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Abstract 

Background  Genetic barcoding provides a high-throughput way to simultaneously track the frequencies of large 
numbers of competing and evolving microbial lineages. However making inferences about the nature of the evolu-
tion that is taking place remains a difficult task.

Results  Here we describe an algorithm for the inference of fitness effects and establishment times of beneficial 
mutations from barcode sequencing data, which builds upon a Bayesian inference method by enforcing self-con-
sistency between the population mean fitness and the individual effects of mutations within lineages. By testing our 
inference method on a simulation of 40,000 barcoded lineages evolving in serial batch culture, we find that this new 
method outperforms its predecessor, identifying more adaptive mutations and more accurately inferring their muta-
tional parameters.

Conclusion  Our new algorithm is particularly suited to inference of mutational parameters when read depth is low. 
We have made Python code for our serial dilution evolution simulations, as well as both the old and new inference 
methods, available on GitHub (https://​github.​com/​Fangf​eiLi05/​FitMu​t2), in the hope that it can find broader use by 
the microbial evolution community.
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Background
Clonal interference is a phenomenon that occurs in 
large asexual populations, in which multiple beneficial 
mutations arise contemporaneously and compete with 
each other without recombining onto the same genetic 
background [1–5]. Although these mutations may later 
accumulate onto the same genomes due to a high muta-
tion rate [6], clonal interference remains an important 
evolutionary force across a wide range of timescales. 

Experimental evolution in large microbial populations, 
where the emergence of beneficial mutations is common 
enough that clonal interference is widespread, has been 
widely used to explore this regime of adaptation [7–11]. 
In such experiments, microbes such as fungi, bacteria, 
or viruses are propagated for hundreds (or thousands) of 
generations in a controlled experimental system, typically 
either by serial transfer of batch cultures or continuous 
culture. Adaptive mutations that emerge during such an 
experiment can be identified by whole-genome sequenc-
ing (WGS) of multiple isolates from the evolved popula-
tions [12–15].

However, this approach has limitations. Firstly, it can-
not provide information about the occurrence time and 
fitness effect of mutations. Secondly, it can only iden-
tify the subset of adaptive mutations that reaches high 
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frequency, which tends to consist of those which arose 
earlier or provide a larger fitness benefit. Although the 
minimum frequency at which the mutation is detect-
able can be lowered by sequencing more isolates, the 
high cost of WGS (in comparison to amplicon sequenc-
ing) quickly makes this method impractical for identify-
ing low-frequency mutations. An alternative to WGS for 
multiple isolates at the end of an evolution experiment 
is to conduct WGS for the whole population at multiple 
time points during the evolution [11, 16, 17]. With such a 
time series, one can roughly estimate the occurrence time 
of some of the mutations. However, this method is more 
expensive, does not provide the fitness effects of muta-
tions, and fails to identify mutations at a frequency lower 
than ∼ 1% under typical financial constraints (assuming a 
single flow cell yields ∼ 109 read pairs, which is sufficient 
to sequence genomes pooled from ∼ 10 timepoints to 
∼ 100× depth) and due to sequencing and/or PCR errors.

To better explore these low-frequency dynamics, a 
high-resolution lineage tracking system was developed in 
S. cerevisiae, based on a genetic barcoding platform [18]. 
This system is capable of detecting thousands of initial 
adaptive mutations in an originally clonal evolving pop-
ulation, by simultaneously monitoring the relative fre-
quencies of ∼ 5× 105 lineages, each defined by a unique 
genetic barcode of 20 nucleotides and consisting of ∼ 100 
cells initially in a typical experiment [18]. With the high-
resolution information on lineage frequencies from the 
barcode counts at multiple time points, one can estimate 
fitness effects and establishment times of adaptive muta-
tions using a statistical framework based on the theory 
of branching processes and Bayesian inference (as done 
in [18]). Here we refer to this algorithm as FitMut1. 
FitMut1 can detect adaptive mutations at frequencies 
higher than ∼ 10−6 from barcode frequencies over time, 
and can be followed by WGS for clones with different 
barcodes for further characterization of mutations at the 
genotypic level. For this step, isolating clones is relatively 
straightforward since each lineage contains an unique 
barcode that can be easily recognized by Sanger sequenc-
ing [19]. In addition to S. cerevisiae, other microbes 
such as E. coli have been studied with similar barcoding 
approaches [20, 21].

