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Abstract 

Background  RNA modification plays important roles in many biological processes, such as gene expression control. 
The aim of this study was to identify single nucleotide polymorphisms related to RNA modification (RNAm-SNPs) for 
rheumatoid arthritis (RA) as putative functional variants.

Methods  We examined the association of RNAm-SNPs with RA in summary data from a genome-wide association 
study of 19,234 RA cases and 61,565 controls. We performed eQTL and pQTL analyses for the RNAm-SNPs to find 
associated gene expression and protein levels. Furthermore, we examined the associations of gene expression and 
circulating protein levels with RA using two-sample Mendelian randomization analysis methods.

Results  A total of 160 RNAm-SNPs related to m6A, m1A, A-to-I, m7G, m5C, m5U and m6Am modifications were identi-
fied to be significantly associated with RA. These RNAm-SNPs were located in 62 protein-coding genes, which were 
significantly enriched in immune-related pathways. RNAm-SNPs in important RA susceptibility genes, such as PADI2, 
SPRED2, PLCL2, HLA-A, HLA-B, HLA-DRB1, HLA-DPB1, TRAF1 and TXNDC11, were identified. Most of these RNAm-SNPs 
showed eQTL effects, and the expression levels of 26 of the modifiable genes (e.g., PADI2, TRAF1, HLA-A, HLA-DRB1, 
HLA-DPB1 and HLA-B) in blood cells were associated with RA. Circulating protein levels, such as CFB, GZMA, HLA-
DQA2, IL21, LRPAP1 and TFF3, were affected by RNAm-SNPs and were associated with RA.

Conclusion  The present study identified RNAm-SNPs in the reported RA susceptibility genes and suggested that 
RNAm-SNPs may affect RA risk by affecting the expression levels of corresponding genes and proteins.
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Background
Rheumatoid arthritis (RA) is a highly prevalent inflam-
matory arthritis, with an average global prevalence 
estimated at 0.5–1.0%, mostly in women [1, 2]. RA is a 
chronic destructive autoimmune arthritis characterized 
by chronic inflammation of the synovium, especially in 
the small joints, which usually results in the destruction 
of juxta-articular bone and articular cartilage and sig-
nificantly reduces people’s quality of life [3]. It is usually 
accompanied by systemic manifestations, including oste-
oporosis, fatigue and anemia. RA is also associated with 
a 2–3-fold increase in the incidence of cardiovascular 
disease and shows higher morbidity and mortality in the 
affected population [3].

RA is caused by both genetic and environmental fac-
tors. Genetic factors account for approximately 60% 
of the risk of developing RA [4, 5]. Genome-wide asso-
ciation studies (GWASs) have identified more than 100 
RA susceptibility loci in different populations [6–9]. A 
major issue in the post-GWAS era is the identification 
of functional (causal) variants in RA susceptibility loci. 
Sequencing experiments have attempted to identify mis-
sense mutations as functional variants for RA [10, 11]. 
In addition, some studies have focused on genetic vari-
ants altering splice sites [12], variants that are involved in 
RNA-binding protein-mediated regulation [13], and vari-
ants associated with RNA editing variability [14].

It is becoming increasingly important to study the 
epigenetic factors and mechanisms related to the pro-
gression and treatment response of RA [15, 16]. RNA 
modification is modifiable and involved in the regulation 
of different biological processes in living cells [17]. With 
the development of sufficiently sensitive high-resolution 
transcriptomic techniques, more than 170 chemical mod-
ification types in RNA molecules have been identified. 
Some types of RNA modifications have been extensively 
studied, including m6A (N6-adenosine methylation), 
m6Am (N6,2′-O-dimethyladenosine), m5C (5-methylcy-
tidin), m5U (5-methyluridine), m7G (N7-methylguano-
sine), m1A (N1-adenosine methylation), A-to-I RNA 
editing, Nm (2′-O-ribose-methylation) and pseudouri-
dine. Among these modification types, m6A methylation 
is the first example. It is a type of reversible and conserv-
ative RNA methylation in eukaryotes and is known to us 
since it is important in the regulation of gene expression 
[18]. The role of m6A methylation in immunity and RA 
has been characterized [19, 20].

Genetic variants can affect RNA modifications 
by changing the modifiable nucleotides or RNA 
sequences around the target sites [21, 22]. RNA mod-
ification-related SNPs (RNAm-SNPs) may disturb the 
regulation of gene expression by affecting RNA modi-
fications and therefore may be important functional 

variants. m6A-related SNPs (m6A-SNPs) have been 
shown to be potential functional variants in RA sus-
ceptibility genes [23]. However, the relationships 
between other types of RNAm-SNPs and RA remain 
unknown.

