
tomic profiling of cortex and striatum: Cerebral Injury after Ischemia/
Reperfusion in a mouse model. J stroke Cerebrovasc diseases: official J 
Natl Stroke Association. 2017;26(7):1622–34. https://doi.org/10.1016/j.
jstrokecerebrovasdis.2017.02.017.

30. Li G, LeiQian, Gu P, Fan D. Dexmedetomidine post-conditioning attenuates 
cerebral ischemia following asphyxia cardiac arrest through down-regulation 
of apoptosis and neuroinflammation in rats. BMC Anesthesiol. 2021;21(1):180. 
https://doi.org/10.1186/s12871-021-01394-7.

31. Guo S, Wu J, Zhou W, Liu X, Liu Y, Zhang J, et al. Identification and analysis of 
key genes associated with acute myocardial infarction by integrated bioin-
formatics methods. Medicine. 2021;100(15):e25553. https://doi.org/10.1097/
md.0000000000025553.

32. Liu K, Chen S, Lu R, Bioengineered. 2021, 12(1):7950–63.doi:https://doi.org/10.
1080/21655979.2021.1984004.

33. Harada S. [Role of orexin-A-mediated communication system between 
brain and peripheral tissues on the development of post-ischemic glucose 
intolerance-induced neuronal damage]. Yakugaku zasshi: Journal of the Phar-
maceutical Society of Japan. 2014;134(10):1055–60. https://doi.org/10.1248/
yakushi.14-00171.

34. Yi JH, Park SW, Kapadia R, Vemuganti R. Role of transcription factors in medi-
ating post-ischemic cerebral inflammation and brain damage. Neurochem 
Int. 2007;50(7–8):1014–27. https://doi.org/10.1016/j.neuint.2007.04.019.

35. Zhou M, Li D, Xie K, Xu L, Kong B, Wang X, et al. The short-chain fatty acid 
propionate improved ventricular electrical remodeling in a rat model 

http://dx.doi.org/10.1001/jama.2022.1025
http://dx.doi.org/10.1007/s11064-022-03697-8
http://dx.doi.org/10.1007/s11064-022-03697-8
http://dx.doi.org/10.31557/APJCP.2020.21.4.975
http://dx.doi.org/10.31557/APJCP.2020.21.4.975
http://dx.doi.org/10.34172/apb.2021.081
http://dx.doi.org/10.4103/jnrp.jnrp_143_17
http://dx.doi.org/10.1161/01.str.28.4.762
http://dx.doi.org/10.1161/01.str.28.4.762
http://dx.doi.org/10.1046/j.1440-1789.2001.00397.x
http://dx.doi.org/10.2174/1381612823666170622103852
http://dx.doi.org/10.3390/ijms23169381
http://dx.doi.org/10.3389/fncel.2019.00168
http://dx.doi.org/10.1016/j.ejphar.2016.05.009
http://dx.doi.org/10.3109/00365511003663655
http://dx.doi.org/10.3109/00365511003663655
http://dx.doi.org/10.1002/jcb.27702
http://dx.doi.org/10.1097/fjc.0000000000000527
http://dx.doi.org/10.3390/ijms222212326
http://dx.doi.org/10.3390/ijms222212326
http://dx.doi.org/10.1007/s11481-007-9089-8
http://dx.doi.org/10.1007/s11481-007-9089-8
http://dx.doi.org/10.1155/2022/5967131
http://dx.doi.org/10.1155/2022/5967131
http://dx.doi.org/10.1016/j.dsx.2022.102602
http://dx.doi.org/10.1016/j.biopha.2022.113125
http://dx.doi.org/10.1016/j.biopha.2022.113125
http://dx.doi.org/10.1016/j.heliyon.2022.e09037
http://dx.doi.org/10.1016/j.pneurobio.2022.102331
http://dx.doi.org/10.1016/j.pneurobio.2022.102331
http://dx.doi.org/10.11817/j.issn.1672-7347.2017.11.012
http://dx.doi.org/10.11817/j.issn.1672-7347.2017.11.012
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.033
http://dx.doi.org/10.1155/2021/5525917
http://dx.doi.org/10.1186/s13054-020-02885-8
http://dx.doi.org/10.1186/s13054-020-02885-8
http://dx.doi.org/10.1007/s00415-020-10349-w
http://dx.doi.org/10.1016/j.jjcc.2018.05.010
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.02.017
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.02.017
http://dx.doi.org/10.1186/s12871-021-01394-7
http://dx.doi.org/10.1097/md.0000000000025553
http://dx.doi.org/10.1097/md.0000000000025553
http://dx.doi.org/10.1080/21655979.2021.1984004
http://dx.doi.org/10.1080/21655979.2021.1984004
http://dx.doi.org/10.1248/yakushi.14-00171
http://dx.doi.org/10.1248/yakushi.14-00171
http://dx.doi.org/10.1016/j.neuint.2007.04.019