It should be emphasized that not all beneficial muta-
tions are detectable. A minimum requirement for a 
mutation to be detected is its establishment [2, 18]. 
For a beneficial mutation that occurs initially in a sin-
gle cell and with fitness effect s, there is a substantial 
probability of going extinct soon after occurring, due 
to random fluctuations, even though the mutant con-
fers a growth advantage. However, if a mutant gets 
“lucky enough” (with the probability proportional to 

s) to reach a certain size (proportional to 1/s), it will 
grow exponentially with rate s thereafter. In this case, 
we say that the mutation carried by the mutant has 
established. By extrapolating its exponential growth 
backward in time until the mutant population crosses 
the rough boundary between stochastic and determin-
istic dynamics, we can define an establishment time as 
the time after which the mutant cells effectively grows 
deterministically. Establishment time roughly reflects 
the occurrence time of a mutation, up to uncertainty on 
the order of 1/s.

Nevertheless, the exponential growth rate of an 
adaptive lineage (in which an adaptive mutation has 
established) cannot be measured directly to yield the 
fitness effect of the mutation. This is because 1) the 
mutation must sweep through the entire lineage before 
dynamics of the lineage reflect those of the mutation, 
and 2) the lineage trajectory in a well-mixed environ-
ment bends over as it competes against the increasing 
population mean fitness. Therefore, the mean fitness 
is required for accurately characterizing the dynamics 
of adaptive lineages and further inferring establish-
ment times and fitness effects of mutations. However, 
it is difficult to measure the mean fitness directly. In 
FitMut1, the mean fitness is estimated by monitor-
ing the decrease in frequency of neutral lineages (those 
without an established mutation) between consecutive 
sequencing time points. However, FitMut1 fails when 
the number of available neutral lineages is insufficient, 
which can happen when the sequencing read depth is 
low, the bottleneck size (number of cells per barcode at 
the bottleneck) is small, or the mean fitness increases 
rapidly.

In this work, we describe an improved algorithm, 
FitMut2, which iteratively estimates the mean fitness 
and characterizes the adaptive lineages in an evolving 
population, without relying on the number of available 
neutral lineages. This makes FitMut2 less impaired 
by low sequencing read depth, small bottleneck size, or 
rapidly increasing mean fitness, and thus more robust 
and accurate than FitMut1. To assess the perfor-
mances of both algorithms, we ran FitMut1 and Fit-
Mut2 on the same simulated dataset and compared 
their outputs with the ground truth.

We first introduce FitMut2, which includes a sum-
mary of FitMut1 and the modifications that consti-
tute FitMut2 (Methods section). In addition, we also 
discuss the simulated data that we used to benchmark 
the performance of FitMut2 and compare it to Fit-
Mut1 (Methods section). We then evaluate the perfor-
mance of FitMut2 on simulated data and compare it 
with FitMut1 on the same dataset (Results section). 
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Finally, we discuss the limitations of FitMut2 and 
possible future improvements (Discussion section).

Methods
Algorithm overview
FitMut1 models the dynamics of lineage growth 
with a stochastic branching process, thereby associat-
ing with each lineage a probability distribution of the 
number of reads that map to its barcode, conditional 
on this read number at a previous time point. In addi-
tion to the demographic stochasticity of births and 
deaths, this distribution considers various sources of 
noise: cell transfer, DNA extraction, PCR and sequenc-
ing, which are represented by a phenomenological 
parameter κk for each time point tk (details in Supple-
ment S4). Our noise model is consistent with a branch-
ing process, wherein (conditional on the read number 
at tk−1 ) the variance in read number at tk is propor-
tional to the mean read number at tk , with constant of 
proportionality 2κk . In FitMut1, first the mean fitness 
of the population s̄(tk) and the noise parameter κk are 
estimated for all sequencing time points tk by monitor-
ing the decline of neutral lineages, which are assumed 
to constitute the majority of lineages at intermediate 
read number. Assuming that each lineage contains a 
mutation with fitness effect s and establishment time 
τ , the posterior likelihood of each lineage trajectory 
data is calculated, and maximized over s and τ to find 
the values for which the observed data are most likely. 
FitMut1 relies on neutral lineages for estimating the 
mean fitness, which then influences all subsequent 
steps. Although this works well when the number of 
neutral lineages is large (e.g. at the beginning of a typi-
cal experiment), the number of neutral lineages falls 
dramatically during the evolution as beneficial muta-
tions increase in frequency in the population, and the 
efficacy of FitMut1 thus decreases.