Therefore, this study will evaluate the effect of whole-
genome RNAm-SNPs on RA for the first time. Then, the 
impacts of RNAm-SNPs on gene expression were evalu-
ated in quantitative trait locus (QTL) studies, including 
RNA expression QTL (eQTL) and circulating protein 
level QTL (pQTL), to support the functionality of the 
RNAm-SNPs. By applying Mendelian randomization 
(MR) analysis methods, the associations between gene 
expression and circulating protein levels and RA were 
examined, and thus, potential novel risk factors under-
lying the associations between genetic variants and RA 
were identified (Fig. 1).

Results
RA‑associated RNAm‑SNPs
A total of 160 RNAm-SNPs that were significantly asso-
ciated with RA at P < 5.0 × 10− 8 were identified (Sup-
plementary Table S2), including 135 m6A-, 9 m1A-, 9 
A-to-I-, 6 m7G-, 1 m5C-, 1 m5U- and 1 m6Am-related 
SNPs. Among these RNAm-SNPs, 119 mapped to 62 pro-
tein-coding genes, and 41 mapped to lncRNAs or pseu-
dogenes. The 62 protein-coding genes were significantly 
enriched in immune-related pathways (Fig. 2A) and GO 
terms of biological processes (Fig.  2B). Most of the RA 
susceptibility genes contain only one RNAm-SNP, and 23 
genes contain two or more RNAm-SNPs. Notably, HLA-
DQA1, HLA-DQB1, AHNAK2, HLA-B and HLA-A con-
tain 13, 12, 9, 7 and 5 RNAm-SNPs, respectively.

A total of 135 RA-associated m6A-SNPs were found, 
96 of which were located in protein-coding genes 
(n = 48). Thirty-four (25.2%) of them were functional 
gain, while 101 (74.8%) were functional loss m6A-SNPs 
(Fig.  2C). These m6A-SNPs were of three confidence 
levels: 16 (11.9%) were high confidence, 47 (34.8%) were 
medium confidence and 72 (55.3%) were low confidence 
m6A-SNPs (Fig. 2D). Among the 96 m6A-SNPs located in 
protein-coding genes, 39 (40.6%) were exonic, 27 (28.1%) 
were in the 3′-UTR, 1 (1.0%) was in the 5′-UTR and 29 
(30.2%) were intronic (Fig. 2E). For the exonic m6A-SNPs, 
22 were missense and 17 were synonymous mutations.

Importantly, significant m6A-SNPs in well-known RA sus-
ceptibility genes were identified (Fig. 3), including rs2076595 
in PADI2 (Fig. 4A); rs4836834 in TRAF1 (Fig. 5A); rs9985404 
in PLCL2; rs9260149, rs1061235 rs79244404 and rs13488 
in HLA-A; rs28367598, rs3177747, rs1057151, rs1056429 
and rs709055 in HLA-B; and rs1042136, rs1042151 
and rs9277410 in HLA-DPB1. In addition, rs10438246, 
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rs12433815, rs12433837, rs12436986, rs2582511, rs2396457, 
rs2894636, rs76231332 and rs74090129 in AHNAK2  
were identified.

We identified nine functional loss m1A-SNPs that 
were significantly associated with RA, and all of them 
belonged to the high or medium confidence categories 
(Table  1). rs12185577 in SPRED2, rs1061235 in HLA-A 
and rs41541519 (P = 7.90 × 10− 9) in HLA-B were iden-
tified. Three of the m1A-SNPs are exonic: rs2359173 in 
MAGI3 is a synonymous mutation, rs76018112 (stop 
codon deletion) in ABCF1 and rs41541519 in HLA-B 
(missense) are frameshift mutations. Nine functional 
loss A-to-I-SNPs belonging to the high confidence cat-
egory were significantly associated with RA (Table  1). 
rs72850280 in HLA-DRB1 and rs1592572 in TXNDC11 
were identified. Six functional loss m7G-SNPs belong-
ing to the medium confidence category were signifi-
cantly associated with RA (Table  1). The 3′-UTR SNP 
rs1051336 in HLA-DRA was strongly associated with 
RA (P = 6.74 × 10− 191); rs71563314 in the 3′-UTR of 
HLA-B was identified; rs5030798 in VARS1 is a missense 
mutation. In addition, rs10885 (missense) in PRRC2A is 
related to m5C modification; rs2074491 in the 5′-UTR of 
HLA-C is related to m6Am modification; and rs76864766 
in tRNA TRY-GTA3–1 is related to m6Am modification 

(Table 1). The identified RNAm-SNPs are not in linkage 
disequilibrium with the HLA-DRB1 variant rs17878703 
[24] (Supplementary Table S3).

