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Abstract 

Background  Major depressive disorder (MDD) is a life-threatening and debilitating mental health condition. 
Mitophagy, a form of selective autophagy that eliminates dysfunctional mitochondria, is associated with depression. 
However, studies on the relationship between mitophagy-related genes (MRGs) and MDD are scarce. This study aimed 
to identify potential mitophagy-related biomarkers for MDD and characterize the underlying molecular mechanisms.

Methods  The gene expression profiles of 144 MDD samples and 72 normal controls were retrieved from the Gene 
Expression Omnibus database, and the MRGs were extracted from the GeneCards database. Consensus clustering 
was used to determine MDD clusters. Immune cell infiltration was evaluated using CIBERSORT. Functional enrichment 
analyses were performed to determine the biological significance of mitophagy-related differentially expressed genes 
(MR-DEGs). Weighted gene co-expression network analysis, along with a network of protein–protein interactions 
(PPI), was used to identify key modules and hub genes. Based on the least absolute shrinkage and selection opera-
tor analysis and univariate Cox regression analysis, a diagnostic model was constructed and evaluated using receiver 
operating characteristic curves and validated with training data and external validation data. We reclassified MDD into 
two molecular subtypes according to biomarkers and evaluated their expression levels.

Results  In total, 315 MDD-related MR-DEGs were identified. Functional enrichment analyses revealed that MR-DEGs 
were mainly enriched in mitophagy-related biological processes and multiple neurodegenerative disease pathways. 
Two distinct clusters with diverse immune infiltration characteristics were identified in the 144 MDD samples. MATR3, 
ACTL6A, FUS, BIRC2, and RIPK1 have been identified as potential biomarkers of MDD. All biomarkers showed varying 
degrees of correlation with immune cells. In addition, two molecular subtypes with distinct mitophagy gene signa-
tures were identified.

Conclusions  We identified a novel five-MRG gene signature that has excellent diagnostic performance and identi-
fied an association between MRGs and the immune microenvironment in MDD.
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Introduction
Major depressive disorder (MDD) is a heterogeneous, 
recurrent, and life-threatening mental disorder char-
acterized by depressed mood, self-accusation, self-
guilt, anhedonia, and suicidality, leading to a significant 
decrease in overall quality of life [1, 2]. MDD has been 
identified as the main risk factor for death by suicide [3] 
and the main cause of disability [4], presenting a substan-
tial economic and social burden worldwide. Due to the 
lack of reliable biomarkers, the diagnosis of MDD mainly 
relies on the symptoms of patients and depression rat-
ing scales, resulting in a high rate of misdiagnosis [5]. 
Although a wide variety of antidepressants are available, 
30–50% of patients with MDD do not achieve complete 
remission [6], reflecting that the conventional thera-
pies do not address the important biological processes 
involved in MDD pathology. Therefore, a better under-
standing of the underlying pathophysiological mecha-
nisms of MDD is necessary to identify possible treatment 
targets for the development of biomarkers that help pro-
vide a more accurate and early diagnosis.

Mitochondria are crucial organelles in eukaryotic cells 
and are key regulators of physiological processes such as 
adenosine triphosphate (ATP) synthesis, reactive oxy-
gen species generation and scavenging, and apoptosis 
in the cell life cycle. Selective mitochondrial autophagy, 
also known as mitophagy, is an important mitochon-
drial quality control mechanism that eliminates dam-
aged mitochondria [7, 8]. Several studies have reported 
that mitophagy and subsequent mitochondrial dysfunc-
tion are significant contributors to the pathophysiology 
of MDD [9–11]. Mitophagy has also been considered 
the emerging mechanism of action for some antide-
pressants [12, 13]. Shu et al. discovered that the antide-
pressant fluoxetine protects astrocytes by enhancing 
astrocytic mitophagy and removing damaged mitochon-
dria in a corticosteroid-treated cell model [12]. However, 
mitophagy-related biomarkers in MDD have not yet been 
fully elucidated, although mitophagy plays an important 
role in MDD. The identification of mitophagy-related 
genes (MRGs) associated with MDD is therefore urgently 
needed so that new biomarkers and therapeutic targets 
can be developed.

Several studies have shown that immune dysregulation 
and activation of the inflammatory response system (IRS) 
are associated with the pathogenesis of MDD [14–16]. 
Of note, recent research has shown the vital importance 
of mitophagy in controlling the secretion of inflamma-
tory cytokines and the homeostasis and differentiation of 
immune cells, which are relevant to the pathogenesis of 
inflammatory and autoimmune diseases [17, 18]. Inter-
estingly, it has been reported that the severity of MDD 
may be affected by the crosstalk between mitophagy 

and inflammation [9]. Although the respective roles of 
mitophagy and immunity in MDD have been reported 
[10, 16], the interaction between mitophagy and immune 
infiltration that affects the MDD process is unclear and 
requires further investigation.