Instead of relying on neutral lineages, FitMut2 
uses an iterative approach to self-consistently infer 
the population mean fitness together with s and τ 
for each putative mutation. This approach does not 
require a large number of neutral lineages to be pre-
sent and enforces that the individual mutations and 
their frequencies are consistent with the inferred 
population mean fitness. FitMut2 only relies on the 
number of putatively neutral lineages to estimate the 
noise parameter κk at each sequencing time point, and 
we have found that the inference results are not very 
sensitive to the value of this parameter. With this self 
consistent method, FitMut2 identifies more adap-
tive mutations and obtains the probability of a lineage 
being adaptive conditional on the data. By contrast, 
FitMut1 provides a ratio of posterior likelihoods, 

which is not required to be between 0 and 1, and is 
harder to interpret. The algorithm of FitMut2 pro-
ceeds as follows: 

1	 For each sequenced time point: Initialize the mean 
fitness to 0 and calculate κk from the empirical distri-
bution of read numbers assigned to putatively neutral 
lineages at that time.

2	 For each lineage: Use Bayes’ theorem to calculate 
the probability that the lineage is adaptive given 
the observed read number trajectory, under a prior 
distribution over fitness effect s and establishment 
time τ (the choice of prior is discussed further in 
the Discussion section). If the probability is greater 
than 0.5, designate the lineage adaptive, and maxi-
mize the posterior likelihood over s and τ to find 
the most likely fitness effect and establishment time 
under the assumed prior (see details in details in 
Supplement S5).

3	 Estimate the number of mutant cells over time for 
each identified adaptive lineage, using the inferred 
fitness effect and establishment time of the mutation. 
Update the mean fitness accordingly.

4	 Repeat steps 2 and 3 until the estimated mean fitness 
at each sequencing time point converges to a self-
consistent value.

By design, the mean fitness s̄(tk) at time point tk must 
agree with the mean fitness from the adaptive lineages 
and their frequencies, given by i sif

mut
i,k  where si is the 

fitness effect of the mutation of lineage i and f mut
i,k  is the 

frequency of mutant cells at time point tk . Although these 
two ways of estimating the mean fitness are shown to 
roughly agree in FitMut1 [18], their equality is explic-
itly enforced here, and it improves the algorithm’s accu-
racy when the read depth is low or the mean fitness is 
rapidly increasing.

Simulation
Numerical simulation is an effective method to evaluate 
performance of the algorithm when available experimen-
tal data are limited. Here, we evaluated the performance 
of FitMut2 using a simulated dataset, which allows us 
to compare the inference result with the ground truth. 
Our numerical simulations consider the entire process 
of a barcode-sequencing (bar-seq) evolution experiment 
of a barcoded cell population using serial batch cultures 
(Fig.  1). Starting from a single cell per barcode, line-
ages first go through 16 generations of pregrowth with-
out competition, during which mutations can and do 
occur. This step simulates the cell growth on agar plates 
after the barcode transformation but before the evolu-
tion experiment begins. Each cell into which a barcode 
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was successfully transformed can grow into a colony on 
an agar plate, with all cells in the colony containing the 
same barcode. The pregrowth phase includes two pro-
cesses which are inevitable in the experimental process 
of building a barcode library: 1) the growth noise on agar 
plates, which generates a non-uniform distribution of lin-
eage sizes and 2) the occurrence of mutations before the 
evolution experiment commences. Both of these features 
can significantly influence the evolutionary dynamics. 
After being scraped from agar plates, cells of the colonies 
are pooled together and grown up overnight before being 
sampled and inoculated into the medium. In the simula-
tion, we ignore this process, because it includes very few 
generations of growth.