Gene expression associated with the RNAm‑SNPs
The main role of RNA modification is to regulate gene 
expression and mRNA stability and homeostasis, so 
RNAm-SNPs may be associated with RNA expression 
levels. By using public data and our own data, we found 
that 134 (83.8%) of the 160 identified RA-associated 
RNAm-SNPs were associated with mRNA expression 
levels. Among the eQTLs, 51 were associated with the 
expression of their host genes in blood cells (Supplemen-
tary Table S4). Significant eQTL signals in well-known 
RA susceptibility genes were identified. We found that 
the m6A-SNP rs4836834 in TRAF1 was associated with 
TRAF1 mRNA levels (P = 8.97 × 10− 72); the m6A-SNPs 
rs79244404 and rs13488 in HLA-A were associated with 
HLA-A mRNA levels (P = 6.85 × 10− 16 and 2.00 × 10− 30, 
respectively); three m6A-SNPs (rs1042136, rs1042151 
and rs9277410) in HLA-DPB1 were associated with 
HLA-DPB1 mRNA levels (P = 5.91 × 10− 18, 7.85 × 10− 16 
and 7.71 × 10− 44, respectively); the m6A-SNP rs2076595 
in PADI2 was associated with PADI2 mRNA levels 
(P = 2.19 × 10− 13); the m6A-SNP rs9985404 in PLCL2 was 

Fig. 1  The design and main results of this study
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associated with PLCL2 mRNA levels (P = 2.19 × 10− 13); 
and the A-to-I-SNP rs1592572 in TXNDC11 was asso-
ciated with TXNDC11 mRNA levels (P = 1.77 × 10− 9). 
According to our data, an association between the 

m6A-SNP rs2076595 and PADI2 mRNA levels in PBMCs 
was observed (Fig.  4B; P = 6.43 × 10− 6). The m6A-SNP 
rs9277410 in HLA-DPB1 was associated with HLA-DPB1 
mRNA levels in PBMCs (Fig. 6A; P = 5.36 × 10− 13).

Fig. 2  Characteristics of the identified RNAm-SNPs. A Pathway enrichment of the modifiable genes; B GO term enrichment of the modifiable 
genes; C Proportion of RNAm-SNPs with different modification functions; D Proportion of RNAm-SNPs with different confidence levels; E 
Distribution of RNAm-SNPs within the four nonoverlapping segments of a gene
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Gene expression associated with RA
In SMR analysis, we detected significant associations 
between gene expression in blood cells and RA by using 
data from three eQTL studies and two GWASs. A total of 
74 significant associations for 26 genes in which RNAm-
SNPs were identified were detected (PSMR < 5.0 × 10− 6), 
and most of the signals were replicated by using different 
datasets (Supplementary Table S5). The expression levels 
of six known RA susceptibility genes, PADI2 (Fig.  4C), 
TRAF1 (Fig.  5B), HLA-A, HLA-DRB1, HLA-DPB1 and 
HLA-B (Supplementary Table S5), in blood cells were sig-
nificantly associated with RA. RNAm-SNPs were identi-
fied in these six genes and were strongly associated with 
the expression levels of their host genes. By applying the 
HEIDI test (P > 0.05), we found that rs9277410 in HLA-
DPB2, rs4836834 in TRAF1, rs2952151 in PGAP3 and 
rs9303280 in GSDMB may be causal variants that affect 
both gene expression and RA (Table 2). Therefore, these 
RNAm-SNPs and the corresponding genes could be pri-
oritized in follow-up functional studies.

For the 26 genes identified in SMR analysis, we com-
pared their expression levels between RA cases and 

controls. In synovial tissues, HLA-DQB1 was differen-
tially expressed between RA cases and controls according 
to GSE1919 data (P = 3.15 × 10− 4). In blood cells, DAXX, 
HLA-A, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1, 
PADI2, PHF19, RNASET2 and VARS2 were differen-
tially expressed between RA cases and controls accord-
ing to GSE15573 and GSE17755 data (P = 1.31 × 10− 9, 
2.82 × 10− 7, 5.34 × 10− 6, 3.86 × 10− 13, 9.37 × 10− 11, 
2.62 × 10− 25, 6.23 × 10− 20, 1.82 × 10− 4, 4.82 × 10− 5 and 
1.09 × 10− 13, respectively). Differential expression of 
PADI2 (Fig. 4D), HLA-DPB1 (Fig. 6B), HLA-A (Fig. 7A), 
HSPA1A (Fig. 7B), MICB (Fig. 7C) and TRAF1 (Fig. 7D) 
in PBMCs between RA cases and controls was also 
found according to our in-house data (P = 3.21 × 10− 2, 
1.42 × 10− 2, 9.83 × 10− 6, 3.40 × 10− 6, 1.94 × 10− 4 and 
1.98 × 10− 2, respectively). In addition, the expression lev-
els of HLA-A in PBMCs were associated with the RA GRS 
(P = 7.44 × 10− 4). In the data of 28 RA cases and 18 con-
trols, we also found that the expression levels of PLCL2, 
which was not detected in SMR analysis, in PBMCs were 
differentially expressed (P = 2.89 × 10− 8) and were asso-
ciated with the RA GRS (P = 7.87 × 10− 3).