In this study, the biological significance of MRGs and 
their relationship with immune infiltration in MDD 
and MDD subtypes were analyzed. First, we retrieved 
MDD-related genes and MRGs from the Gene Expres-
sion Omnibus (GEO) and GeneCards databases, respec-
tively. Subsequently, we identified MDD subclusters 
using consensus clustering based on 144 MDD samples. 
We performed multiple functional enrichment analy-
ses to better understand the biological significance of 
MRGs in MDD. MDD mitophagy-related biomarkers 
were obtained by weighted gene co-expression network 
analysis (WGCNA), least absolute shrinkage and selec-
tion operator (LASSO) logistic regression, and receiver 
operating characteristic (ROC) curve analysis. Using 
the CIBERSORT algorithm, we compared the immune 
microenvironment of patients with MDD and controls, 
as well as MDD subclusters, to evaluate the molecular 
immunological mechanisms underlying the development 
of MDD. The correlation between the diagnostic markers 
and immune cells was also examined. Overall, the results 
of this study may contribute to an improved understand-
ing of the pathophysiology of MDD at the molecular level 
and may identify novel biomarkers for its diagnosis.

Materials and methods
Data pretreatment
Two gene expression profile datasets for MDD samples, 
GSE32280 [19] and GSE98793 [20], were obtained from 
the GEO database. GSE32280 contains 16 MDD cases 
and eight normal controls, while GSE98793 contains 128 
patients with MDD and 64 healthy controls. Both data-
sets were derived from the GPL570 platform (Affymetrix 
Human Genome U133 Plus 2.0 Array). We merged and 
batched the normalized GSE32280 and GSE98793 data-
sets into the training group using the R package “sva” 
[21]. After consolidating the data, a final sample of 144 
patients with MDD and 72 healthy controls remained. 
The diagnostic validation set GSE190518 [22] consisted 
of four MDD samples and four normal controls, all of 
which were derived from the GPL20301 platform (Illu-
mina HiSeq 4000, Homo sapiens). Supplementary Table 
S1 presents details of the datasets.

To explore the importance of mitophagy in MDD and 
the expression of MRGs in MDD samples, we retrieved 
2414 MRGs with a relevance score > 1 from the Gen-
eCards database [23] searched using the keyword 
“Mitophagy.”
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Immune cell infiltrate analysis
The CIBERSORT algorithm [24] was used to assess the 
proportion of infiltrating immune cells in 144 MDD 
samples and 72 normal controls, given the importance 
of immune infiltration cells in the progression of MDD. 
Wilcoxon rank-sum tests were performed to evaluate the 
differences between MDD samples and normal controls 
regarding the proportion of infiltrating immune cells [25, 
26]. Furthermore, the correlations between 22 immune 
cell subpopulations in MDD samples and controls were 
evaluated separately using Pearson’s correlation analysis 
and visualized using the “ggplot2” R package. Statistical 
significance was defined as p-value < 0.05 and correlation 
coefficient (r) > 0.3.

Consensus clustering analysis for MDD
The ConsensusClusterPlus package [27] was used to per-
form consensus cluster analysis on the 144 standardized 
MDD samples to detect possible heterogeneity and iden-
tify subgroups within MDD. Using the R package “facto-
extra,” we determined the optimal number of clusters and 
then used the k-means algorithm to cluster unsupervised 
MDD samples.

Identification of differentially expressed genes 
among MDD clusters
Differentially expressed genes (DEGs) among MDD clus-
ters were identified using the “limma” package in R [28]. 
Genes with p < 0.05 and |Log2FC (fold-change) |> 1.5 
were considered DEGs for further analysis. The heatmap 
and volcano plot of the DEGs were generated using the 
“heatmap” and “ggplot2” R packages, respectively. Addi-
tionally, to investigate the expression profile of MRGs 
between MDD subgroups, mitophagy-related differen-
tially expressed genes (MR-DEGs) were identified by the 
intersection of DEGs and MRGs.

Analysis of functional enrichment
Multiple functional enrichment analyses were per-
formed to better understand the molecular mechanisms 
and signaling cascades underlying the involvement of 
MR-DEGs in MDD. Using the “clusterProfiler” [29] and 
“DOSE” [30] R packages, we performed Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway [31–33], and Disease Ontology (DO) 
enrichment analyses of MR-DEGs. The enrichment out-
comes with an adjusted p < 0.05 were selected for presen-
tation as a bubble plot.

To better understand the biological and pathway dif-
ferences between the two gene sets, we performed gene 
set enrichment (GSEA) and gene set variation (GSVA) 
analyses. We downloaded the reference gene sets of “c5.

go. v7.5.1. entrez.gmt” and “c2.cp.kegg. v7.5.1. entrez.
gmt” for GSEA from the Molecular Signatures database 
[34]. Statistical significance was set at p < 0.05. To evalu-
ate the differences in functional enrichment between the 
disease and control groups, GSVA was performed using 
the R package “GSVA.”

Identifying key modules in the co‑expression network
To identify important modules and key genes among 
clusters of MDD, we performed WGCNA analysis 
using the “WGCNA” package in R [35]. First, 144 MDD 
samples were clustered to remove outliers. Second, an 
optimal soft threshold parameter beta was adopted to 
construct scale-free co-expression networks. Subse-
quently, gene modules were identified using a dynamic 
tree-cutting algorithm based on the topological overlap 
measure, and gene modules were identified. Modules 
with a minimum module size of 30 and a cut height of 
0.2 were merged. The correlations between the clusters 
and gene modules were calculated and visualized using 
a heatmap. Modules with the highest correlations were 
identified and analyzed.