To initialize the evolution experiment with a barcode 
library consisting of L unique barcodes, 100L cells are 
sampled from the population after the pregrowth. This 
yields a mean of 100 cells per barcode, which roughly 
corresponds to parameters commonly used in an experi-
ment. The barcoded population is then evolved through 
pooled growth by serial batch culture. Each growth cycle 
consists of g generations of stochastic doubling, after 
which a fraction 1/2g of the cells from the end of the 
growth cycle is sampled and transferred to another fresh 
culture. This process of growth and dilution, with B cells 
transferred at each bottleneck, can be thought of as con-
stant-population process with an effective population size 

given by gB and a per-generation offspring number vari-
ance 2c ≈ 2 (more details discussed in Supplement S3). 
This effective description is very useful for quantitatively 
matching theory to experiment, and is essential for the 
functioning of both FitMut2 and FitMut1. Hereafter, 
we use the term effective lineage size to refer to the line-
age or population size that would be necessary to obtain 
the same statistics of lineage fluctuations if the total 
number of cells was constant in time rather than growing 
by a factor of 2g every cycle.

Although our simulations can keep track of an arbi-
trary number of mutations per cell, we have not pursued 
the inference of these later mutational effects in the cur-
rent work. Instead we make the simplifying hypothesis 
that at most one beneficial mutation occurs per cell. In 
light of evidence suggesting that the distribution of fit-
ness effects (DFE) of the second mutation in a cell is dif-
ferent from that of the first mutation, due to epistasic or 
physiological constraints [22], this hypothesis allows us 
to focus on initial adaptive mutations. Although each 
simulated individual can obtain at most one benefi-
cial mutation, only ∼ 3% of lineages contain more than 
one established mutation in our simulations; when this 
occurs we record the “true” fitness of the lineage as the s 
of the mutation that generates the maximum number of 
mutant cells by the end of the evolution. A mutation that 
occurred with fitness effect s is counted as established if, 

Fig. 1  Procedure of a complete barcoded evolution experiment with analysis included. Steps 1 to 4 depict the procedure of a typical bar-seq 
evolution experiment, which gives rise to a series of lineage trajectories over the course of the experiment (Step 5), with each lineage defined by 
one barcode. Different colors represent lineages with different barcodes. Step 6 is a schematic of how we use these trajectories to identify adaptive 
mutations that occurred in the evolution experiment, and self-consistently infer the fitness effects and establishment times of individual mutations 
together with the mean fitness of the population (Methods section)
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at any time during the evolution, the mutant’s instantane-
ous frequency reaches 2c/(N (s − s̄(t))) . We have found 
that typically, on the order of 20 high fitness mutations 
are sufficient to account for the majority of the mean fit-
ness increase over the simulation. However we are able 
to identify many more mutations than these, though they 
do not contribute substantially to the mean fitness.

At each cell-transfer time point over the course of the 
experiment, 500L cells are sampled from the saturated 
population to simulate the process of genome DNA 
extraction, and go through 25 rounds of stochastic dou-
bling, to simulate PCR with 25 cycles (a larger number 
of cycles will not have a significantly larger effect on the 
PCR noise, since only the initial doublings contribute to 
the stochasticity). Then an extra sampling of size rL  is 
performed after PCR  to simulate the noise introduced 
by sequencing, with r being the average sequencing read 
number per lineage per time point.

The entire process generates a lineage trajectory over 
time for each barcode. The simulation includes five 
potential sources of noise: cell growth, sampling during 
cell transfers, DNA extraction, PCR, and sequencing. 
Each step is modeled by a layer of Poisson noise (includ-
ing for each generation of cell growth and each cycle 
of PCR). To test the performance of FitMut2, we ran 

simulations with four different underlying DFEs denoted 
by µ(s) , where µ(s)ds is the rate of mutations with fit-
ness effect in the interval (s, s + ds) (details of the DFEs 
we simulated are in Supplement S8). The total benefi-
cial mutation rate is given by Ub =

∫∞

0
µ(s)ds . For each 

simulation, a population of 4 × 104 single cells undergoes 
16 generations of pregrowth before all these lineages are 
pooled and grown by serial batch culture for T = 112 
generations, with g = 8 . For each of four DFEs, sequenc-
ing is simulated with four different average read numbers 
per lineage r = 10, 20, 50, 100.