Fig. 3  Genome-wide associations between RNAm-SNPs and RA. This Manhattan plot shows the associations between RNAm-SNPs and RA. The 
x-axis indicates chromosome positions. The y-axis indicates -log10P values of the associations. The information was extracted from the summary 
dataset of the RA GWASs published in 2014 and 2021. The solid red line indicates the genome-wide significance level of 5.0 × 10− 8
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Plasma proteins related to the RNAm‑SNPs
We further tried to find plasma proteins that were related 
to the identified RNAm-SNPs. We found 602 pQTL sig-
nals (P < 5.0 × 10− 6) for 107 RNAm-SNPs that were sig-
nificantly associated with RA (Supplementary Table 
S6). A total of 82 proteins were detected. The m6A-SNP 
rs7775397 in TSBP1 was associated with plasma levels of 
23 proteins, and the m5C-SNP rs10885 in PRRC2A was 
associated with plasma levels of 20 proteins. The top 

signals were the associations between rs1130142 and 
rs1130144 in HLA-DQA1 and circulating levels of HLA-
DQA2. Indeed, 39 RNAm-SNPs that were significantly 
associated with RA were significantly associated with cir-
culating levels of HLA-DQA2. In addition, more than 20 
RNAm-SNPs were significantly associated with circulat-
ing levels of C4A, MICB, PRSS3, GRIA4, PDE4D, RAC-
GAP1, LRPAP1, IL21 and KIR2DS2.

Fig. 4  Association between the PADI2 gene and RA. A The m6A-SNP rs2076595 in the PADI2 gene was significantly associated with RA; B The C 
allele carriers of rs2076595 had high mRNA expression levels of PADI2 in PBMCs; C SNPs in PADI2 were strongly associated with the expression 
levels of PADI2 in blood cells, and the expression levels of the PADI2 gene were significantly associated with RA; D The RA cases had higher mRNA 
expression levels of PADI2 in PBMCs than the controls
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Fig. 5  Association between the TRAF1 gene and RA. A The m6A-SNP rs4836834 in the TRAF1 gene was significantly associated with RA; B SNPs in 
TRAF1 were strongly associated with the expression levels of TRAF1 in blood cells, and the expression levels of the TRAF1 gene were significantly 
associated with RA

Table 1  The significant RA-associated RNAm-SNPs

Modification type SNP Chromosome Position Gene Gene region Confidence level P value

