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Abstract 

Background  Recent advances in long-read sequencing technologies have enabled accurate identification of all 
genetic variants in individuals or cells; this procedure is known as variant calling. However, benchmarking studies on 
variant calling using different long-read sequencing technologies are still lacking.

Results  We used two Caenorhabditis elegans strains to measure several variant calling metrics. These two strains 
shared true-positive genetic variants that were introduced during strain generation. In addition, both strains con-
tained common and distinguishable variants induced by DNA damage, possibly leading to false-positive estimation. 
We obtained accurate and noisy long reads from both strains using high-fidelity (HiFi) and continuous long-read (CLR) 
sequencing platforms, and compared the variant calling performance of the two platforms. HiFi identified a 1.65-fold 
higher number of true-positive variants on average, with 60% fewer false-positive variants, than CLR did. We also com-
pared read-based and assembly-based variant calling methods in combination with subsampling of various sequenc-
ing depths and demonstrated that variant calling after genome assembly was particularly effective for detection of 
large insertions, even with 10 × sequencing depth of accurate long-read sequencing data.

Conclusions  By directly comparing the two long-read sequencing technologies, we demonstrated that variant 
calling after genome assembly with 10 × or more depth of accurate long-read sequencing data allowed reliable 
detection of true-positive variants. Considering the high cost of HiFi sequencing, we herein propose appropriate 
methodologies for performing cost-effective and high-quality variant calling: 10 × assembly-based variant calling. 
The results of the present study may facilitate the development of methods for identifying all genetic variants at the 
population level.
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Background
Accurate variant detection is required for reliable assess-
ments of the relationships between genotypes and phe-
notypes. Several population-level studies have elucidated 
the genetic architectures responsible for a range of quan-
titative traits, including susceptibility to common human 
diseases [1], inherited human diseases [2, 3], and crop 
optimization in plants [4], using short-read sequencing 
technologies owing to their high throughput and low 
cost [5]. However, short-read sequencing is inadequate 
for accurately identifying large structural variants (SVs) 
due to the short length of reads [6]. In particular, short-
read-based methods employed for detecting variants by 
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mapping reads to reference genomes commonly miss 
variants not existing in the reference genomes, such as 
insertions [7]. Thus, these methods have limited utility 
in determining the precise genetic sequences underlying 
quantitative traits [8].

In recent years, long-read sequencing techniques and 
related computational tools have significantly over-
come these limitations [9, 10]. Long-read sequencing is 
a method that can read nucleotide sequences ranging 
from tens of kilobases (kb) to several megabases (Mb) at a 
time [11]. Although long-read sequencing is typically less 
accurate than short-read sequencing, it allows identifica-
tion of SVs including insertions due to the long length of 
reads [12]. Furthermore, the limitation of low throughput 
of long-read sequencing is gradually being tackled with 
the use of the Sequel II system from Pacific Biosciences 
(PacBio) and PromethION system from Oxford Nano-
pore Technologies [13]. These systems provide high 
throughput, and their costs are still much more expen-
sive, but become similar to those of short-read sequenc-
ing technologies [13]. Moreover, the high-fidelity (HiFi) 
long-read sequencing technology developed by PacBio 
has been shown to improve base-level accuracy by up 
to 99.9% by utilizing circular consensus sequences of 
10–20  kb [14]. Compared with the conventional noisy 
continuous long-read (CLR) sequencing technology, 
HiFi sequencing allows rapid assembly of high-quality 
genomes and requires few computational resources due 
to its reliable base quality [14, 15].

By applying the advantages of long-read sequencing 
technologies in terms of detecting SVs and generating 
high-quality genome assemblies, raw read-based and 
genome assembly-based variant detection methodologies 
are rapidly being improved [16, 17]. Although 100-fold 
longer reads may allow detection of previously uniden-
tified SVs, the use of calling variants exceeding the read 
length remains technically challenging [18]. This limita-
tion can be overcome by assembling long reads into large 
contigs using the overlap between reads, which are 10- 
to 100-fold longer than the reads [13]. As contigs have 
comparable lengths to chromosomes, they can be used 
to accurately identify all genetic variants in a population, 
even at the chromosomal level [19–22]. However, as high-
quality genome assembly requires 20 × sequence depth 
and read-based variant calling requires 5 × sequence 
depth, systematic benchmarking analysis is required to 
identify genetic variants in an accurate and cost-effective 
manner [23, 24].

Herein, we used a benchmarking dataset to compare 
the variant calling performance of accurate and noisy 
long-read sequencing technologies. Using this dataset, 
we estimated the relative true- and false-positive ratios as 
well as read- and assembly-based true-positive detection 

rates at various depths. Our results may provide a basis 
for future large-scale pangenome studies to elucidate 
genetic variants in any given population.

Results
Experimental design for variant detection analysis 
in Caenorhabditis elegans
We used two C. elegans strains to compare the variant 
calling performance of accurate (HiFi) and noisy (CLR) 
long-read sequencing technologies. Two strains, namely, 
ALT1 and ALT2, were generated from a common telom-
erase mutant worm (Fig.  1A). This telomerase mutant 
worm had a predominant CB4856-type genetic back-
ground and contained some genomic segments from 
the founder strain N2, which were introduced during 
the process of mutant generation. Then, telomere dam-
age-mediated mutations were introduced and descend-
ants were separated into two lines after sufficient DNA 
damage and chromosome fusion events. The genomic 
sequences of the obtained two lines were identical at the 
time of generation but diverged later due to line-specific 
DNA damage prior to telomere stabilization, thereby 
leaving strain-specific mutations. Thus, we used the 
CB4856 genome as a reference. All variants detected in 
the ALT1 and ALT2 assemblies were divided into the fol-
lowing two types: (1) variants shared with the founder, 
hereafter named “founder variants” (overlap with known 
N2 variants) and (2) variants acquired by common or 
strain-specific DNA damage events, hereafter named 
“acquired variants” (no overlap with known N2 variants; 
Fig. 1A).