Page 21 of  22Liao et al. BMC Genomics          (2023) 24:300 

with myocardial infarction. Food Funct. 2021;12(24):12580–93. https://doi.
org/10.1039/d1fo02040d.

36. Wincewicz A, Sulkowski S. Stat proteins as intracellular regulators of resis-
tance to myocardial injury in the context of cardiac remodeling and targeting 
for therapy. Adv Clin experimental medicine: official organ Wroclaw Med 
Univ. 2017;26(4):703–08. https://doi.org/10.17219/acem/62693.

37. Nelson DP, Wechsler SB, Miura T, Stagg A, Newburger JW, Mayer JE Jr, et al. 
Myocardial immediate early gene activation after cardiopulmonary bypass 
with cardiac ischemia-reperfusion. Ann Thorac Surg. 2002;73(1):156–62. 
https://doi.org/10.1016/s0003-4975(01)03303-3.

38. Xue HM, Sun WT, Chen HX, He GW, Yang Q. Targeting IRE1α-JNK-c-Jun/
AP-1-sEH Signaling Pathway improves myocardial and coronary endothelial 
function following global myocardial Ischemia/Reperfusion. Int J Med Sci. 
2022;19(9):1460–72. https://doi.org/10.7150/ijms.74533.

39. Akaji K, Suga S, Fujino T, Mayanagi K, Inamasu J, Horiguchi T, et al. Effect of 
intra-ischemic hypothermia on the expression of c-Fos and c-Jun, and DNA 
binding activity of AP-1 after focal cerebral ischemia in rat brain. Brain Res. 
2003;975(1–2):149–57. https://doi.org/10.1016/s0006-8993(03)02622-2.

40. Bazan NG, Squinto SP, Braquet P, Panetta T, Marcheselli VL. Platelet-activating 
factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: 
intracellular PAF-binding sites and activation of a fos/jun/AP-1 transcriptional 
signaling system. Lipids. 1991;26(12):1236–42. https://doi.org/10.1007/
bf02536539.

41. Khaki-Khatibi F, Mansouri F, Hajahmadipoorrafsanjani M, Ghojazadeh 
M, Gholikhani-Darbroud R. Study of rs1137101 polymorphism of leptin 
receptor gene with serum levels of selenium and copper in the patients 
of non-ST-segment elevation myocardial infarction (NSTEMI) in an iranian 
population. Clin Biochem. 2018;60:64–70. https://doi.org/10.1016/j.
clinbiochem.2018.06.016.

42. Ngo LH, Austin Argentieri M, Dillon ST, Kent BV, Kanaya AM, Shields AE, et 
al. Plasma protein expression profiles, cardiovascular disease, and religious 
struggles among South Asians in the MASALA study. Sci Rep. 2021;11(1):961. 
https://doi.org/10.1038/s41598-020-79429-1.

43. Lee BC, Lee H, Park HK, Yang JS, Chung JH. Susceptibility for ischemic stroke 
in four constitution medicine is associated with polymorphisms of FCGR2A 
and IL1RN genes. Neurological research 2010, 32 Suppl 1:43–7.doi:https://doi.
org/10.1179/016164109x12537002793922.

44. Raaz-Schrauder D, Ekici AB, Klinghammer L, Stumpf C, Achenbach S, 
Herrmann M, et al. The proinflammatory effect of C-reactive protein on 
human endothelial cells depends on the FcγRIIa genotype. Thromb Res. 
2014;133(3):426–32. https://doi.org/10.1016/j.thromres.2013.12.030.