A-to-I rs3130385 6 30,211,387 TRIM26 intron High 3.88E-19

A-to-I rs3130465 6 31,198,575 HCG27 intron High 8.30E-12

A-to-I rs72850280 6 32,583,744 HLA-DRB1 intron High 1.12E-09

A-to-I rs9274112 6 32,662,417 HLA-DQB1 intron High 1.44E-58

A-to-I rs9274115 6 32,662,428 HLA-DQB1 intron High 9.06E-59

A-to-I rs4360168 6 32,662,436 HLA-DQB1 intron High 1.32E-16

A-to-I rs9274428 6 32,665,264 HLA-DQB1 intron High 2.71E-52

A-to-I rs1592572 16 11,716,526 TXNDC11 intron High 4.61E-09

A-to-I rs9303280 17 39,917,778 GSDMB intron High 1.70E-09

m1A rs2359173 1 113,653,873 MAGI3 CDS High 5.30E-10

m1A rs12185577 2 65,432,354 SPRED2 5′-UTR​ Medium 2.40E-09

m1A rs1061235 6 29,945,521 HLA-A 3′-UTR​ Medium 1.19E-11

m1A rs76018112 6 30,590,701 ABCF1 CDS Medium 2.88E-08

m1A rs9263785 6 31,158,046 CCHCR1 intron Medium 5.20E-09

m1A rs41541519 6 31,356,287 HLA-B CDS Medium 7.90E-09

m1A rs9276935 6 32,968,664 BRD2 5′-UTR​ Medium 8.60E-90

m1A rs2247325 6 166,956,504 RNASET2 5′-UTR​ Medium 2.73E-11

m1A rs2952151 17 39,672,243 PGAP3 3′-UTR​ High 5.70E-09

m5C rs10885 6 31,636,814 PRRC2A CDS High 1.05E-31

m5U rs76864766 6 26,577,173 TRY-GTA3–1 exon High 6.75E-10

m6Am rs2074491 6 31,272,119 HLA-C 5′-UTR​ High 1.70E-39

m7G rs25497 6 30,723,713 TUBB CDS Medium 1.31E-08

m7G rs71563314 6 31,354,184 HLA-B 3′-UTR​ Medium 1.50E-10

m7G rs2263318 6 31,464,229 HCP5 exon Medium 3.25E-70

m7G rs5030798 6 31,779,733 VARS1 CDS Medium 1.50E-18

m7G rs1051336 6 32,444,815 HLA-DRA 3′-UTR​ Medium 6.74E-191

m7G rs1061801 6 33,314,561 TAPBP 3′-UTR​ Medium 3.40E-14
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Six RNAm-SNPs inside known RA susceptibility 
genes were associated with circulating protein lev-
els, including the m6A-SNPs rs1057151, rs28367598 
and rs3177747 in HLA-B and rs2076595 in PADI2, 
m1A-SNP rs41541519 in HLA-B and the A-to-I-SNP 
rs72850280 in HLA-DRB1. In total, these six RNAm-
SNPs were associated with circulating levels of 16 
proteins, including MICB, USP25, MFAP2, PLA2G10, 
C4A, TFF3, CFB, IL21, IGHE, GZMB, DEFB119, 
GFRA2, CREB3L4, MMP8, PRSS3 and HLA-DQA2. 
We tested whether these 16 proteins were genetically 
associated with RA using several MR methods. We 
found that the associations between circulating levels 
of nine proteins and RA were significant in weighted 
median, IVW, MR-Egger or MR-PRESSO analyses 
(Table  3). The associations between circulating levels 
of HLA-DQA2 and PRSS3 and RA were significant in 
the analyses of all four methods. We further examined 
the potential causal associations between these nine 
proteins and RA using 2021 GWAS data. The associa-
tions between circulating levels of six proteins, includ-
ing CFB, CREB3L4, HLA-DQA2, LRPAP1, TFF3 and 
USP25, and RA were significant in weighted median, 
IVW, MR-Egger or MR-PRESSO analyses (Table  3). 
Therefore, the associations between circulating levels 
of these six proteins and RA were strengthened.

Discussion
This study examined the associations between RNAm-
SNPs and RA and showed that many SNPs in important 
RA susceptibility genes were related to the RNA modifi-
cation types of m6A, m1A, A-to-I, m7G, m5C, m5U and 
m6Am. These RNAm-SNPs showed cis-acting eQTL 
effects in blood cells, and some of them were found to be 
associated with circulating protein levels. Moreover, the 
affected gene expression and protein levels were found to 
be associated with RA. By applying this study strategy, we 
identified the relationships among genetic variants, gene 
expression and RA, i.e., the RNAm-SNPs may affect RNA 
modification, which controls gene expression, and the 
altered RNA expression or protein levels result in RA.

Although hundreds of RA-related genomic loci have 
been identified by GWASs, many of the SNPs inside the 
loci may not be causal variants affecting RA. The causal 
variants are as yet undiscovered. Previous sequencing 
experimental studies have detected potential functional 
variations that can alter amino acid sequences [10, 11]. 
However, it is much more than that. RNAm-SNPs in the 
modification target sites may interrupt the modification 
functions (gain or loss) and interfere with gene expression 
regulation [25]. RNA modification plays a critical role in 
immune cell development [26, 27] and is associated with 
the occurrence of RA [19, 28]. Therefore, RNAm-SNPs 

Fig. 6  Expression levels of HLA-DPB1 in different genotypes and disease groups. A The A allele carriers of rs9277410 have high mRNA expression 
levels of HLA-DPB1 in PBMCs; B The RA cases have lower mRNA expression levels of HLA-DPB1 in PBMCs than the controls
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are potential functional variants for RA [21, 22]. In this 
study, we identified many RA-related RNAm-SNPs and 
showed that RNAm-SNPs affect genes associated with 

specific biological functions that are highly associated 
with RA. Not only were m6A-SNPs identified, but many 
SNPs related to m1A, A-to-I, m7G, m5C, m5U and m6Am 

Fig. 7  Visualization of differential gene expression in RA cases and controls. A The RA cases have lower mRNA expression levels of HLA-A in PBMCs 
than the controls; B The RA cases have higher mRNA expression levels of HSPA1A in PBMCs than the controls; C The RA cases have higher mRNA 
expression levels of MICB in PBMCs than the controls; D The RA cases have higher mRNA expression levels of TRAF1 in PBMCs than the controls