We used variation characteristics to compare the true-
positive and false-positive ratios of HiFi and CLR because 
all true-positive variants in ALT1 and ALT2 were not 
known. Since sequencing, genome assembly, and variant 
calling processes are not perfect, some identified variants 
may not be identical to their corresponding real vari-
ants in the genome. Thus, we categorized the identified 
variants as follows: (1) full match: if the identified variant 
exactly matched a real variant, i.e., a true-positive vari-
ant; (2) partial match: if the identified variant partially 
matched a real variant; (3) missing: if the real variant 
existed in the genome but no corresponding variant was 
identified; and (4) mis-calling: no real variant existed at a 
certain locus but a corresponding variant was identified 
(Fig. 1B).

Moreover, we utilized the known characteristics of 
the founder and acquired variants. Founder variants 
were introduced during the generation of the start-
ing line. Accordingly, most if not all of the founder 
variants were assumed to be shared among the three 
strains, i.e., ALT1, ALT2, and the founder N2, unless 
they were lost or altered due to mutations caused by 
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Fig. 1  Experimental scheme for the generation of C. elegans strains to estimate variant calling performance. A Schematic representation of genetic 
variants in the two C. elegans strains. Two strains, namely ALT1 and ALT2, were derived from a common telomerase mutant worm. When CB4856 
genome was used as a reference, all variants detected in the ALT1 and ALT2 assemblies can be divided into the following three types: (1) founder 
variants introduced during the process of starting mutant worm generation (blue bars); (2) variants acquired by common DNA damage events 
(yellow bars); and (3) variants acquired by strain-specific DNA damage events (gray bars). The location of each variant does not reflect the real 
location. B Comparison of various types of real variants and variants that were identified by sequencing and/or variant calling errors. Identified 
variants can be categorized as follows: (1) full match: if the identified variant exactly matched the corresponding real variant; (2) partial match: if 
the identified variant partially matched the corresponding real variant; (3) missing: if the real variant existed in the genome but no corresponding 
variant was identified; and (4) mis-calling: no real variant existed at a certain locus but the locus contained an identified variant; TP, true positive; FP, 
false positive. C Types of variants used for estimating the variant calling performance of CLR and HiFi. Founder variants can be accurately identified 
by utilizing the high-quality N2 genome. The number of shared founder variants between ALT1 and ALT2 was used to measure the true-positive 
detection performance for HiFi and CLR (left). The two strains contained true-positive variants acquired through common and strain-specific DNA 
damage in addition to falsely detected miscalled variants. The ratio of common acquired variants and strain-specific acquired variants was utilized 
to measure the false-positive detection performance for HiFi and CLR (right)
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strain-specific DNA damage. Due to the availabil-
ity of a high-quality, long-read sequencing-based N2 
genome, we were able to distinguish founder variants 
from other variants in the ALT1 and ALT2 genomes. 
We used these founder variants to measure the relative 
performance of HiFi and CLR in detecting true-posi-
tive variants by calculating the ratio of common to all 
founder variant numbers. A higher number of shared 
founder variants between ALT1 and ALT2 indicated a 
higher true-positive detection performance for a given 
technology (Fig. 1C).

Furthermore, the two strains used in the present 
study had common and strain-specific DNA damage-
mediated variants that were acquired before and after 
line separation, respectively (Fig. 1C). Accordingly, var-
iants shared between the two strains were assumed to 
be true-positive variants formed as a result of common 
DNA damage. In contrast, the variants that were not 
shared between the strains were assumed to be true-
positive strain-specific variants or falsely detected mis-
called variants. Using these acquired variant datasets, 
we estimated the relative performance of HiFi and CLR 
in detecting false-positive variants. We assumed that 
the true ratio of strain-specific to common acquired 
variants of the two strains should be the same regard-
less of the sequencing technologies and that the ratio 
of HiFi that we detected can be considered as a proxy of 
the true ratio. Based on the ratio of HiFi, we suspected 
that the remaining number of strain-specific acquired 
variants detected in CLR would be false-positives.

HiFi assemblies showed two‑fold higher contiguity 
than depth‑matched CLR assemblies
The two DNA samples were multiplexed for cost-effec-
tive HiFi sequencing, and 2.2-Gb and 1.9-Gb HiFi reads 
were generated from ALT1 and ALT2, respectively, after 
demultiplexing (Additional file 1: Table S1–2 and Fig. S1). 
The sequencing depth of ALT1 and ALT2 was approxi-
mately 20 × , which was comparable to that obtained 
using CLR [20]. We compared depth-matched HiFi and 
CLR assemblies and confirmed that HiFi assemblies 
showed higher contiguity than CLR assemblies. The N50 
lengths of the ALT1 and ALT2 HiFi assemblies were 
1.2  Mb and 1  Mb, respectively, and the maximum con-
tig lengths were 5.0  Mb and 5.1  Mb, respectively, all of 
which were more than 2.5-fold higher than those of the 
depth-matched CLR assemblies (Fig. 2A and Additional 
file  1: Table  S3). To further analyze assembly contigu-
ity, we used BUSCO, which evaluates the completeness 
of single-copy ortholog genes in a given assembly, and 
confirmed that the number of fragmented or miss-
ing orthologs was reduced by approximately fivefold 
in the HiFi assembly compared with the CLR assembly 
(Fig. 2B). Finally, we evaluated the length of the riboso-
mal RNA clusters in each assembly as most ribosomal 
RNA clusters are disassembled due to their long and tan-
demly repeating units. The lengths of ribosomal RNA 
sequences in the HiFi-based genome assemblies were 
much closer to the previously estimated length in the C. 
elegans reference genome than in the CLR-based genome 
assemblies (Fig. 2C) [25]. These results demonstrate that 
HiFi outperforms CLR in terms of assembly contiguity.