45. Calverley DC, Brass E, Hacker MR, Tsao-Wei DD, Espina BM, Pullarkat VA, et al. 
Potential role of platelet FcgammaRIIA in collagen-mediated platelet activa-
tion associated with atherothrombosis. Atherosclerosis. 2002;164(2):261–7. 
https://doi.org/10.1016/s0021-9150(02)00179-x.

46. Hossain MI, Kamaruddin MA, Cheng HC. Aberrant regulation and function 
of src family tyrosine kinases: their potential contributions to glutamate-
induced neurotoxicity. Clin Exp Pharmacol Physiol. 2012;39(8):684–91. 
https://doi.org/10.1111/j.1440-1681.2011.05621.x.

47. Zhai Y, Yang J, Zhang J, Yang J, Li Q, Zheng T. Src-family protein tyrosine 
kinases: a promising target for treating Cardiovascular Diseases. Int J Med Sci 
2021, 18(5):1216–24.doi:https://doi.org/10.7150/ijms.49241.

48. Sun Y, Chen Y, Zhan L, Zhang L, Hu J, Gao Z. The role of non-receptor protein 
tyrosine kinases in the excitotoxicity induced by the overactivation of 
NMDA receptors. Rev Neurosci. 2016;27(3):283–9. https://doi.org/10.1515/
revneuro-2015-0037.

49. Seko Y, Tobe K, Takahashi N, Kaburagi Y, Kadowaki T, Yazaki Y. Hypoxia and 
hypoxia/reoxygenation activate src family tyrosine kinases and p21ras in cul-
tured rat cardiac myocytes. Biochem Biophys Res Commun. 1996;226(2):530–
5. https://doi.org/10.1006/bbrc.1996.1389.

50. Chu Q, Zhang Y, Zhong S, Gao F, Chen Y, Wang B, et al. N-n-Butyl Haloperidol 
Iodide ameliorates oxidative stress in Mitochondria Induced by Hypoxia/
Reoxygenation through the mitochondrial c-Jun N-Terminal Kinase/Sab/Src/
Reactive oxygen species pathway in H9c2 cells. Oxidative Med Cell Longev. 
2019;2019:7417561. https://doi.org/10.1155/2019/7417561.

51. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase 
pathway: a common target for both ischemic preconditioning and postcon-
ditioning. Trends in cardiovascular medicine 2005, 15(2):69–75doi:https://doi.
org/10.1016/j.tcm.2005.03.001.

52. Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-like 
receptor signaling pathways: Novel therapeutic targets for Cerebrovascular 
Disorders. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22116153.

53. Jia SJ, Niu PP, Cong JZ, Zhang BK, Zhao M. TLR4 signaling: a potential thera-
peutic target in ischemic coronary artery disease. Int Immunopharmacol. 
2014;23(1):54–9. https://doi.org/10.1016/j.intimp.2014.08.011.

54. Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, 
et al. Th17 cells transdifferentiate into regulatory T cells during resolution 
of inflammation. Nature. 2015;523(7559):221–5. https://doi.org/10.1038/
nature14452.

55. Yu S, Cui W, Han J, Chen J, Tao W. Longitudinal change of Th1, Th2, and Th17 
cells and their relationship between cognitive impairment, stroke recur-
rence, and mortality among acute ischemic stroke patients. J Clin Lab Anal. 
2022;36(7):e24542. https://doi.org/10.1002/jcla.24542.

56. Blanco-Dominguez R, Sanchez-Diaz R, de la Fuente H, Jimenez-Borreguero 
LJ, Matesanz-Marin A, Relano M, et al. A Novel circulating MicroRNA for the 
detection of Acute Myocarditis. N Engl J Med. 2021;384(21):2014–27. https://
doi.org/10.1056/NEJMoa2003608.

57. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells com-
ing of age. Nat Immunol. 2018;19(2):108–19. https://doi.org/10.1038/
s41590-017-0022-x.