Table 3  Association between circulating protein levels and RA

a The effect estimation was derived from the inverse-variance weighted analysis

Associations with P < 3.13 × 10−3 were considered significant in this analysis

Proteins Estimatea Standard Errora P values

IVW Weighted median MR-Egger Intercept MR-PRESSO

2014 GWAS

  CFB −0.2974 0.1569 5.80E-02 1.10E-08 9.61E-02 5.24E-01 1.92E-02

  CREB3L4 −0.0050 0.1552 9.74E-01 1.19E-03 3.63E-01 2.31E-01 3.22E-01

  GZMA 0.1391 0.0699 4.65E-02 1.59E-05 7.47E-01 6.91E-01 4.45E-02

  HLA-DQA2 0.8919 0.1954 5.04E-06 8.41E-18 1.16E-03 2.38E-01 1.04E-03

  IL21 0.5653 0.2303 1.41E-02 2.04E-01 4.13E-05 2.88E-03 3.97E-02

  LRPAP1 −0.2514 0.0899 5.19E-03 7.75E-11 1.50E-02 4.48E-01 3.48E-04

  PRSS3 −1.0627 0.1774 2.08E-09 1.18E-20 1.51E-14 1.31E-05 6.30E-05

  TFF3 −0.2922 0.1285 2.29E-02 2.78E-01 3.52E-10 2.70E-07 4.21E-02

  USP25 −0.4214 0.1646 1.05E-02 1.36E-16 3.94E-02 6.34E-01 3.03E-03

2021 GWAS

  CFB −0.2219 0.0770 3.94E-03 8.53E-12 6.94E-05 1.46E-02 1.20E-03

  CREB3L4 −0.1199 0.1537 4.35E-01 9.25E-08 4.01E-01 6.48E-01 9.49E-04

  GZMA −0.0877 0.1211 4.69E-01 7.08E-01 9.35E-01 7.12E-01 4.80E-01

  HLA-DQA2 0.2146 0.0867 1.33E-02 4.76E-02 1.67E-05 1.31E-03 2.67E-02

  IL21 0.1706 0.1502 2.56E-01 3.76E-01 1.05E-01 2.11E-01 2.77E-01

  LRPAP1 −0.1743 0.0566 2.06E-03 5.86E-07 5.96E-03 3.31E-01 2.53E-03

  PRSS3 −0.4078 0.2043 4.70E-02 6.02E-01 3.34E-03 2.60E-02 6.56E-02

  TFF3 −0.2198 0.0999 2.78E-02 6.87E-01 2.90E-06 1.25E-04 4.28E-02

  USP25 −0.1082 0.2052 5.98E-01 1.25E-09 4.88E-01 6.39E-01 2.98E-01
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modification types were also identified. More impor-
tantly, RNAm-SNPs in important RA susceptibility genes 
were identified. Therefore, this study showed that RA-
related genomic loci contain RNAm-SNPs and showed 
that the identification of RNAm-SNPs in RA susceptibil-
ity genes is a way to determine causal variants and there-
fore helps to explain the findings of GWASs.

The RNAm-SNPs could interfere with the modifi-
cations of the RNA molecules and then change their 
expression levels, thus affecting the risk of RA. How-
ever, further evidence is needed to prove that the gene 
expression affected by these RNAm-SNPs is associ-
ated with RA. One method for linking an associated 
risk variant to a causal gene is to look at its correlation 
with gene expression. In our study, further eQTL analy-
sis, SMR analysis and differential expression analysis 
confirmed that some RNAm-SNPs were associated with 
gene expression levels in blood cells and that the gene 
expression levels were associated with RA, including the 
expression levels of PADI2, TRAF1, HLA-A, HLA-DRB1, 
HLA-DPB1 and HLA-B. The HLA region has long been 
known to be a genetic contributor to RA susceptibility 
[4]. Peptidylarginine deiminases (PADs) play a role in the 
onset and progression of RA owing to their ability to gen-
erate the citrullinated protein targets of anti-citrullinated 
protein antibodies. Anti-PAD antibodies are possible 
biomarkers for RA diagnosis and prognosis [29]. Among 
the PAD enzyme isoforms, PAD2 and PAD4 are most 
strongly implicated in RA. TRAF1encodes TNF receptor-
associated factor 1, which regulates the activation of NF-
kappa-B and JNK [30]. The association between genetic 
polymorphisms in TRAF1 and RA has been widely stud-
ied. The serum concentration of TRAF1 in RA patients 
was higher than that in healthy controls and is associ-
ated with autoantibodies and the disease activity of RA 
[31]. m6A-modified TRAF1 has recently been shown to 
promote sunitinib resistance by modulating apoptotic 
and angiogenic pathways [32]. Therefore, the findings of 
this study showed that RNAm-SNPs in GWAS-identified 
RA loci may be functional variants and that RNAm-SNPs 
may affect RA risk by altering RNA expression levels.

In addition, pQTL analysis also found that these 
RNAm-SNPs affected circulating levels of proteins, 
such as CFB, GZMA, HLA-DQA2, IL21, LRPAP1 and 
TFF3, that were related to RA. Take TFF3 as an exam-
ple. The pQTL analysis showed that seven RNAm-SNPs 
were associated with circulating levels of TFF3, includ-
ing a m7G-SNP rs2263318 in HCP5 and six m6A-SNPs, 
rs1051790 in MICA, rs28366151 in PRRC2A, rs28367598 
in HLA-B, rs3176007 in HLA-C, rs7774954 in HLA-
DQB2 and rs9266689 in ZDHHC20P2. Meanwhile, circu-
lating levels of TFF3 were associated with RA in our MR 
analyses. TFF peptides are important for the maintenance 

and repair of intestinal mucosa [33] and are involved in 
the immune response [34]. A study showed that TFF3 
protein levels in RA samples of synovial fluid were sig-
nificantly lower than those in healthy samples [35]. In 
addition, circulating levels of TFF3 were significantly 
increased in patients with Sjögren’s syndrome second-
ary to RA compared with healthy controls [36]. In addi-
tion to TFF3, increased levels of soluble GZMA in both 
the plasma and synovial fluid of RA patients have been 
reported [37]. An increase in serum IL21 levels is asso-
ciated with markers of B-cell activation and radiographic 
progression in patients with RA [38]. In summary, the 
findings of our study indicated that RNAm-SNPs may 
also be involved in the pathogenesis of RA by changing 
the circulating levels of proteins that are critical in RA.