Inference is performed with the  same prior distribu-
tion for all conditions: p(s, τ ) = ni,0µ̃(s)s/c . Note that 
∫

p(s, τ )dsdτ is approximately the number of established 
mutations per lineage. The factor of s/c arises from estab-
lishment probability ∼ s/c in the branching process 
model, and ni,0 is the effective size of lineage i at t0 . µ̃(s) is 
the prior we take for the DFE, which is µ̃(s) = Ub�

−1e−s/� 
with � = 0.1 and Ub = 10−5 throughout this paper.

Figure S1 shows trajectories of all lineages in one of our 
simulations with an exponential DFE and r = 100 , corre-
sponding to the 1st row and 4th column in Fig. 2.

Fig. 2  Iterative inference of the mean fitness. Comparison of the true mean fitness s̄(t) with the mean fitness inferred by both FitMut1 and 
FitMut2, for different sequencing depths (columns) and µ(s) (rows). Each row in the 4× 4 array corresponds to one simulation of the evolution, 
with the columns differing by the average simulated sequencing depth per time point per lineage. The 5th column shows the DFE µ(s) used in 
each simulation condition, and the prior µ̃(s) used for both FitMut2 and FitMut1 across all simulated DFEs
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Results
Fitness per generation vs. fitness per cycle
Before presenting the results of running FitMut2 on 
our simulated dataset, we discuss an important aspect of 
interpretation that should be kept in mind whenever one 
is analyzing data from serial batch culture. How should 
we interpret the parameters output by our inference algo-
rithm? Specifically, what is the meaning of the fitness 
increment s obtained by a particular lineage in a biologi-
cal sense? Previous work has explored the importance 
of variable growth conditions over a single cycle of batch 
culture in creating a much more complex environment 
than meets the eye [23]. In particular, selection pressure 
varies over a single cycle of batch culture as the environ-
ment  shifts dramatically according to the metabolic pro-
cesses being performed. Within a single cycle of batch 
culture spanning g generations, the relevant quantity for 
the evolutionary dynamics is not fitness per generation, 
but rather fitness per cycle. In fact, many adaptive muta-
tions may have time-varying fitness effects over a single 
cycle. In S. cerevisiae, which undergoes multiple meta-
bolic shifts over a single growth cycle, a beneficial muta-
tion can be neutral during the first seven generations 
(fermentation), but have a large fitness advantage during 
the last generation of the cycle (respiration). Therefore it 
is misleading to interpret results in terms of a fitness per 
generation: we cannot define a singular notion of “fitness” 
without accounting for the interaction between organ-
ism and environment. One should avoid claiming more 
granularity than one’s highest temporal resolution, which 
here is the length of a single batch culture cycle. Since 
the theory on which FitMut2 is based considers a sim-
pler effective model without time-varying fitness, fitness 
effect per generation is used in the branching process 
model we use. However, the trouble arises if the theory is 
taken too seriously in interpreting experimental results. 
Although we report results in terms of fitness per gen-
eration in our inference algorithm for both the popula-
tion mean s̄(t) and for adaptive mutation s, we emphasize 
that in real experimental conditions there is little reason 
to believe that these values correspond to anything other 
than an average quantity across a cycle that depends on 
experimental setup and conditions.

FitMut2 robustly estimates mean fitness
FitMut2 and FitMut1 differ essentially in how they 
infer the population mean fitness — this then leads to 
differences in the inference of mutational parameters. 
Figure  2 shows the mean fitness trajectories inferred 
by both FitMut2 and FitMut1. The number of itera-
tions required to converge upon a self-consistent mean 
fitness is larger for simulations with a wider DFE, but 
rarely exceeds 40, and convergence appears monotonic. 
FitMut1 estimates the mean fitness accurately when 
sequencing read depth is high (i.e. r = 100 ), and the 
mean fitness increases slowly (all time points for DFEs 
with small variance, or early time points for DFEs with 
large variance). However, for low sequencing read depth 
( r = 10 or 20), or as the mean fitness increases rapidly 
(later time points for DFEs with large variance), Fit-
Mut1 begins to perform poorly.