58. Ge Y, Cheng D, Jia Q, Xiong H, Zhang J. Mechanisms underlying the role of 
myeloid-derived suppressor cells in clinical Diseases: good or bad. Immune 
Netw. 2021;21(3):e21. https://doi.org/10.4110/in.2021.21.e21.

59. Yao T, Lu W, Zhu J, Jin X, Ma G, Wang Y, et al. Role of CD11b + Gr-1 + myeloid 
cells in AGEs-induced myocardial injury in a mice model of acute myocardial 
infarction. Int J Clin Exp Pathol. 2015;8(3):3238–49.

60. Yu Z, Ling Y, Xu Q, Cao Y, Tang S, Fu C. Blocking the A(2B) adenosine receptor 
alleviates myocardial damage by inhibiting spleen-derived MDSC mobilisa-
tion after acute myocardial infarction. Ann Med. 2022;54(1):1616–26. https://
doi.org/10.1080/07853890.2022.2084153.

61. Kawano T, Shimamura M, Nakagami H, Kanki H, Sasaki T, Mochizuki H. Tempo-
ral and spatial profile of polymorphonuclear myeloid-derived suppressor cells 
(PMN-MDSCs) in ischemic stroke in mice. PLoS ONE. 2019;14(5):e0215482. 
https://doi.org/10.1371/journal.pone.0215482.

62. Hofmann U, Frantz S. Role of lymphocytes in myocardial injury, healing, and 
remodeling after myocardial infarction. Circ Res. 2015;116(2):354–67. https://
doi.org/10.1161/CIRCRESAHA.116.304072.

63. Wang YP, Xie Y, Ma H, Su SA, Wang YD, Wang JA, et al. Regulatory T lympho-
cytes in myocardial infarction: a promising new therapeutic target. Int J 
Cardiol. 2016;203:923–8. https://doi.org/10.1016/j.ijcard.2015.11.078.

64. Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, et al. Regulatory T cells in 
cardiovascular diseases. Nat Rev Cardiol. 2016;13(3):167–79. https://doi.
org/10.1038/nrcardio.2015.169.

65. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. 
NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids 
Res. 2013;41(Database issue):D991–5. https://doi.org/10.1093/nar/gks1193.

66. Davis S, Meltzer PS. GEOquery: a bridge between the Gene expression Omni-
bus (GEO) and BioConductor. Bioinf (Oxford England). 2007;23(14):1846–7. 
https://doi.org/10.1093/bioinformatics/btm254.

67. Muse ED, Kramer ER, Wang H, Barrett P, Parviz F, Novotny MA, et al. A 
whole blood molecular signature for Acute myocardial infarction. Sci Rep. 
2017;7(1):12268. https://doi.org/10.1038/s41598-017-12166-0.

68. Suresh R, Li X, Chiriac A, Goel K, Terzic A, Perez-Terzic C, et al. Transcriptome 
from circulating cells suggests dysregulated pathways associated with long-
term recurrent events following first-time myocardial infarction. J Mol Cell 
Cardiol. 2014;74:13–21. https://doi.org/10.1016/j.yjmcc.2014.04.017.

69. Barr TL, Conley Y, Ding J, Dillman A, Warach S, Singleton A, et al. Genomic 
biomarkers and cellular pathways of ischemic stroke by RNA gene expres-
sion profiling. Neurology. 2010;75(11):1009–14. https://doi.org/10.1212/
WNL.0b013e3181f2b37f.

70. Krug T, Gabriel JP, Taipa R, Fonseca BV, Domingues-Montanari S, Fernandez-
Cadenas I, et al. TTC7B emerges as a novel risk factor for ischemic stroke 
through the convergence of several genome-wide approaches. J Cereb 
blood flow metabolism: official J Int Soc Cereb Blood Flow Metabolism. 
2012;32(6):1061–72. https://doi.org/10.1038/jcbfm.2012.24.

71. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.

72. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for 
removing batch effects and other unwanted variation in high-throughput 
experiments. Bioinf (Oxford England). 2012;28(6):882–3. https://doi.
org/10.1093/bioinformatics/bts034.

73. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. 
Curr protocols Bioinf. 2016;54(1301). https://doi.org/10.1002/cpbi.5. The 

http://dx.doi.org/10.1039/d1fo02040d
http://dx.doi.org/10.1039/d1fo02040d
http://dx.doi.org/10.17219/acem/62693
http://dx.doi.org/10.1016/s0003-4975(01)03303-3
http://dx.doi.org/10.7150/ijms.74533
http://dx.doi.org/10.1016/s0006-8993(03)02622-2
http://dx.doi.org/10.1007/bf02536539
http://dx.doi.org/10.1007/bf02536539
http://dx.doi.org/10.1016/j.clinbiochem.2018.06.016
http://dx.doi.org/10.1016/j.clinbiochem.2018.06.016
http://dx.doi.org/10.1038/s41598-020-79429-1
http://dx.doi.org/10.1179/016164109x12537002793922
http://dx.doi.org/10.1179/016164109x12537002793922
http://dx.doi.org/10.1016/j.thromres.2013.12.030
http://dx.doi.org/10.1016/s0021-9150(02)00179-x
http://dx.doi.org/10.1111/j.1440-1681.2011.05621.x
http://dx.doi.org/10.7150/ijms.49241
http://dx.doi.org/10.1515/revneuro-2015-0037
http://dx.doi.org/10.1515/revneuro-2015-0037
http://dx.doi.org/10.1006/bbrc.1996.1389
http://dx.doi.org/10.1155/2019/7417561
http://dx.doi.org/10.1016/j.tcm.2005.03.001
http://dx.doi.org/10.1016/j.tcm.2005.03.001
http://dx.doi.org/10.3390/ijms22116153
http://dx.doi.org/10.1016/j.intimp.2014.08.011
http://dx.doi.org/10.1038/nature14452
http://dx.doi.org/10.1038/nature14452
http://dx.doi.org/10.1002/jcla.24542
http://dx.doi.org/10.1056/NEJMoa2003608
http://dx.doi.org/10.1056/NEJMoa2003608
http://dx.doi.org/10.1038/s41590-017-0022-x
http://dx.doi.org/10.1038/s41590-017-0022-x
http://dx.doi.org/10.4110/in.2021.21.e21
http://dx.doi.org/10.1080/07853890.2022.2084153
http://dx.doi.org/10.1080/07853890.2022.2084153
http://dx.doi.org/10.1371/journal.pone.0215482
http://dx.doi.org/10.1161/CIRCRESAHA.116.304072
http://dx.doi.org/10.1161/CIRCRESAHA.116.304072
http://dx.doi.org/10.1016/j.ijcard.2015.11.078
http://dx.doi.org/10.1038/nrcardio.2015.169
http://dx.doi.org/10.1038/nrcardio.2015.169
http://dx.doi.org/10.1093/nar/gks1193
http://dx.doi.org/10.1093/bioinformatics/btm254
http://dx.doi.org/10.1038/s41598-017-12166-0
http://dx.doi.org/10.1016/j.yjmcc.2014.04.017
http://dx.doi.org/10.1212/WNL.0b013e3181f2b37f
http://dx.doi.org/10.1212/WNL.0b013e3181f2b37f
http://dx.doi.org/10.1038/jcbfm.2012.24
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.1093/bioinformatics/bts034
http://dx.doi.org/10.1093/bioinformatics/bts034
http://dx.doi.org/10.1002/cpbi.5


Page 22 of  22Liao et al. BMC Genomics          (2023) 24:300 

GeneCards Suite: From Gene Data Mining to Disease Genome Sequence 
Analyses.

74. Gene Ontology Consortium. : going forward. Nucleic acids research 2015, 
43(Database issue):D1049-56.doi:https://doi.org/10.1093/nar/gku1179.

75. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.

76. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal 
enrichment tool for interpreting omics data. Innov (Cambridge (Mass)). 
2021;2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141.

77. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. 
STRING v11: protein-protein association networks with increased coverage, 
supporting functional discovery in genome-wide experimental datasets. 
Nucleic Acids Res. 2019;47(D1):D607–d13. https://doi.org/10.1093/nar/
gky1131.

78. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: 
a software environment for integrated models of biomolecular interaction 
networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/
gr.1239303.

79. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub 
objects and sub-networks from complex interactome. BMC Syst biology 2014 
8 Suppl 4(Suppl 4):S11.doi:https://doi.org/10.1186/1752-0509-8-s4-s11.

80. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. 
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype 
Relationships and Predictors of response to checkpoint blockade. Cell Rep. 
2017;18(1):248–62. https://doi.org/10.1016/j.celrep.2016.12.019.

81. Hänzelmann S, Castelo R, Guinney J. BMC Bioinformatics. 2013;14:7. https://
doi.org/10.1186/1471-2105-14-7. GSVA: gene set variation analysis for micro-
array and RNA-seq data.

82. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded 
reference database of human and mouse transcriptional regulatory interac-
tions. Nucleic Acids Res. 2018;46(D1):D380–d86. https://doi.org/10.1093/nar/
gkx1013.

83. Vafaee F, Krycer JR, Ma X, Burykin T, James DE, Kuncic Z. PLoS ONE. 
2016;11(10):e0164535. https://doi.org/10.1371/journal.pone.0164535. ORTI: 
An Open-Access Repository of Transcriptional Interactions for Interrogating 
Mammalian Gene Expression Data.

84. Bovolenta LA, Acencio ML, Lemke N. HTRIdb: an open-access database for 
experimentally verified human transcriptional regulation interactions. BMC 
Genomics. 2012;13:405. https://doi.org/10.1186/1471-2164-13-405.

85. Friedman J, Hastie T, Tibshirani R. Regularization Paths for generalized Linear 
Models via Coordinate Descent. J Stat Softw. 2010;33(1):1–22.

86. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an 
open-source package for R and S + to analyze and compare ROC curves. 
BMC Bioinformatics. 2011;12:77. https://doi.org/10.1186/1471-2105-12-77.

87. Gorbunov AS, Maslov LN, Jaggi AS, Singh N, De Petrocellis L, Boshchenko AA, 
et al. Physiological and pathological role of TRPV1, TRPV2 and TRPV4 channels 
in heart. Curr Cardiol Rev. 2019;15(4):244–51. https://doi.org/10.2174/15734
03x15666190307112326.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

http://dx.doi.org/10.1093/nar/gku1179
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1016/j.xinn.2021.100141
http://dx.doi.org/10.1093/nar/gky1131
http://dx.doi.org/10.1093/nar/gky1131
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1186/1752-0509-8-s4-s11
http://dx.doi.org/10.1016/j.celrep.2016.12.019
http://dx.doi.org/10.1186/1471-2105-14-7
http://dx.doi.org/10.1186/1471-2105-14-7
http://dx.doi.org/10.1093/nar/gkx1013
http://dx.doi.org/10.1093/nar/gkx1013
http://dx.doi.org/10.1371/journal.pone.0164535
http://dx.doi.org/10.1186/1471-2164-13-405
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.2174/1573403x15666190307112326
http://dx.doi.org/10.2174/1573403x15666190307112326

	Bioinformatics and experimental analyses of glutamate receptor and its targets genes in myocardial and cerebral ischemia
	Abstract
	Introduction
	Results
	Project flow chart
	DEG analysis
	Identification of intersecting genes
	Functional enrichment analysis of intersecting genes
	Construction of intersecting gene interaction networks
	Immunological infiltration analysis
	Construction of TF-intersegmental gene networks and pathway intersegmental/immune gene networks
	Model construction and validation
	Blood samples to verify the expression of hub genes
	Cellular model to verify the expression of hub genes

	Discussion
	Conclusions
	Materials and methods
	Data acquisition and acquisition of GLuR-related genes
	DEG and gene enrichment analyses (GO and KEGG)
	Intersectional gene interaction network construction
	Immuno-infiltration analysis
	Intersectional gene-TF, pathway intersectional gene, and immune gene interaction network construction
	LASSO model construction
	Collection of human blood samples
	RT-qPCR validation
	Establishment of cell culture and hypoxia-reoxygenation model
	CCK-8 for cell viability assay
	Flow cytometry
	Immunofluorescence
	Statistical analysis

	References