The present study has some potential limitations. First, 
we did not test whether the identified RNAm-SNPs func-
tionally affected the RNA modifications experimentally. 
RNA modifications themselves may not be the true and 
independent causative mechanism of RA. Second, the 
relationships between protein molecules and RA have 
not been verified experimentally. Although the rela-
tionships between several proteins and RA have been 
reported, further studies are needed to find evidence to 
support the functional relevance of the molecules in RA.

Conclusions
In summary, this study identified RNAm-SNPs in many 
reported RA susceptibility genes (e.g., PADI2, SPRED2, 
PLCL2, HLA-A, HLA-B, HLA-DRB1, HLA-DPB1, TRAF1 
and TXNDC11) and elucidated the relationships between 
RNAm-SNPs, gene expression and protein levels and RA. 
The findings helped with the translation of GWAS signals 
into causal mechanisms and clinical applications. The 
results also indicated that RNA modification may play 
important roles in RA. Except for m6A methylation, no 
previous study has shown the relationships between RNA 
modifications (e.g., m1A, A-to-I, m7G, m5C, m5U and 
m6Am) and RA. Therefore, this study may add new clues 
for further understanding the functional mechanism 
underlying the development of RA.

Methods
Determination of RNAm‑SNPs for RA
In this study, we used new RNA modification annota-
tions to obtain functional explanations for the results of 
the RA GWAS [9]. The summary statistics of associa-
tions between 6.6 million SNPs and RA can be down-
loaded at http://​plaza.​umin.​ac.​jp/​~yokada/​datas​ource/​
softw​are.​htm. This GWAS included 19,234 cases of RA 
and 61,565 controls. Among them, 43,923 controls and 
14,361 RA cases were from 18 European studies, and 

http://plaza.umin.ac.jp/~yokada/datasource/software.htm
http://plaza.umin.ac.jp/~yokada/datasource/software.htm
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17,642 controls and 4873 RA cases were from 4 Asian 
studies. In addition, data from the newest, largest-ever 
trans-ancestral meta-analysis GWAS of RA were also 
obtained [39]. In this GWAS, genome-wide RA asso-
ciation summary statistics in three large case–control 
collections consisting of 311,292 individuals of Korean, 
Japanese and European populations were used in an 
inverse-variance-weighted fixed-effects meta-analysis. 
Summary statistics of 13,810,675 SNPs were available 
for this GWAS.

We obtained information on RNAm-SNPs in the 
RMVar database (https://​rmvar.​renlab.​org/), which con-
tains 1,678,126 RNAm-SNPs for nine RNA modification 
types [22]. RNAM-SNPs in the RMVar database are clas-
sified into three confidence levels: high, medium and low 
confidence levels. The RNAm-SNPs derived from single 
base resolution experiments were classified into high con-
fidence levels. Samples with medium confidence levels 
were obtained from MeRIP-Seq and m6A-Seal-seq experi-
ments. The m6A-related variants predicted by the statisti-
cal model were defined as having low confidence. Based 
on the annotation of the RNAm-SNP sets, we labeled the 
genome-wide SNPs with RNA modification types in the 
GWAS summary datasets, and then, RNAm-SNPs signifi-
cantly associated with RA were selected (P < 5.0 × 10− 8). 
Functional enrichments of the modifiable genes were 
tested by using the DAVID analysis tool [40], and a false 
positive rate less than 0.05 was considered significant.

eQTL analysis for the RNAm‑SNPs
eQTL analysis is an effective method to describe correla-
tions between genetic variants and gene expression at a 
genome-wide scale [41–43]. RA-associated RNAm-SNPs 
may regulate gene expression and lead to variations in 
mRNA levels. We performed cis-acting eQTL analysis 
in peripheral blood cells to obtain functional evidence 
for the identified RNAm-SNPs. The eQTL analysis was 
performed by searching data in the HaploReg browser 
(http://​archi​ve.​broad​insti​tute.​org/​mamma​ls/​haplo​reg/​
haplo​reg.​php) [44]. The results from three eQTL stud-
ies were obtained. Westra et  al. performed the largest 
eQTL meta-analysis thus far in peripheral blood samples 
of 5311 healthy European individuals [45]. The genetic 
architecture of gene expression (GAGE) study detected 
eQTLs in peripheral blood in 2765 European individuals 
[46]. The cis-eQTL summary data from the GTEx whole 
blood cells [47] were also used.