Fig. 2  HiFi assemblies showed twofold higher contiguity than depth-matched CLR assemblies. A Nx plot showing the distribution of contig 
lengths in each assembly. The intersection of each horizontal solid line and vertical dotted line indicates the N50 of each assembly. B BUSCO values 
of each assembly. Note that the reference genome CB4856 was also built on CLR rather than HiFi. C Lengths of the ribosomal RNA sequences in 
each assembly and their previously estimated lengths in C. elegans 
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HiFi detected 37% more founder variants than CLR
Next, we analyzed the variant calling performance of 
HiFi and CLR assemblies. We used the CB4856 genome 
as a reference and called all types of variants ≥ 5  bp. 
The total number of variants (4405 for CLR and 3938 
for HiFi in ALT1 and 3619 for CLR and 3678 for HiFi 
in ALT2) and overall length distribution of the variants 
(Average lengths: 180 bp for CLR and 258 bp for HiFi in 
ALT1 and 186 bp for CLR and 268 bp for HiFi in ALT2) 
were comparable between CLR and HiFi for both strains 
(Additional file 1: Fig. S2A–D).

We categorized ≥ 5-bp insertions and deletions into 
founder or acquired variants and further classified 
them according to their size (5–49  bp or ≥ 50  bp) and 
type of mutation (insertion or deletion). In both strains, 
HiFi identified more founder variants and a compara-
ble number of total variants than CLR did (Additional 
file  1: Table  S4). In the CLR assembly, 1719 and 1412 
founder variants were detected in ALT1 and ALT2, 
respectively, whereas in the HiFi assembly, 2211 and 
2066 founder variants were detected in ALT1 and ALT2, 
respectively (Additional file 1: Table S4). The difference 
between HiFi and CLR in detecting founder variants 
was more pronounced with larger variants. For 5–49-
bp variants, HiFi detected 29% more founder variants 
than CLR (1135 for CLR vs. 1372 for HiFi in ALT1 and 
918 for CLR vs. 1271 for HiFi in ALT2), and for ≥ 50-bp 
variants, HiFi detected 52% more founder variants than 
CLR (584 for CLR vs. 839 for HiFi in ALT1 and 494 
for CLR vs. 795 for HiFi in ALT2) (Additional file  1: 
Table S4).

HiFi outperformed CLR in detecting potential true‑positive 
variants of 5–49 bp by 1.9‑fold
We next analyzed the true-positive detection perfor-
mance of HiFi and CLR using the founder variants that 
were shared between ALT1 and ALT2. For 5–49-bp 
deletions, CLR detected 613 founder variants in ALT1 
and 501 founder variants in ALT2. We identified only 
350 perfectly matched (57% in ALT1 and 70% in ALT2) 
and 90 partially matched deletions (15% in ALT1 and 
18% in ALT2) between ALT1 and ALT2 in terms of 
position and size. The remaining 173 and 61 deletions 
in ALT1 and ALT2, respectively, were strain-specific 
(Fig. 3A).

In contrast, HiFi detected 621 perfectly matched 
5–49-bp founder deletions (90% in ALT1 and 95% in 
ALT2) between ALT1 and ALT2. The proportions 
of partially matched and strain-specific deletions 
were < 10%, being much lower than those detected 
using CLR (Fig. 3A). For 5–49-bp insertions, HiFi had 
a higher performance than CLR in detecting common 

founder variants between the two strains. However, 
despite the high performance, the proportion of 5–49-
bp insertions that partially matched between the two 
strains was slightly higher than that of 5–49-bp dele-
tions, indicating that the detection accuracy for 5–49-
bp insertions was lower than that for similar-sized 
deletions (Fig. 3B).

When common founder variants that perfectly 
matched between ALT1 and ALT2 were considered as 
the true-positive variant set, the use of the HiFi assem-
bly resulted in significantly improved true-positive vari-
ant calling performance, enabling detection of a 1.8-fold 
higher number of 5–49-bp deletions and a two-fold 
higher number of 5–49-bp insertions than those identi-
fied using the CLR assembly. Moreover, when common 
founder variants that at least partially matched between 
the two strains were considered, the use of the HiFi 
assembly allowed the detection of a 1.4-fold higher num-
ber of 5–49-bp deletions and 1.7-fold higher number of 
5–49-bp insertions than the CLR assembly.

HiFi outperformed CLR in detecting potentially 
true‑positive variants of ≥ 50 bp by 3.4‑fold
The difference in variant detection rate between CLR 
and HiFi was more pronounced for indels ≥ 50  bp. Of 
the ≥ 50-bp founder deletions identified using the CLR 
assembly, 213 at least partially matched (57% in ALT1 
and 67% in ALT2) and 128 (60%) perfectly matched 
between the two strains (Fig.  3C). Meanwhile, of 
the ≥ 50-bp founder deletions identified using the HiFi 
assembly, 412 at least partially matched (81% in ALT1 
and 84% in ALT2) and 374 (91%) perfectly matched 
between the two strains. The HiFi assembly detected a 
significantly higher number of common founder variants 
than the CLR assembly (Fig. 3C). The proportion of fully 
matched deletions was lower for ≥ 50-bp deletions than 
5–49-bp deletions (Fig. 3A).

Regarding insertions ≥ 50 bp, HiFi detected more com-
mon founder variants than CLR. The proportion of par-
tially matched ≥ 50-bp insertions was also higher than 
that of similar-sized deletions, demonstrating that even 
with HiFi, the detection accuracy of insertions decreased 
in larger variants (Fig. 3C, D).