Establishment of Protein–protein Interaction (PPI) 
networks and screening of hub genes
A Venn diagram package in R was used to identify over-
lapping genes associated with mitophagy and MDD by 
taking the intersection of MRGs, DEGs, and module 
genes obtained by WGCNA. Subsequently, to systemati-
cally analyze the biological functions of the overlapping 
genes, the genes were mapped to the STRING data-
base, which is a tool that predicts interactions between 
genes or proteins [36]. A PPI network with a combined 
score greater than 0.4 was reserved and the results were 
imported to Cytoscape (version 3.7.2) [37] for advanced 
analysis. We then used Cytoscape’s plug-in cytoHubba 
[38] and the maximal clique centrality (MCC) algorithm 
to extract the 10 most significant hub genes in the PPI 
network.

Construction and validation of the diagnostic model
To identify candidate genes that serve as biomark-
ers differentiating MDD and normal samples, we first 
used the combined microarray datasets (GSE32280 and 
GSE98793) as a training set (containing 144 MDD sam-
ples and 72 control samples) and then validated them 
using an independent dataset (GSE190518, containing 
four MDD samples and 4 control samples).

Based on the aforementioned training dataset, we 
used the “glmnet” R package for LASSO and performed 
the univariate Cox regression analyses to identify key 
mitophagy-related biomarkers. “Forest plot” pack-
ages were used to visualize the Cox results. For further 
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calculation of the risk score, genes with nonzero coeffi-
cients in the LASSO regression model were selected. We 
computed the risk score for each included gene using the 
following formula:

The efficacy of the risk score system for predicting 
MDD was then evaluated by receiver operating char-
acteristic (ROC) curve analysis using the R package 
“pROC” [39].

To further evaluate the diagnostic performance and 
robustness of candidate biomarkers, the GSE190518 
dataset was used as a validation set. Furthermore, the 
area under the curve (AUC) for candidate biomarkers 
was computed using the “pROC” in the R package to 
assess their diagnostic value. AUC > 0.5 and P < 0.05 were 
used as diagnostic criteria.

Analysis of immune infiltrating cells in MDD clusters
Using the CIBERSORT algorithm, we analyzed immune 
cell infiltration between different clusters of MDD sam-
ples. The correlation between immune cells and the 
expression of the 10 hub genes was further examined in 
subsequent analyses. R package “ggplot2” was used to vis-
ualize the results of the correlation analysis. In addition, 
the correlations between the immune cell subsets in the 
two clusters were evaluated separately.

Identification of MDD subtypes based on biomarkers
Based on the expression of biomarker characteristics, 
MDD was divided into different subtypes using the Con-
sensusCluster Plus package. Differences between sub-
types were visualized using principal component analysis 

n = Z21 − �∕2 sensitivity x(1 − sensitivity) d2 x prevalence

(PCA). We used LASSO and univariate Cox regression 
analysis to investigate the association between biomark-
ers and MDD subtypes. We also used Pearson’s cor-
relation analysis to determine which biomarkers were 
correlated with each other. Subsequently, the expression 
levels of the 10 hub genes in clusters and subtypes were 
compared to determine whether both types of classifica-
tion were consistent.

Statistical methods
R version 4.0.2 was used for all data analyses. To com-
pare the two sets of continuous variables, we used the 
Student’s t-test for variables with a normally distributed 
distribution and the Mann–Whitney U test for vari-
ables with atypical distributions. Pearson’s correlation 
coefficient was used to assess the relationship between 
the variables (R version 4.0.2). Multiple test correction 
(Bonferroni correction) was used to adjust the p-values. 
Statistical significance was defined as p < 0.05, and all 
p-values were two-sided.

Results
Data preprocessing
Figure 1 shows the flowchart of the study. The integrated 
gene expression profile was obtained after eliminat-
ing batch effects between the two datasets (GSE32280 
and GSE98793), which contained 144 MDD samples 
and 72 normal controls, and 21,755 genes were identi-
fied. As shown in Fig. 2, the normalized boxplots of gene 
expression profiles showed differences before and after 
standardization pretreatment. As a consequence of nor-
malization and batch-effect adjustment, the expression 

Fig. 1  The flowchart of the study
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distributions of all samples are more consistent, making 
the downstream analysis more accurate and robust.

Immune infiltration analysis
An in-depth analysis of immune infiltration between 
MDD samples and normal controls was performed using 
the CIBERSORT algorithm (Fig.  3). First, we represent 
a stacking graph of the fraction of immune cells at each 
level in 144 patients with MDD and 72 control samples. 
A significant difference in the proportion of immune cells 
was observed between these samples, indicating that 
MDD samples should be re-clustered (Fig.  3A). Com-
pared to normal controls, MDD samples tended to have 
higher proportions of naïve B cells, M1 macrophages, 
resting mast cells, and activated memory CD4 + T cells 
and lower proportions of memory B cells and eosino-
phils (Fig.  3B). Correlations between the immune cell 
subpopulations in MDD and the control samples were 
determined separately. Activated mast cells were posi-
tively correlated with T follicular helper cells in normal 

controls, while M2 macrophages were negatively cor-
related with monocytes (Fig.  3C). In contrast, in MDD 
samples, a negative correlation was detected between 
CD8 + T cells and several other types of immune cells, 
including activated natural killer (NK) cells, activated 
mast cells, neutrophils, resting memory CD4 + T cells, 
and gamma delta T cells (Fig. 3D). Considering the data 
mentioned above, it can be shown from different per-
spectives that the immunological microenvironment of 
MDD samples differs from that of normal samples.