SMR analysis
We attempted to determine whether the interference 
of RNAm-SNPs on gene expression affects RA. We con-
ducted a summary data–based Mendelian randomiza-
tion (SMR) [48] study to identify pleiotropic associations 

between gene expression levels and RA. The eQTL and RA 
GWAS datasets used in the SMR analysis are described 
above. The files containing eQTL summary data in binary 
format for the three eQTL studies can be found at http://​
cnsge​nomics.​com/​softw​are/​smr/#​DataR​esour​ce. Using 
the genotype data of HapMap r23 CEU as the reference 
panel, we calculated the linkage disequilibrium associa-
tion matrix. The parameters are left as the default setting 
in the analysis. The significance threshold in SMR analysis 
was set to 5.0 × 10− 6. We further conducted the heteroge-
neity in dependent instruments (HEIDI) test to examine 
whether the identified gene expression and RA are affected 
by the same underlying causal variant (i.e., RNAm-SNP). 
The HEIDI test uses multiple SNPs in a cis-eQTL region 
to distinguish pleiotropy from linkage [48]. To achieve this 
purpose, we restricted the SNPs to the RNAm-SNPs in 
SMR analysis by applying the “--target-snp” option of the 
SMR program. PHEIDI > 0.05 indicated that the RNAm-SNP 
is the causal variant that affects the corresponding gene 
expression and RA.

Differential expression analysis
We further examined the differential expression of the 
identified genes in peripheral blood mononuclear cells 
(PBMCs) in our in-house dataset of 28 RA patients and 
18 controls. The basic characteristics of the study subjects 
have been described in a previous study [49]. Genome-
wide RNA expression was profiled using lncRNA&mRNA 
Human Gene Expression Microarray V4.0 (CapitalBio 
Corp, Beijing, China) according to the manufacturer’s 
instructions. Differential expression of a total of 21,323 
mRNA probes between the RA cases and controls was 
assessed by t tests.

Affymetrix Genome-Wide Human SNP Array 6.0 
chips were employed for SNP genotyping. A weighted 
genetic risk score (GRS) was created based on genome-
wide significant (P < 5.0 × 10− 8) independent SNPs 
identified in the RA GWAS [9]. The effect estimates of 
67 SNPs were used in GRS construction (Supplemen-
tary Table S1). The variants in each SNP were harmo-
nized for consistent directions of association, and each 
of them in the GRS was weighted by its relative effect 
size in the GWAS, with effects combined in an additive 
model. The association between RNA expression and 
the RA GRS was examined.

In addition, we also detected differential expression 
based on the expression profile data available in public 
databases. Three gene expression datasets, GSE15573 
[50], GSE17755 [51] and GSE1919 [52], were downloaded 
from the GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo). The average gene expression signals of cases and 
controls were compared by t test to assess the differential 
expression.

https://rmvar.renlab.org/
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://cnsgenomics.com/software/smr/#DataResource
http://cnsgenomics.com/software/smr/#DataResource
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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pQTL analysis for the RA‑associated RNAm‑SNPs
RNAm-SNPs may also affect RA by regulating gene 
expression at the protein level. Circulating proteins play 
important roles in many biological processes and are 
important therapeutic targets [53, 54]. Therefore, pQTL 
analysis was further applied to identify circulating pro-
teins associated with the identified RNAm-SNPs. The 
data used for pQTL analysis were collected from the 
INTERVAL pQTL study [55]. This study enrolled 3301 
individuals of European descent and examined the 
associations between 10.6 million imputed autosomal 
variants and circulating levels of 2994 proteins (http://​
www.​phpc.​cam.​ac.​uk/​ceu/​prote​ins/).

MR analysis of proteins
To obtain further evidence to support the proteins identi-
fied in pQTL analysis, we used four MR methods, includ-
ing inverse-variance weighted (IVW) [56], weighted 
median [57], MR-Egger [58] and MR pleiotropy residual 
sum and outlier (MR-PRESSO) [59], to test the causal 
relationships between circulating protein levels and RA. 
We used the “MendelianRandomization” R package to 
perform weighted median, IVW and MR-Egger analyses 
[60]. We applied the MR-PRESSO (https://​github.​com/​
rondo​lab/​MR-​PRESSO) program to examine the causal 
estimates of outlier correction and horizontal multiplicity 
[59]. The default parameters are used in the MR-PRESSO 
analysis. Data used in these MR analyses are from the 
GWAS and pQTL studies described above. In the pQTL 
summary data, SNPs with P values less than 5.0 × 10− 6 
were selected as potential instrumental variables. We 
used the “clump_data” function in the “TwoSampleMR” 
R package to clump SNPs (linkage disequilibrium 
r2 < 0.01 in the range of 10,000 kb) according to the data 
of the Europeans 1000 Genomes project to select inde-
pendent instrumental variables [61]. The effect allele of 
each SNP in the RA GWAS and pQTL studies was manu-
ally checked for consistency, as we previously reported 
[62, 63]. All methods were carried out in accordance with 
relevant guidelines.
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