To summarize, these results demonstrated that the use 
of the HiFi assembly improved variant calling perfor-
mance, especially for SV detection, allowing detection of 
a 2.9-fold higher number of deletions and 4.5-fold higher 
number of insertions than the CLR assembly. In addition, 
we were able to detect a significant number of true-pos-
itives with lengths ≥ 1 kb using the HiFi assembly, while 
true-positives of this length were rarely detected using 
the CLR assembly (Additional file 1: Fig. S3).
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HiFi‑based common founder variants covered a high 
proportion of CLR‑based variants
We analyzed the overlap between the two true-positive 
call sets that consisted of common founder variants 
that perfectly matched between the two strains and 
confirmed that approximately 84% of CLR-based vari-
ants were covered by HiFi-based variants, regardless 
of type and size (Fig. 3E). On the other hand, approxi-
mately 30%–51% of HiFi-based variants were covered 
by CLR-based variants, with the lowest proportion 
observed for ≥ 50-bp deletions. These results indi-
cated that the HiFi assembly allowed detection of a sig-
nificant number of false-negatives missed in the CLR 

assembly and most variants detected with the CLR 
assembly.

More number of potential false‑positive variants were 
identified using CLR than HiFi
As ALT1 and ALT2 contain variants acquired through 
common and strain-specific DNA damage events, 
acquired variants can be divided into the following three 
types according to their sources: acquired variants com-
mon in ALT1 and ALT2 that were generated by common 
DNA damage, acquired variants differing between ALT1 
and ALT2 that were generated by strain-specific DNA 
damage, and acquired variants differing between ALT1 

Fig. 3  Founder variant detection rates of CLR and HiFi assemblies to estimate true-positive calling performance. A–D, Number of shared or 
unmatched founder variants detected in each assembly. Founder variants were divided into four groups according to their size and type: A 5–49-bp 
deletion; B 5–49-bp insertion; C ≥ 50-bp deletion; and D ≥ 50-bp insertion. Blue bar represents founder variants perfectly matched for position 
and size between ALT1 and ALT2 using the same sequencing mode. Red bar represents partially matched founder variants. Gray bar represents the 
remaining founder variants identified in a single strain. E Overlap ratios for common founder variants detected using CLR and HiFi assemblies. Full 
circle represents the ratio of CLR variants covered by HiFi and the empty circle represents vice versa. Colors represent partial- or full-matched variant 
sets



Page 7 of 14Lee et al. BMC Genomics          (2023) 24:148 	

and ALT2 that were generated by false-positive variant 
calls. We indirectly estimated the false-positive detection 
rate of CLR and HiFi using the proportions of common 
and strain-specific acquired variants. In both strains, HiFi 
identified fewer acquired variants than CLR, with ALT1 
containing 2677 and 1715 acquired variants detected 
using CLR and HiFi, respectively, and ALT2 containing 
2245 and 1597 acquired variants detected using CLR and 
HiFi, respectively (Additional file 1: Table S4).

Of the 5–49-bp deletions detected from the CLR 
assembly, only 48 (11% in ALT1 and 13% in ALT2) at 
least partially matched between ALT1 and ALT2, of 
which 29 (60%) perfectly matched for position and size 

(Fig.  4A). Among the 5–49-bp deletions detected from 
the HiFi assembly, 214 (50% and 54% in ALT1 and ALT2, 
respectively) at least partially matched between ALT1 
and ALT2, of which 191 (89%) perfectly matched. In 
other words, 88% of the total acquired variants identified 
from the CLR assembly were not shared between the two 
strains, while < 50% of the total acquired variants identi-
fied from the HiFi assembly were shared between the two 
strains, indicating that some CLR-based variants may be 
false positives. The difference between the CLR and HiFi 
assemblies was more pronounced for 5–49-bp insertions. 
Based on the HiFi assembly, the proportion of inser-
tions shared between the two strains was approximately 

Fig. 4  Acquired variant detection rates of CLR and HiFi assemblies to estimate relative false-positive calling rates. A–D, Number of shared or 
strain-specific acquired variants detected in each assembly. Acquired variants were divided into four groups according to their size and type: A 
5–49-bp deletion; B 5–49-bp insertion; C ≥ 50-bp deletion; and D ≥ 50-bp insertion. Blue bar represents acquired variants perfectly matched for 
position and size between ALT1 and ALT2 using the same sequencing mode. Red bar represents partially-matched acquired variants. Gray bar 
represents the remaining acquired variants identified in a single strain. E Overlap ratios for common acquired variants detected using CLR and HiFi 
assemblies. Full circle represents the ratio of CLR variants covered by HiFi and the empty circle represents vice versa. Colors represent partial- or 
full-matched variant sets
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57%, while almost 95% of the variants identified from the 
CLR assembly were not shared between the two strains 
(Fig. 4B).

Similar results were observed for ≥ 50-bp indels. The 
HiFi assembly detected fewer deletions than the CLR 
assembly (979 for CLR and 145 for HiFi in ALT1 and 569 
for CLR and 175 for HiFi in ALT2), of which 90 (57%) at 
least partially matched between the two strains. Among 
the variants identified in the CLR assembly, only 37 
(5%) at least partially overlapped despite a sixfold higher 
number of ≥ 50-bp deletions being detected in the CLR 
assembly than in the HiFi assembly (Fig.  4C). In case 
of ≥ 50-bp insertions, several different variants between 
the two strains were detected based on CLR (Fig. 4D). As 
HiFi outperformed CLR in detecting common founder 
variants, these results indicate that the higher number of 
acquired variants detected using the CLR assembly is due 
to a substantial proportion of false positives, regardless of 
the variant length.