FitMut2 accurately estimates mutational parameters
We examined how accurately FitMut2 estimates fitness 
effects and establishment times by comparing its infer-
ences to the truth from our simulated dataset (Fig.  3). 
While numerous adaptive mutations are not detected by 
either algorithm, FitMut2 identifies hundreds of adap-
tive mutations missed by FitMut1 at low read number 
r = 10 and a wide DFE (Results section), while maintain-
ing a negligible false positive rate (Fig.  5B). For adap-
tive mutations detected by each algorithm, we compare 
inferred values of parameters to the truth in the simula-
tion. For the adaptive mutations detected by FitMut2, 
there is a very strong correlation between the true fitness 
effect and the inferred value, and fairly strong correla-
tion between the true occurrence times and the inferred 
establishment times. For comparison, we also show the 
results from FitMut1 in Fig. S2, and we see that our 
new algorithm significantly outperforms the old algo-
rithm. To further assess inference accuracy for mutations 
identified as adaptive by both FitMut2 and FitMut1, 
we compared the estimation error between FitMut2 
and FitMut1 (Fig.  4). FitMut2 has improved accu-
racy over FitMut1, particularly for those simulations 
in which FitMut1 could not estimate the mean fitness 
accurately. This improved accuracy is manifested in the 
error for FitMut2 typically having smaller magnitude 
than for FitMut1, even when they both make errors. 
For the simulations in which FitMut1 underestimates 

(See figure on next page.)
Fig. 3  Inference accuracy of A fitness effects and B establishment times (FitMut2). Comparison of inferred s and τ with simulation. Each panel 
in the 4× 4 array corresponds to one simulation (Methods section). Each point is an adaptive mutation that established in the simulation and was 
identified by FitMut2. Points in (A) are colored by their true occurrence time t∗ , while points in (B) are colored by their true fitness s∗ . Negative 
t∗ indicates adaptive mutations that occurred during pregrowth. ǫrel in (A) is defined as |s

∗−ŝ|
s∗

 and ǫabs in (B) is defined as |t∗ − τ̂ | . ρp is the Pearson 
correlation coefficient. The 5th column in (A) shows the comparison between µ(s) and the inferred DFE (estimated as in Supplement S8). In Fig. S2 
we show the same data for FitMut1 
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Fig. 3  (See legend on previous page.)
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mean fitness, the fitness effects and establishment times 
are also underestimated, which affects the subsequent 
estimation of the DFE (see the 5th column in Figs.  3A 
and S2 A). When read depth is high or the variance of the 
DFE is smaller, the two methods produce similar results, 
though still with FitMut2 on average producing esti-
mates closer to the ground truth.

We also compared the number of adaptive muta-
tions missed by each algorithm, as well as the number 
of false positives (Fig.  5B). It should be emphasized 
that the vast majority of false negatives fall below 

the observation limit as detailed below, and are not 
expected to be detected. Additionally our algorithm 
reports an estimate of the uncertainty in our inferred 
values of s and τ , which is based on the Hessian of the 
posterior likelihood at the optimal values of s and τ 
(details in Supplement S6).

FitMut2 identifies mutations closer to the limit of detection
The clonal interference regime imposes a limit on the 
fitness effects that can establish, as well as those that can 
be detected. Although mutations occur throughout the 