Identification of MDD clusters and DEGs
We categorized 144 MDD samples into two clusters using 
a consensus clustering analysis. As shown in Fig. 4, k = 2 
was considered the optimal number of clusters based on 
the relative change in the area under the cumulative dis-
tribution function (CDF) curve. Consequently, two clus-
ters of MDD were identified and labeled as cluster 1 and 
cluster 2 (cluster 1: 63 samples and cluster 2: 81 samples).

Fig. 2  Data preprocessing. A and B The boxplot of the merged microarray datasets before and after normalization. C and D Two scatterplots 
depicting principal component analysis of normalized gene expression data before and after the removal of batch effects



Page 6 of 21Zhang et al. BMC Genomics          (2023) 24:216 

Fig. 3  Immune infiltration analysis. A Analysis of 22 types of immune cells in major depressive disorder (MDD) samples and normal controls. B 
Differences in immune infiltration abundance between normal controls and MDD. The blue color indicates normal controls, and the red color 
indicates MDD samples. C The matrix of correlations between immune cells in normal samples. D The matrix of correlations between immune cells 
in MDD samples. Blue color indicates a positive correlation and red color indicates a negative correlation
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Fig. 4  Consensus clustering of 144 major depressive disorder (MDD) samples. A-B Matrix of consensus clustering for 144 MDD samples from k = 2 
to k = 6. C Cumulative distribution function (CDF) is calculated based on consensus for k = 2 to k = 6. (D) The area under the CDF curve for k = 2–6 
represents a relative change

Fig. 5  Differential expression analysis between two clusters of major depressive disorder (MDD). A Heatmap results of differentially expressed 
genes (DEGs). The red color represents cluster 1 and blue color represents cluster 2. B Volcano plot of DEGs
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Fig. 6  An analysis of the functional enrichment of MR-DEGs. A The intersection of MRGs and DEGs is shown in a Venn diagram. B-D Twenty of the 
most significant gene ontology terms. E Twenty of the most significant Kyoto Encyclopedia of Genes and Genomes pathways
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Fig. 7  Visualization of the results of GSEA and GSVA analyses. A Analysis of gene ontology (GO) functional enrichment. B-C The results of gene set 
enrichment analysis (GSEA) (GO terms). D The results of GSEA (Kyoto Encyclopedia of Genes and Genomes [KEGG] pathways). E–F The results of 
GSEA (disease ontology pathways). G The results of gene set variation analysis (GSVA) (GO terms). H The results of GSVA (KEGG pathways). Clusters 1 
and 2 are represented by blue and red colors, respectively
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Additionally, to further explore the heterogeneity 
between the two clusters, we obtained 2,059 DEGs with 
p < 0.05 and p > 1.5 for |log FC (fold-change) |. A heatmap 
of 2,059 DEGs is shown in Fig. 5A. There were 241 upreg-
ulated DEGs and 1,818 downregulated DEGs in cluster 1 
compared to those in cluster 2 (Fig. 5B).

Functional enrichment analysis
To investigate the biological functions of MRGs in MDD 
clusters in depth, we performed a functional enrichment 
analysis of MR-DEGs. First, we identified 315 MR-DEGs 
from the 2,059 DEGs intersecting with the 2,414 MRGs 
(Fig.  6A). Subsequently, 315 MR-DEGs linked to MDD 
were analyzed using GO and KEGG analyses to under-
stand their biological functions and signaling pathways 
(Supplementary Table S2). The results of GO enrich-
ment showed that in biological processes (BP), MR-DEGs 
were considerably enriched in macroautophagy, organelle 
disassembly, mitochondrial autophagy, mitochondrial 

disassembly, and cellular component disassembly. In the 
cell component (CC), MR-DEGs were abundant primar-
ily in mitochondrial protein-containing complexes, ribo-
somal subunits, ribosomes, large ribosomal subunits, and 
endopeptidase complexes. Regarding molecular function, 
these genes play an essential role in several key functions, 
such as being the structural constituent of the ribosome, 
ubiquitin-like protein ligase binding, and protein carrier 
chaperone (Fig. 6B-D). KEGG pathway enrichment anal-
yses revealed that MR-DEGs were significantly enriched 
in pathways relevant to Parkinson’s disease (PD), Alzhei-
mer’s disease (AD), amyotrophic lateral sclerosis (ALS), 
and multiple neurodegenerative diseases (Fig. 6E).

To investigate the underlying functional differences 
between the two clusters of MDD, we performed a GSEA 
analysis (Supplementary Table S3). Based on GO term 
gene sets, GSEA revealed that ligand-gated anion chan-
nel activity, GABA receptor activity, and GABA-A recep-
tor complex were noticeably upregulated in cluster1 

Fig. 8  Weighted gene co-expression network analysis (WGCNA). A An analysis of the scale-free fit index and the mean connectivity for selected 
soft threshold powers (β). B WGCNA’s Hierarchical Cluster Tree reveals co-expression modules. C Heatmap showing the relationship between gene 
modules and clusters. D Module eigengene scatter plot for the blue module
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(Fig. 7A), while biological processes, such as ligase activ-
ity, forming carbon–sulfur bonds, and acid-thiol ligase 
activity, were noticeably downregulated (Fig.  7B, C). 
Meanwhile, KEGG enrichment results by GSEA showed 
that nicotine addiction was noticeably upregulated in 
cluster 1, while pathways, such as ABC transporters and 

collecting duct acid secretion, were noticeably downreg-
ulated (Fig. 7D). In particular, consistent with the above 
KEGG analysis, the DO analysis revealed that the genes 
involved in the two clusters were associated with ALS, 
essential hypertension, and cholelithiasis (Fig. 7E, F, Sup-
plementary Table S4).