HiFi‑based common acquired variants covered a high 
proportion of CLR‑based common acquired variants
While acquired variants may contain a large number of 
false positives, variants found in both ALT1 and ALT2 
represent true positives shared between the two strains. 
We estimated the proportions of false positives detected 
using the CLR and HiFi assemblies by analyzing the ratio 
of common and different acquired variants captured 
using the two platforms, HiFi and CLR.

We analyzed the overlap between the common 
acquired variants detected using CLR and HiFi and con-
firmed that HiFi covered approximately 60% of the dele-
tions and all insertions detected using CLR (Fig.  4E). 
However, the proportion of HiFi-based variants covered 
by CLR-based variants was 2%–17%.

The acquired variants detected using the two plat-
forms did not overlap well. Regardless of the type and 
size of the variant, HiFi covered < 22% of the CLR-based 
variants, and CLR covered < 25% of the HiFi-based vari-
ants (Additional file 1: Fig. S4). We anticipated that HiFi 
would cover approximately 60% of CLR-based variants, 
as observed for common acquired variants. We hypothe-
sized that the reduced coverage from 60% to 20% may be 
attributable to the threefold increase in the total number 
of variants due to miscalled false-positive variants in the 
CLR assembly. Therefore, we determined that up to two-
thirds of all acquired variants in the CLR assembly were 
false-positive variants.

10 × HiFi sequencing data were sufficient to detect variants
Considering the higher cost of HiFi than CLR or short-
read sequencing technologies, we hypothesized that 

reliable variant calling could be achieved with the 
use of smaller HiFi datasets. We utilized the common 
founder variants in ALT1 and ALT2 described above 
(1804 in total) as the true-positive variant set. We 
compared the read-based and assembly-based variant 
calling methods in combination with subsampling of 
various sequencing depths. We performed assembly-
based variant calling with randomly extracted 5 × , 
10 × , and 15 × HiFi data and read-based variant call-
ing with HiFi read depths of 1 × to 15 × at 1 × inter-
vals. For assembly-based variant calling, we used 
SVIM-asm [26]. For read-based variant calling, we 
tested four publicly available SV callers, SVIM [27], 
Sniffles [28, 29], PBSV (http://​github.​com/​Pacif​icBio​
scien​ces/​pbsv), and MAMnet [30] (http://​github.​com/​
micah​vista/​MAMnet), in terms of their recall perfor-
mance. MAMnet and SVIM outperformed the other 
two SV callers, and SVIM exhibited slightly higher and 
less variable detection rate for almost all the cases than 
MAMnet (Additional file  1: Fig. S5). We used SVIM 
for further analysis.

In all cases, greater amounts of data increased the 
detection rate of common founder variants, with both 
read-based and assembly-based variant calling meth-
ods and the detection rate was saturated at 10 × (Fig. 5). 
In read-based variant calling, the detection rates of 
deletions were higher than those of insertions (Fig. 5A, 
C, E, G), since insertions can be detected only when 
the corresponding reads are fully mapped to the refer-
ence, making calling of insertions more difficult than 
deletions. For variants that fully matched to the true-
positive set, we confirmed that the detection rates of 
indels converged to 65% for 5–49-bp variants and 40% 
for ≥ 50-bp variants (Fig. 5A, C, E, G).

In contrast to read-based variant calling, in assem-
bly-based variant calling, the detection rate for fully 
matched variants did not differ considerably from the 
detection rate for partially matched variants. The high 
quality of assembly-based variants may result from 
error correction during genome assembly. Low-depth 
assembly-based variant calling datasets typically have 
lower detection rates than depth-matched read-based 
variant calling datasets as depths lower than 10 × are 
too sparse to assemble the genome accurately. How-
ever, 10 × assembly-based variant calling had a higher 
insertion detection rate and accuracy (Fig. 5C, D, G, H) 
than 15 × read-based variant calling.

Taken together, these results demonstrated that the 
use of 10 × HiFi data is sufficient for successful vari-
ant calling, provided a good-quality reference is used. 
In addition, most variants can be accurately identified 
using assembly-based variant calling.

http://github.com/PacificBiosciences/pbsv
http://github.com/PacificBiosciences/pbsv
http://github.com/micahvista/MAMnet
http://github.com/micahvista/MAMnet
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Read‑based variants contained poor relevant and possible 
false positives
Next, we confirmed whether the false-positive detec-
tion rate can be improved through genome assembly. 
We compared the total number of variants and common 
founder variants using read- and assembly-based variant 

calling data. In read-based variant calling, the number 
of common founder variants converged to 1600 above 
10 × depth, but the number of variants that did not match 
common founder variants steadily increased and occu-
pied up to 88% of all variants (Fig.  5I). Assembly-based 
variant calling showed substantially different results. The 

Fig. 5  Performance of HiFi read- or assembly-based variant calling at varying sequencing depths. A–H Violin plots representing the detection 
rate of true-positive variants. We used the full-matched common founder variants in ALT1 and ALT2 described above (1804 in total) as the 
true-positive variant set to estimate the true-positive variant detection rate. Red represents the detection rate based on at least partial matching 
to the true-positive variant set and blue represents the detection rate based on perfect matching. I–K Violin plots representing the number of 
total detected variants. Red represents the number of variants at least partially matched to the common founder variants (1804 in total) and blue 
represents the detection rate based on perfect matching. Gray represents the remaining variants. Reliable variants were filtered from those obtained 
using read-based variant calling according to their quality metric (Q ≥ 5; Q5). Subsampling was repeated five times for each sequencing depth. Each 
horizontal solid line of the violin plot represents the median of five repeats
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number of common founder variants converged to 1400 
at depths > 10 × , but the number of variants that did 
not match common founder variants remained constant 
at around 1900, regardless of the depth. Based on these 
results, we hypothesized that substantially more false-
positive variants resided in non-matched read-based var-
iants than assembly-based.