Fig. 4  Estimation error of the fitness effects and the establishment times. Comparison of the estimation error, measured between simulation and 
inference, for FitMut1 and FitMut2. A shows fitness effects and B shows establishment times. Each column corresponds to an average number 
of reads per lineage r. Different rows correspond to different classes DFEs: exponential and uniform. Each panel includes the inference error of two 
simulations (Methods section) from the same family of µ(s) with different variances (blue for smaller variance, red for larger variance). Each dot in 
the scatter plot represents an adaptive mutation that established in the simulation and was identified by both FitMut2 and FitMut1. Dots 
falling within the gray region indicate the adaptive mutations that were more accurately inferred with FitMut2 than with FitMut1. Blue and red 
dots are colored by their occurrence time t∗ for (A), and by their true fitness s∗ for (B). µ(s) is plotted in the 5th column (blue for small variance, red 
for large variance)
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experiment, only those that rise to a large enough fre-
quency can be detected. Following [18], we restate the 
rough requirements for establishment and detection of a 

beneficial mutant. For an adaptive mutation with fitness 
effect s in a birth-death process with individual offspring-
number variance per generation 2c, it takes ∼ 1

s 

Fig. 5  Detection ability for identifying adaptive mutations. A Each panel in the 4× 4 array corresponds to one simulation (Methods section). Each 
point represents an adaptive mutation that occurred and established in the simulation. Points are colored according to whether they were 
identified by both methods (blue), only by FitMut2 (pink), or by neither (grey) (no point that only by FitMut1); their counts are shown in the 
right bottom corner of each panel. nP represents the total number of established mutations for a given DFE. The three lines indicate the mean 
fitness (solid, s = s̄(t) ), the boundary above which mutations must occur in order to establish (dot-dashed, s = s̄(t + 1

s
) ) and the boundary to be 

observed (short-dashed, s = s̄(t + 1

s
+ 1

s
ln

(

sn̄0
c

)

) ). The 5th column shows µ(s) and the prior µ̃(s) for each row. B Direct comparison of the 

detection ability between both algorithms
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generations for the mutation to establish, and another 
∼ 1

s ln

(

sn̄0
c

)

 generations for the established mutation to 
sweep through an appreciable fraction of the lineage to 
be detectable. Here, n̄0 is the average effective lineage 
size, which in our case is 100. Therefore, typically, a 
mutation should satisfy s ≥ s̄(t + 1

s ) to establish, and also 
satisfy s ≥ s̄(t + 1

s +
1
s ln

(

sn̄0
c

)

) to be observed. Paired 
values s and t that satisfy these equations are found 
numerically and shown in Fig. 5A. We see that in Fig. 5A, 
as expected, identified adaptive mutations lie largely 
above the highest line.
FitMut2 is better able to identify mutations closer 

to the bound of detectability, as evidenced by the pre-
dominance of red points just above the uppermost curve 
in Fig. 5A. However, it has a nonzero false positive rate 
when the read depth is large (Fig. 5B). One way to com-
bat the identification of false positives is to increase the 
threshold for designating a mutation as adaptive. In this 
work, the threshold is 1/2: we therefore deem a lineage 
adaptive if our Bayesian estimate says that the probabil-
ity of it being adaptive is greater than 1/2. Increasing this 
threshold should lower our false positive rate.

Discussion
In this work we have extended a previously-devised algo-
rithm to infer mutation effects and establishment times 
from lineage trajectories over time. Using simulated data 
we have shown that our new algorithm FitMut2 per-
forms better than the previous version FitMut1 when 
the read depth is low or the distribution of fitness effects 
is broad. By inferring the population mean fitness and 
single mutation effects self-consistently, instead of rely-
ing on the decline of neutral lineages, we can apply our 
algorithm to datasets with shallower sequencing, rap-
idly adapting populations, or smaller initial lineage sizes. 
However there are a number of aspects of this algorithm 
that deserve additional comments.

Branching process model
The model of a growing lineage (details in Supplement 
S10) that we use to derive the distribution of read num-
ber conditional on a past measurement assumes that 
the lineage is reproducing and dying at constant rates 
in time, and that the difference between these rates con-
stitutes the fitness. However, in the serial batch culture 
experiment (and in simulation), the population grows by 
two orders of magnitude ( ∼ 28 ) with minimal death every 
batch culture cycle — and this changes theoretical expec-
tations for the distribution of offspring number from one 
measurement to the next. This can mostly be absorbed 
into an effective population size which is g times the 

bottleneck size (details in Supplement S3). However for 
large-effect mutations, the growth stochasticity during a 
single cycle may obey different statistics and a more care-
ful analysis of the effective parameters is needed.