Fig. 9  Analysis of protein–protein interaction (PPI) networks and identification of hub genes. A Venn diagram of the overlapping genes. B PPI 
network of 36 overlapping targets. C, D Top 10 hub genes identified using maximal clique centrality (MCC) and cytohubba. A higher MCC value is 
associated with a darker color

Fig. 10  Diagnostic capacity assessment for candidate biomarkers. A Receiver operating characteristic (ROC) curves for the diagnostic power of 
biomarkers to differentiate major depressive disorder (MDD) from healthy controls in the training datasets. B-F Areas under the curve (AUCs) of the 
five biomarkers in the training dataset, respectively. G Forest plots for hub genes across the validation datasets (GSE190518). H ROC curves for the 
diagnostic ability of the five biomarkers to differentiate MDD from normal controls in the validation dataset. I-M AUCs of the five biomarkers in the 
validation dataset, respectively

(See figure on next page.)
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Fig. 10  (See legend on previous page.)
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Fig. 11  Immune infiltration analysis. A An analysis of the relative proportions of 22 types of immune infiltrating cells in clusters 1 and 2. B An 
analysis of 22 immune cells distributed between two clusters of major depressive disorder. The red color indicates the cluster 1 samples, and the 
blue color indicates the cluster 2 samples. C, D Correlation of the 10 hub genes with the immune cells in cluster 1 and cluster 2, respectively. E and 
F Matrix of correlation of immune cell proportions within cluster 1 and cluster 2
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According to GSVA, the results of GO terms showed 
that enzyme-directed rRNA pseudouridine synthesis 
and ribosomal small subunit export from the nucleus 
were activated in cluster 2 samples, while terms, such 
as re-entry into the mitotic cell cycle, were suppressed 
(Fig. 7G, Supplementary Table S5-1). KEGG enrichment 
results by GSVA showed that glycosylphosphatidylinosi-
tol gpi anchor biosynthesis, riboflavin metabolism, and 
non-homologous end joining were noticeably activated in 
cluster 2, while pathways, such as linoleic acid metabo-
lism and taste transduction, were suppressed (Fig.  7H, 
Supplementary Table S5-2). Overall, the results of GSEA 
and GSVA indicated significant differences in biological 
processes and pathways between cluster 1 and cluster 2.

Establishment of a co‑expression network 
and identification of core modules
WGCNA was used to identify co-expression modules 
to determine which genes were functionally related to 
MDD clusters. By setting the soft threshold power to 
six (scale-free R 2 = 0.85), 16 modules were identified 
(Fig.  8A, B). As shown in Fig.  8C, module-trait asso-
ciation analysis revealed a significant positive correla-
tion between the blue module and cluster 1. Figure 8D 
shows a scatter plot of GS versus module membership 
for the blue module (Cor = 0.54, p < 1e-200). In total, 
9,395 genes were identified for further analysis using 
the blue module.

Network analysis of PPIs and identification of hub genes
By intersecting 2,059 DEGs, 2,414 MRGs, and 9,395 
module genes, we identified 36 overlapping genes related 
to mitophagy and MDD (Fig. 9A). PPI analysis of the 36 
overlapping genes was performed using the STRING 

database and visualized using Cytoscape V3.9.0 (Fig. 9B). 
The MCC approach using the cytoHubba plug-in selected 
HSPA5, PRMT5, MATR3, ACTL6A, FUS, BIRC2, RIPK1, 
IST1, TUBB6, and CALM1 as the top 10 hub genes 
(Fig. 9C, D).

Construction and validation of diagnostic models
Based on the training set for MDD, we developed a diag-
nostic prediction model using logistic regression and 
LASSO regression analyses. Five key genes were included 
in this model. AUC of 0.71 showed that the five key gene 
models had the potential to distinguish MDD from con-
trols (Fig. 10A). In particular, the AUCs for FUS, BIRC2, 
ACTL6A, MATR3, and RIPK1 were 0.656, 0.636, 0.588, 
0.713, and 0.640, respectively, suggesting that these genes 
had good diagnostic ability (Fig.  10B-F). Furthermore, 
the diagnostic prediction model was evaluated using the 
independent validation set GSE190518. We visualized 
the expression data of the key genes using a forest plot 
(Fig.  10G). Further exploration of the diagnostic accu-
racy of the five key genes was conducted using the ROC 
curves. The AUCs for MATR3, ACTL6A, FUS, BIRC2, 
RIPK1, and the diagnostic model were 0.683, 0.683, 
0.643, 0.619, 0.547, and 0.794, respectively (Fig. 10H-M). 
According to these findings, the five aforementioned bio-
markers might be sensitive and specific to distinguish 
MDD samples from normal samples.