To support this hypothesis, we filtered the read-based 
variants using their variant quality metric to desig-
nate reliable variants (Q ≥ 5; Q5). Among the total vari-
ants, only 20% remained  after quality filtering, but still 
60%–80% common founder variants (true-positive set) 
remained. Impressively, this filtering was much more 
powerful for non-matched variants of which only 10% 
remained (Fig. 5J). This result suggests that most of the 
variants detected using read-based variant calling may 
not be reliable although the total number of detected 
variants increase. In addition, even true-positive vari-
ants may not be well supported by statistical analyses: 
10 × read-based reliable variant calling detected only 50% 
of the true-positive deletions and 40% of the true-positive 
insertions (Additional file  1: Fig. S6A–D). After this fil-
tering, 10 × assembly-based variant calling had a higher 
detection rate than 15 × read-based reliable variant call-
ing. These results indicate that genome assembly prior to 
variant calling is more reliable, even at low depths.

The other three read-based SV callers, Sniffles, PBSV, 
and MAMnet, showed poorer performance than SVIM in 
reliable variant calling (Additional file 1: Fig. S7). Sniffles 
that contained reliable SVs only (Q ≥ 25) captured ~ 1000 
common founder variants with ≥ 10 × reads. However, 
it also contained ~ 5000 non-matched variants, which 
exceeds the number of SVIM (Q ≥ 5). PBSV had the least 
number of variants (~ 1500 SVs with 15 × reads), and 
captured only ~ 650 common founder variants. MAMnet 
had ~ 1000 reliable variants (Q ≥ 5), but captured ~ 530 
common founder variants. Thus, SVIM exhibited better 
recall and precision performances than other read-based 
SV callers. However, as its sister assembly-based SV 
caller, SVIM-asm, outperformed SVIM, we recommend 
assembly-based SV calling rather than read-based one 
even with lower read depths.

Discussion
Genetic variation is the fundamental basis of pheno-
typic variation, including human genetic diseases [31, 
32] and evolution [33]. Despite ongoing efforts, technical 
limitations have hindered accurate calling of all genetic 
variants in populations [6, 7]. Recent innovations in 
long-read sequencing technologies have helped in over-
coming these limitations by providing methods for the 
generation of high-quality genomes and identification of 
extremely large variants that were technically challenging 

using short-read sequencing technologies [15, 34, 35]. 
However, as long-read sequencing technologies have 
matured and several different methods are now available, 
there is a need for developing benchmarking analysis to 
compare sequencing technologies [13]. We therefore 
produced reads using HiFi, the most advanced accurate 
long-read sequencing technique, and compared the per-
formance of HiFi and CLR, a noisy long-read sequencing 
technology. Our results may facilitate the development of 
methods for population-level variant calling, particularly 
construction of graph-based reference genomes.

The two C. elegans strains used in the present study 
exhibited two advantages in measuring variant calling 
metrics. First, as high-quality reference genomes are 
available that constitute the starting worm’s genome, we 
were able to accurately identify potential true-positive 
variants by utilizing the fact that they are inherited from 
a single starting worm and must be shared between the 
two strains. Second, the two strains contained variants 
acquired through common and strain-specific DNA dam-
age that should be detected in a similar fashion by the 
same sequencing technology. Based on this assumption, 
we were able to estimate the proportions of false-posi-
tive variants detected using CLR and HiFi by obtaining 
common acquired variant ratios and comparing them 
to strain-specific variant ratios. As the variants of the 
two strains used do not require manual validation, they 
can be used to measure the performance of sequencing 
methods developed in the near future.

The limitations of the present study are related to 
the characteristics of C. elegans. C. elegans has a small 
genome size that allows generation of sufficient PacBio 
HiFi data at a lower cost than human samples; however, 
the genomic architecture of C. elegans is different from 
that of humans, with fewer repetitive elements and 
no centromeric regions [36, 37]. These characteristics 
may contribute to different performance metric values 
obtained when the same method is applied to human 
genomes. In addition, unlike humans, there is currently 
no C. elegans reference genome based on HiFi. Accord-
ingly, we were unable to obtain the exact reference 
sequences of repetitive regions comparable to our HiFi 
data. Therefore, we were unable to evaluate the util-
ity of HiFi in detecting variants in long-tandem repeat 
regions or accurately detect variants in the ribosomal 
RNA region. In addition, C. elegans is a selfing and highly 
homozygous hermaphrodite despite having diploid chro-
mosomes [38]. Each of these factors may limit the direct 
application of our results to humans.

Another limitation was the lower throughput of HiFi 
sequencing than expected, with only 6  Gb of HiFi data 
on one cell of the PacBio Sequel II system. This result 
differs from that of previous studies in which 20–40 Gb 
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data were generated on a single cell [39, 40]. This issue 
may be attributable to poor library preparation efficiency 
during the multiplexing process. It is important to con-
firm whether the low throughput observed in the pre-
sent study was due to large deviations within the HiFi 
sequencing data or an unoptimized sequencing process at 
the facility that we used. In addition, as the depth of our 
HiFi reads was 20 × and the N50 lengths of HiFi assem-
blies were approximately 1  Mb, true- and false-positive 
variants present in loci that we failed to assemble were 
likely missed. The final limitation of the present study 
was that we were unable to compare the performance of 
variant calling among various sequencing technologies, 
such as short-read and Oxford Nanopore Technologies’ 
long- or ultra long-read sequencing technologies [41]. 
We expect to overcome these limitations by applying var-
ious sequencing technologies in the future.