Independence of sequencing noise across time points
One shortcoming of our approach (and that of Fit-
Mut1) is the assumption that the distribution of read 
number for a given lineage at a time point tk depends 
only on the number of reads counted at the previous 
time point: this approximation makes the problem of 
maximizing likelihood much more tractable. However, 
sequencing noise at different time points is uncor-
related: therefore if sequencing noise caused the read 
number to be large at the previous time point, there 
is no reason to believe that the subsequent measured 
read number would have a larger mean. The independ-
ence of sequencing noise across time points could be 
used to our advantage, allowing us to separate the 
stochasticity from cell division (which is of biological 
interest) from that due to sequencing noise. Though 
we have not pursued this direction in the current 
work, it remains a promising avenue. Previous work 
[18] has measured the value of c through doing multi-
ple sequencing replicates — but the presence of multi-
ple time points could allow us to circumvent the need 
for this extra sequencing.

Choice of prior
To infer the fitness effect and establishment time 
of a mutation, we must choose a prior distribu-
tion µ̃(s) on which to run our Bayesian inference. In 
this work we consistently used an exponential prior 
µ̃(s) = Ub�

−1e−s/� with � = 0.1 and Ub = 10−5 . The 
prior for s and τ was then p(s, τ ) = ni,0µ̃(s)s/c with 
s/c factoring in the establishment probability and ni,0 
accounting for effective size of lineage i at t0 . The prior 
does not depend on τ , whose prior distribution we took 
to be uniform between −100 and 112 generations meas-
ured relative to the start of the experiment.

The use of an exponential prior in s assumes that 
there are no very large mutations — because if there 
were, we would be increasingly unlikely to recognize 
them. Therefore in  situations where the distribution 
of fitness effects is broader, an exponential prior may 
fail to identify many adaptive mutations, and a uni-
form prior may be more appropriate. The effect of the 
prior is further discussed in Supplement S7, where we 
conclude that our choice of prior makes little differ-
ence for the inferred si in the majority of adaptive line-
ages. However, other aspects of our inference algorithm 
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would also lose accuracy for large effect mutations, as 
discussed in Supplement S2.

To lessen the arbitrariness of our choice for µ̃(s) , we 
could consider having a dynamically updated prior that 
starts as uniform and is updated based on the muta-
tions identified as adaptive over successive iterations 
of our algorithm. It is conceivable that this would fur-
ther increase our detection power. But there would be 
issues of low resolution in this empirically determined 
prior distribution, particularly for early iterations. 
Future work is needed to investigate how to iteratively 
update the prior distribution, and whether this further 
improves estimation accuracy.

Rebarcoding and measurements of epistasis
As mentioned previously, our simulations allowed a 
maximum of one beneficial mutation per individual, 
since the DFE for a second mutation might be substan-
tially different from that of the first [22]. The effects of 
recurrent beneficial mutations can be studied system-
atically using genetic re-barcoding of lineages [24], 
where a similar fitness-estimation algorithm has been 
implemented by iteratively inferring mean fitness and 
individual fitness effects. However in our work we infer 
establishment times of mutations from their lineage 
trajectories rather than from phylogeny information 
observable from the rebarcoding process as in Ref. [24].

Computational performance
The most computationally expensive step in both Fit-
Mut2 and FitMut1 is the evaluation of the probability 
of being adaptive for each lineage, and the subsequent 
maximization of the posterior likelihood for those 
deemed adaptive. However, this step can readily be par-
allellized (in both FitMut2 and FitMut1) since each 
lineage may be handled independently. This substan-
tially speeds up our algorithm, and we have included 
an option to parallellize computation using the python 
package multiprocess, which distributes iterations 
of the longest for loop in the program over multiple 
CPUs if available. With parallelization enabled, on our 
simulated dataset of 4 × 104 lineages sampled over 15 
time points, FitMut2 took around 1 minute per itera-
tion on a laptop with 8GB of memory. In comparison, 
FitMut1 took around 15 minutes in total.
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