Immune characteristics of the two subgroups
Using the CIBERSORT algorithm, we compared the rela-
tive abundance of 22 immune cells among the MDD clus-
ters (Fig. 11A). We further investigated the differences in 
the proportions of 22 immune cells between cluster 1 and 
cluster 2. Cluster 1 showed significantly lower numbers 

Fig. 12  Molecular subtypes of major depressive disorder based on five biomarkers. A Clustering with K-means consensus (K = 2). B The PCA 
analysis showed the distribution pattern of subtype 1 and subtype 2



Page 15 of 21Zhang et al. BMC Genomics          (2023) 24:216 	

of naïve B cells, resting mast cells, activated memory 
CD4 + T cells, and CD8 + T cells than cluster 2, while 
the numbers of memory B cells, M2 macrophages, naïve 
CD4 + T cells, resting memory CD4 + T cells, eosino-
phils, and gamma delta T cells were relatively higher in 
cluster 1 than cluster 2 (Fig.  11B). In addition, correla-
tion analysis revealed that the top 10 hub genes in both 
clusters were differentially correlated with infiltrating 
immune cells. In both clusters, ACTL6A and BIRC2 lev-
els were strongly positively correlated with resting mast 
cells. RIPK1 was positively correlated with resting mast 
cells in cluster 1 but negatively correlated with activated 
mast cells in cluster 2 (Fig. 11C, D).

Moreover, correlations between immune cell sub-
populations showed significant differences between the 
two clusters. In cluster 1, there was a positive correla-
tion between resting and activated NK cells, M0 mac-
rophages, and resting mast cells (Fig.  11E). However, 
activated dendritic cells in cluster 2 were significantly 

positively correlated with naïve CD4 + T cells and resting 
NK cells (Fig. 11F).

Construction of molecular subtypes based on biomarkers 
of MDD
Based on the previously described five biomarker charac-
teristics, MDD has again been divided into two distinct 
subtypes by consensus clustering using the R package 
“ConsensusClusterPlus” (Fig.  12A). Among them, sub-
type 1 contained 95 MDD samples and subtype 2 con-
tained 49 MDD samples. As shown in Fig.  12B, PCA 
showed a difference in gene expression between the two 
subtypes.

Identification of potential biomarkers for MDD
To evaluate the influence of candidate biomarkers on 
patients with MDD subtypes, we used LASSO and uni-
variate Cox regression analysis to screen for hub genes 
and evaluate the association between the five biomarkers 

Fig. 13  Correlation analysis of biomarkers based on major depressive disorder molecular subtypes. A-B Least absolute shrinkage and selection 
operator Cox regression model construction. C The forest plot shows the relationship between biomarkers and subtype 1 based on univariate 
logistic regression study results. D Correlation of the analyses between five biomarkers in two subtypes. Dot colors represent correlation coefficients 
and dot sizes represent p-values
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and patients in two MDD clusters (Fig. 13A-C). Further-
more, correlation analysis of hub gene expression levels 
indicated that ACTL6A, BIRC2, and CALM1 were sig-
nificantly correlated with HSPA5, indicating that these 
genes tended to be co-expressed in MDD samples. The 
expression of FUS was negatively correlated with HSPA5, 
suggesting that HSPA5 and FUS tended to be mutually 
exclusive in MDD samples (Fig. 13D).

To ensure consistency between the two types of clus-
tering results, we created box plots to compare the 
expression levels of the 10 hub genes. Figure  14A, B 
shows the consistency between the first and second clus-
tering results. Cluster 1 and subtype 1 showed higher 
expression levels of ACTL6A, BIRC2, and RIPK1, while 
cluster 1 and subtype 1 showed lower expression levels of 
FUS and MATR3. The results of the two types of consen-
sus clustering analysis were highly coincident, indicating 
that the diagnostic marker genes had good distinguishing 
performance for MDD subtypes.

Discussion
MDD is a highly heterogeneous disorder characterized 
by high levels of morbidity and mortality and is consid-
ered the most prevalent cause of disability worldwide 
[1, 2]. However, the pathophysiology of MDD remains 
unclear. Recently, high-throughput sequencing tech-
nologies have been used in many studies to elucidate the 
pathophysiological mechanisms of MDD and identify 
biomarkers for diagnosis [40, 41]. However, most of these 
studies have focused on differences between patients 
with MDD and healthy controls, while few have exam-
ined differences between MDD subtypes. Clinical prac-
tice cannot be guided by molecular subtypes due to the 

lack of subgroup classification, which hinders the imple-
mentation of precise treatment strategies for depression. 
Therefore, it is vital to broaden the study of MDD hetero-
geneity and identify new biomarkers to facilitate the early 
diagnosis and personalized treatment of MDD. Emerging 
evidence has revealed that mitophagy and immunity are 
related to the pathogenesis of depression [10, 15]. In light 
of this, we combined multiple bioinformatic approaches 
to identify mitophagy-related biomarkers of MDD and 
further investigate the function of immune cell infiltra-
tion in the disease. According to our results, two clusters 
of MDD presented different patterns of immune infil-
tration and gene signatures in unsupervised clustering 
analysis. Furthermore, we combined multiple functional 
enrichment analyses to reveal the potential mitophagy-
related crosstalk involved in MDD. Finally, we identified 
five MRGs as key biomarkers of MDD, which can also 
be used to identify subtypes of MDD. Overall, this study 
identified a novel five-MRG gene signature that has good 
diagnostic performance and identified an association 
between MRGs and the immune microenvironment in 
MDD, which further reinforced the critical significance 
of mitophagy in diagnosing MDD and regulating the 
immune response [9, 10, 17, 42].