Despite these limitations, the results of the present 
study demonstrated that accurate variant detection is 
possible using HiFi sequencing, the most advanced long-
read sequencing technology. In particular, we were able 
to demonstrate that HiFi assembly-based variant detec-
tion is effective for the detection of long insertions, 
which is technically challenging with HiFi reads, and that 
20 × HiFi data are sufficient for high-accuracy genome 
assembly. Furthermore, 10 × HiFi assembly was sufficient 
for high-quality indel detection. We expect that these 
methods can be directly applied to other species, such 
as A. thaliana [42] and D. melanogaster [43], which have 
genome sizes comparable to C. elegans.

Variant detection based on accurate long-read 
sequencing is likely to become routine in the future, with 
advances toward high throughput and low cost. Popu-
lation-level studies based on these advances will allow 
identification of valuable variants that have not been 
detected previously. We anticipate that tens of thousands 
of genome assemblies with reference quality, rather than 
whole genome sequencing data alone, will provide a fun-
damental basis for understanding the genetic architec-
ture underlying phenotypic variation, thereby elucidating 
the “dark matter” in genomes.

Conclusions
By directly comparing accurate and noisy long-read 
sequencing technologies, the results of the present study 
demonstrate that improvements in true- and false-posi-
tive variant calling can be achieved using HiFi instead 
of CLR. Furthermore, we present a HiFi experimental 
design that allows cost-effective and high-quality vari-
ant calling with consideration of the high cost per base 
pair of HiFi. Our findings also demonstrate that 10 × HiFi 
data are sufficient for efficient variant detection and 
that genome assembly is recommended prior to variant 

calling, even at low depths. The findings of the present 
study may facilitate the development of methods for 
detecting genetic variants at the population level.

Methods
C. elegans strains and accession numbers
All worms were derived from a telomerase mutant, trt-
1(ok410). CB4856 worms were maintained at 20  °C on 
nematode growth media (NGM) plates seeded with E. 
coli OP50. All strains used for sequencing in the pre-
sent study were inbred by selfing  twice. Public genome 
assemblies were used as reference genomes. The CB4856 
genome (ASM452629v1) was downloaded from NCBI 
and the N2 genome (WBcel235/ce11) was downloaded 
from Ensembl (release 103).

Genomic DNA extraction and PacBio sequencing 
of multiplexed samples
Genomic DNA from each strain was extracted accord-
ing to previously reported methods [20]. Multiplexed 
DNA sequencing library construction, sequencing, and 
demultiplexing were performed at Macrogen. Multi-
plexed libraries that were composed of ~ 20-kb insert 
molecules were sequenced to an average of 17 passes 
using the PacBio Single Molecule, Real-Time (SMRT) 
DNA sequencing technology (platform: PacBio Sequel II; 
mode: circular consensus sequencing mode). HiFi reads 
were automatically generated using SMRT link v10.1 
with the default option, filtered according to the quality 
value (Q ≥ 20; Q20).

Genome assembly and quality assessment
Each genome was de novo assembled using HiFi 
reads with 21 × depth for ALT1 and 18 × depth for 
ALT2 using HiCanu (Canu version 2.0; canu genom-
eSize= 100m -pacbio-hifi) [44]. ALT1 and ALT2 
genome assemblies obtained using CLR are available 
under NCBI GenBank accessions, ASM1813687v1 
and ASM1813680v1.  The completeness of the assem-
blies based on CLR and HiFi reads was evaluated using 
BUSCO (BUSCO version 4.0.6; busco -m genome -l 
nematoda_odb10) [45, 46], and the length of repeti-
tive elements was  estimated based on repeat-masked 
genomic sequences using RepeatMasker (version 4.1.0; 
RepeatMasker -species metazoa -s).

Identification of variants
For read-based variant calling, we used HiFi reads to 
detect genetic variants using the four SV calling meth-
ods, SVIM [27], Sniffles [28, 29], PBSV (http://​github.​
com/​Pacif​icBio​scien​ces/​pbsv), and MAMnet [30] (http://​
github.​com/​micah​vista/​MAMnet). We used SVIM with 
its default parameters (version 1.4.2; svim read --aligner 

http://github.com/PacificBiosciences/pbsv
http://github.com/PacificBiosciences/pbsv
http://github.com/micahvista/MAMnet
http://github.com/micahvista/MAMnet
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minimap2 --min_sv_size 5 --skip_genotyping --mini-
mum_depth 1). For Sniffles, HiFi reads from each sam-
ple (N2, ALT1, and ALT2) were mapped to the CB4856 
genome using minimap2 (version 2.22; minimap2 -ax 
map-hifi) [47], the output mapping files were sorted 
and indexed using SAMtools (version 1.13; samtools 
sort -m4G -O BAM and samtools index) [48], and these 
indexed BAM files were used to detect genetic variants 
(version 2.0.7; sniffles -i --minsvlen 2 -v). For PBSV, HiFi 
reads were mapped to the CB4856 genome using pbmm2 
(version 1.10.0; pbmm2 align --sort --preset CCS --sam-
ple --rg) (https://​github.​com/​Pacif​icBio​scien​ces/​pbmm2) 
and the output BAM files were used to detect genetic 
variants (version 2.8.0; pbsv discover and pbsv call --ccs). 
For MAMnet, HiFi reads were mapped to the CB4856 
genome using minimap2 (version 2.22; minimap2 -ax 
map-hifi --MD), the output mapping files were sorted 
and indexed using SAMtools (version 1.13; samtools sort 
-m4G -O BAM and samtools index), and these indexed 
BAM files were used to detect genetic variants (python 
MAMnet.py -bamfilepath -workdir -outputpath). For 
assembly-based variant calling, contigs from each assem-
bly (N2, ALT1, and ALT2) were aligned to the CB4856 
genome using minimap2 (version 2.22; minimap2 -a 
-x asm5 --cs -r2k) and the output alignment was sorted 
and indexed using SAMtools (version 1.13; samtools sort 
-m4G -O BAM and samtools index). These indexed BAM 
files were used to detect genetic variants using SVIM-
asm (SVIM-asm version 1.0.2; svim-asm haploid --min_
sv_size 5) [26].