Mitophagy, a highly selective form of autophagy, 
utilizes multiple regulatory pathways to eliminate 
dysfunctional or redundant mitochondria in either ubiq-
uitin-independent or ubiquitin-dependent manner [7]. 
According to GO analysis, 315 MR-DEGs are involved 
in biological processes and essential functions related 
to macroautophagy/autophagy and mitophagy, such as 
ubiquitin protein ligase binding. The ubiquitin–protea-
some system (UPS) and autophagy pathways are critical 

Fig. 14  Analysis of the 10 hub genes expression levels. A The boxplot illustrates the differential levels of expression for the 10 hub genes in clusters 
1 and 2. The red color denotes cluster 1 and blue color denotes cluster 2. B The boxplot illustrates the differential levels of expression for the 10 hub 
genes in subtype 1 and subtype 2. Red denotes subtype 1 and blue denotes subtype 2
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for maintaining cellular homeostasis and are closely coor-
dinated [43]. It is well known that PINK1/Parkin path-
way-mediated mitophagy is the most extensively studied 
ubiquitin-dependent pathway for the clearance of dam-
aged mitochondria [44]. Furthermore, aggregated stud-
ies have shown that polymorphisms in UPS-related genes 
are associated with MDD and antidepressant responses 
[45, 46]. The KEGG and DO analyses revealed that these 
MR-DEGs were related to neurodegenerative disorders, 
such as AD, PD, and ALS. These results are consistent 
with prior research describing the role of mitophagy in 
neurodegeneration [47, 48].

Five biomarkers (MATR3, ACTL6A, FUS, BIRC2, and 
RIPK1) were screened using four different algorithms, 
including WGCNA, LASSO, univariate regression analy-
ses, and ROC curves. Subsequently, we reclassified MDD 
based on these biomarkers into two molecular subtypes, 
and our results showed that ACTL6A, BIRC2, and RIPK1 
were highly expressed in subtype 1, while FUS and 
MATR3 were comparatively less expressed. Our study 
results further reinforce previous findings that the het-
erogeneity of depression may be related to different mito-
chondrial biological mechanisms [49].

MDD is a complex polygenic disease. Recent genetic 
studies suggest that single nucleotide polymorphisms 
(SNPs) in the WFS1 and CCKAR genes may be associ-
ated with an increased risk of MDD [50, 51]. Mitochon-
dria-related genes have also been shown to be involved 
in the development of MDD [52]. Our study further 
identified five mitophagy-related genes associated with 
MDD. Matrin 3 (MATR3), a protein in the nuclear matrix 
involved in DNA replication, apoptosis, and multiple 
RNA metabolism processes, is widely expressed in many 
tissues [53–55]. Several neurodegenerative diseases, 
including ALS and frontotemporal dementia, have been 
associated with MATR3 mutations [54]. FUS, which 
shares structural and functional similarities with MATR3, 
is one of several RNA-binding proteins implicated in ALS 
[56]. A previous study has reported that FUS neurotox-
icity is associated with the inhibition of autophagy and 
defective RNA metabolism [57]. Another study showed 
that FUS could be used as a candidate biomarker for 
MDD [58]. The ATP-dependent chromatin remodeling 
complex, ACTL6A, also known as BAF53A or Arp4, plays 
a key role in the development of progenitor cells, stem 
cells, and neuronal and hematopoietic cells [59]. ATP-
dependent chromatin remodeling complexes are crucial 
for memory development and consolidation, neurodevel-
opment, and the etiology of depressive-like behavior [60, 
61]. However, the role of ACTL6A in MDD has not been 
extensively investigated.

Several lines of evidence demonstrate that mitophagy 
and apoptosis are linked to the pathogenesis of MDD 

[9, 10, 62]. BIRC2, also known as the cellular inhibi-
tor of apoptosis protein-1 (cIAP1), is an E3 ubiquitin-
protein ligase that can promote the ubiquitination of 
RIPK1, thereby inhibiting RIPK1-mediated apoptosis 
and inflammatory responses [63–65]. Previous studies 
have revealed that BIRC2 plays a critical molecular link 
between mitophagy and apoptosis [66]. Multiple pieces 
of evidence have confirmed that RIPK1 is a key modu-
lator of apoptosis, necroptosis, and neuroinflamma-
tion, and targeting RIPK1 may inhibit multiple cell death 
pathways and alleviate neuroinflammation [67–69]. As a 
member of the receptor-interacting protein (RIP) kinase 
family, RIPK1 has emerged as a target for intervention in 
inflammatory and neurodegenerative diseases [68, 69]. 
Furthermore, other RIP kinases, such as PINK1 (PARK6), 
PARK2 (Parkin), PARK7, and LRRK2, have also been 
reported to be involved in mitophagy [70, 71]. Interest-
ingly, they are all Parkinson’s disease-associated genes 
[71–73]. Among them, Parkin and RIPK1/RIPK3 have 
been shown to be jointly involved in mediating necrop-
tosis and inflammatory responses [74, 75]. In addition, in 
a study by Zeb S et  al., fluoxetine exerts an antidepres-
sive effect by indirectly inhibiting RIPK1/RIPK3/MLKL-
mediated astrocytic necroptosis [76]. Overall, consistent 
with previous studies, the crosstalk between mitophagy, 
necroptosis, and inflammation may be closely related to 
the pathological mechanism of MDD [9, 62, 77]. RIPK1 
may play a critical molecular linkage role [76, 77].