Classification of founder and acquired variants 
and comparison between CLR and HiFi
Deletions and insertions were divided into the following 
two groups depending on the size of variants: 5–49  bp 
and ≥ 50 bp. We used different BEDTools options to cat-
egorize variants according to partial matching and full 
matching (version 2.30.0; bedtools intersect -wa -a -b for 
partially matched deletions and insertions; bedtools inter-
sect -wa -r -f 1.0 -a -b and bedtools intersect -wa -wb -r 
-f 1.0 -a -b | awk ’$4 == $8’ for fully matched deletions 
and insertions, respectively) [49]. In comparison with 
CB4856 as a reference genome, indels that matched at 
least partially between N2 and ALT1 or ALT2 were clas-
sified as founder variants. Other variants were catego-
rized as acquired variants and analyzed using BEDTools 
with the same options. The commonality of variant sets 
was further analyzed based on overlaps between ALT1 
and ALT2 using BEDtools with the same options.

Variant detection analysis of HiFi data at varying depths
Subsampling of HiFi reads was performed at depths from 
1 × to 15 × at 1 × intervals and repeated five times for 

each depth using seqtk (version 1.3-r106; seqtk sample). 
Each set of  subsampled HiFi reads was used to detect 
genetic variants using SVIM for read-based variant call-
ing as described above. HiFi reads that were previously 
extracted at depths 5 × , 10 × , and 15 × depths using 
seqtk were de novo assembled using Hifiasm (version 
0.15.4; hifiasm -l0) [50]. We used Hifiasm instead of 
HiCanu because HiCanu does not perform well when 
datasets with low depths are used. Each assembly was 
aligned to the reference genome using minimap2. Out-
put alignment files were sorted and indexed using SAM-
tools and output BAM files were used to detect genetic 
variants using SVIM-asm as described above. The dataset 
of common founder variants between ALT1 and ALT2 
(1804 in total) was used as a true-positive set. Detec-
tion rates for the true-positive set at each depth were 
estimated by comparing the true-positive set with indels 
detected from read-based or assembly-based variant call-
ing using BEDtools as described earlier. Reliable variants 
were filtered according to the quality metric (Q ≥ 5; Q5) 
from read-based variant calling.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​023-​09255-y.

Additional file 1: Fig. S1. Length distribution of HiFi reads for two multi-
plexed samples, ALT1 and ALT2 (shown in color). Each vertical dashed line 
represents the average read length for each sample. Fig. S2. Summary 
of assembly-based variant calling outputs using SVIM-asm. Variants are 
categorized into five types: DEL, deletion; INS, insertion; INV, inversion; 
DUP_INT, interspersed duplication; and DUP_TAN, tandem duplication. 
Each graph on the left shows variants <2 kb. Graphs on the right show all 
variants. Each table in the right graph presents the number of variants in 
the corresponding call set. Fig. S3. Size distribution of common founder 
variants shared between ALT1 and ALT2 detected using the CLR or HiFi 
assemblies. The numbers of variants ranging in size from 5 bp to ≤10 
kb and >10 kb. The numbers of >10-kb variants were too small and are 
therefore represented as absolute numbers (0 or 1). Fig. S4. Overlap ratio 
between all acquired variants detected using CLR and HiFi for each strain. 
A, Proportion of CLR variants covered by HiFi. B, Proportion of HiFi variants 
covered by CLR. Color represents partial- or full-matched variant sets. 
Shapes (circle or triangle) represent each strain. Fig. S5. Performance of 
four read-based SV callers using HiFi reads in various sequencing depths. 
Violin plots represent the number of total detected variants. Violin plots 
represent the detection rate of true-positive variants from the four SV call-
ers, SVIM, Sniffles, PBSV, and MAMnet. We used the full-matched common 
founder variants in ALT1 and ALT2 described above (total 1804) as the 
true-positive variant set to estimate the true-positive variant detection 
rate. Red represents the detection rate based on at least partial match 
to the true-positive variant set, and blue does only for perfect match. 
Subsampling was repeated 5 times for each sequencing depth. Each 
horizontal solid line of the violin plot means a median of each 5 repeats. 
Fig. S6. Performance of HiFi read-based reliable variant calling at varying 
sequencing depths. Violin plots representing the detection rate of true-
positive variants. The full-matched common founder variants in ALT1 and 
ALT2 described above (1804 in total) were used as the true-positive variant 
set. Red represents the detection rate based on at least partial matching 
to the true-positive variant set and blue represents the detection rate 
based on perfect matching. Subsampling was repeated five times for each 
sequencing depth. Reliable variants were filtered from those obtained 
using read-based variant calling according to their quality metric (Q ≥ 
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5; Q5). Fig. S7. Performance of the three SV callers, Sniffles, PBSV, and 
MAMnet, in detecting reliable true-positive variants in various sequenc-
ing depths. Violin plots represent the number of total detected variants. 
Red represents the number of variants at least partially matched to the 
common founder variants (total 1804), and blue does only for perfect 
match. Gray represents the remaining variants out of the total. Reliable 
variants were filtered by their quality metric (Q ≥ 5; Q5) from read-based 
variant calling, except Sniffles and PBSV, in which the quality metric is over 
25 or missing, respectively. Subsampling was repeated 5 times for each 
sequencing depth. Table S1. Statistics for polymerase reads and subreads. 
Table S2. Statistics for HiFi reads. Table S3. Statistics for assembled 
contigs built on CLR or depth-matched HiFi reads. Table S4. Number of 
founder and acquired variants detected in each assembly for each strain.
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