Multiple studies have reported that MDD is linked to 
changes in innate and adaptive immune systems [14, 15, 
78]. Compared to healthy controls, patients with depres-
sion have been shown to have increased neutrophil, 
monocyte, neutrophil/lymphocyte, CD4/CD8 cell-ratio, 
and T helper 17/T regulatory ratios [78]. Our results fur-
ther reveal significant differences in immune infiltration 
between MDD and normal samples. Specifically, patients 
with MDD had a higher proportion of M1 macrophages, 
naïve B cells, resting mast cells, and activated memory 
CD4 + T cells than healthy controls, while the proportion 
of memory B cells and eosinophils was relatively lower. 
Consistent with previous studies, patients with MDD had 
elevated expression levels of M1 macrophages [79], mast 
cells [80], and memory T helper cells [81]. As reported 
by Singh et  al., eosinophil count was slightly lower in 
both first-onset MDD and MDD with recurrent episodes 
[82]. However, it has been noted that studies regard-
ing the overall number of circulating B cells in patients 
with MDD have returned conflicting results. Contrary 
to our results, previous studies have reported that the 
frequencies of naïve B cells, but not memory B cells, are 
reduced in severely depressed patients [83]. Interestingly, 
Yang et  al. found decreased levels of B cells in patients 
with depression [84]. These inconsistencies might have 
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stemmed from heterogeneous inclusion diagnostic cri-
teria or the evaluation of varying severities of the dis-
ease. Overall, our results further confirm the relationship 
between immune dysregulation and MDD [14, 15].

Previous studies have shown that different subtypes 
of depression have different neurobiology, clinical 
courses, response to treatment, and immune charac-
teristics [2, 85, 86]. Considering the heterogeneity of 
immune cells in MDD, two subgroups of patients with 
MDD with distinct immune cell patterns were identi-
fied using a consensus clustering algorithm. Compared 
to cluster 2, cluster 1 had higher expression of memory 
B cells, eosinophils, M2 macrophages, resting memory 
CD4 + T cells, naïve CD4 + T cells, and gamma delta 
T cells. The results indicated significant differences in 
immune patterns between the two clusters. Moreover, 
the important biomarkers ACTL6A and BIRC2 were 
positively associated with resting mast cells in both 
clusters. In cluster 1, RIPK1 expression was positively 
correlated with resting mast cells, while in cluster 2, it 
was negatively correlated with active mast cells. As anti-
gen-presenting cells, mast cells contribute to inflamma-
tory diseases through degranulation and the release of 
histamines and cytokines. There is substantial evidence 
linking mast cell involvement in inflammation pathways 
to depression [80, 87]. Furthermore, autophagy has 
been implicated in the degranulation of mast cells [88]. 
In the immune system, mitophagy has been shown to 
play a significant role [17, 42]. Psychiatric and neurode-
generative disorders are associated with malfunctioning 
mitophagy, mitochondria, and dysregulated activation 
of inflammasomes [9, 10, 18]. Based on these findings, 
several key mitophagy-related biomarkers, such as 
BIRC2, ACTL6A, and RIPK1, may be essential regula-
tors of the immune status of patients with MDD and 
should be further investigated.

Although several bioinformatic approaches and statis-
tical methodologies have been used to investigate diag-
nostic biomarkers, our study had several limitations. 
First, this study was a retrospective study; therefore, it 
lacked newly collected clinical samples and information. 
Second, the biological activities of the identified genes 
and their association with MDD are not fully understood. 
Due to the limited datasets in the database, the sample 
size of this study was insufficient, which may have led 
to bias. Due to the rarity and difficulty of acquiring nor-
mal human brain tissue samples, our study did not con-
tain any controls consisting of brain tissue samples. As 
the research remained in the prediction stage, this study 
lacked sufficient experimental evidence to corroborate 
our prediction results. To improve our results, these data 
should be validated in vitro and in vivo.

Conclusions
By combining multiple bioinformatic approaches, we 
identified five mitophagy-related biomarkers (MATR3, 
ACTL6A, FUS, BIRC2, and RIPK1) for MDD. Moreover, 
two mitophagy-based molecular subtypes and two dis-
tinct MDD-related clusters with diverse immune infil-
trations in MDD were also identified, suggesting the 
importance of mitophagy in the diagnosis of MDD, regu-
lating immune infiltration, and highlighting the biologi-
cal heterogeneity of MDD. To the best of our knowledge, 
this study provides the first glimpse into the biological 
implications of MRGs and their relevance to immune 
cell infiltration in MDD. Identifying diagnostic indica-
tors and molecular subtypes can lead to a deeper under-
standing of MDD’s molecular heterogeneity of MDD and 
help build accurate and individualized treatment options, 
thus reducing the burden of depression. However, further 
ex vivo and in vivo studies are necessary to confirm the 
accuracy of this study.
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