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Abstract 

Background  Serum microRNAs (miRNAs) are promising non-invasive biomarkers for diagnosing glioma. However, 
most reported predictive models are constructed without a large enough sample size, and quantitative expression 
levels of their constituent serum miRNAs are susceptible to batch effects, decreasing their clinical applicability.

Methods  We propose a general method for detecting qualitative serum predictive biomarkers using a large cohort 
of miRNA-profiled serum samples (n = 15,460) based on the within-sample relative expression orderings of miRNAs.

Results  Two panels of miRNA pairs (miRPairs) were developed. The first was composed of five serum miRPairs 
(5-miRPairs), reaching 100% diagnostic accuracy in three validation sets for distinguishing glioma and non-cancer 
controls (n = 436: glioma = 236, non-cancers = 200). An additional validation set without glioma samples (non-
cancers = 2611) showed a predictive accuracy of 95.9%. The second panel included 32 serum miRPairs (32-miRPairs), 
reaching 100% diagnostic performance in training set on specifically discriminating glioma from other cancer types 
(sensitivity = 100%, specificity = 100%, accuracy = 100%), which was reproducible in five validation datasets (n = 3387: 
glioma = 236, non-glioma cancers = 3151, sensitivity> 97.9%, specificity> 99.5%, accuracy> 95.7%). In other brain 
diseases, the 5-miRPairs classified all non-neoplastic samples as non-cancer, including stroke (n = 165), Alzheimer’s 
disease (n = 973), and healthy samples (n = 1820), and all neoplastic samples as cancer, including meningioma 
(n = 16), and primary central nervous system lymphoma samples (n = 39). The 32-miRPairs predicted 82.2 and 92.3% 
of the two kinds of neoplastic samples as positive, respectively. Based on the Human miRNA tissue atlas database, the 
glioma-specific 32-miRPairs were significantly enriched in the spinal cord (p = 0.013) and brain (p = 0.015).

Conclusions  The identified 5-miRPairs and 32-miRPairs provide potential population screening and cancer-specific 
biomarkers for glioma clinical practice.
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Background
Glioma is adults’ most common primary brain tumor, 
accounting for approximately 80% of all central nerv-
ous system malignant tumors [1]. Due to its specific 
development site and late diagnosis, the 5-year survival 
rate is about 3% [2]. Identifying effective early diagnos-
tic biomarkers is crucial to improving the prognosis of 
glioma. Currently, the diagnosis of glioma that guides 
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clinical practice is mainly accomplished by biopsy or 
tissue obtained after tumor resection [3]. However, this 
surgical approach is invasive, and it is difficult to get suf-
ficient tumor material in deep or surgically inaccessible 
tumors. Magnetic resonance imaging is the preferred 
non-invasive method for diagnosing glioma. However, 
in addition to being expensive and cumbersome, its 
diagnostic information is preliminary [4]. Therefore, 
developing non-invasive methods for diagnosing glioma 
tumors remains a challenge, especially regarding specific 
biomarkers.

MicroRNAs (miRNAs) have been reported to play 
essential roles in different pathological and physiologi-
cal processes, including cancer development [5]. Many 
studies have used serum miRNAs as predictors for the 
diagnosis and prognosis of glioma, demonstrating the 
potential of serum miRNAs in serving as non-invasive 
biomarkers [6–8]. For example, the expression of serum 
miR-100 [6] and miR-29b [8] has been used to discrimi-
nate glioblastoma patients from healthy controls. A 
recent study explored whether serum miRNAs could 
detect glioma and differentiate between glioblastoma, 
primary central nervous system lymphoma (PCNSL), 
and metastatic brain tumors [9]. Their diagnostic mod-
els were also constructed based on composite scores of 
miRNA expression levels. Such quantitative expression 
levels-based approaches suffer from several shortcom-
ings. First, the expression levels of miRNAs may vary 
significantly due to technical fluctuations and batch 
effects [10]. Second, the expression of specific miRNAs 
may differ between other races and regions due to the 
heterogeneity of individual genetics. Once the miRNA 
expressions fluctuate, the patients’ classification may 
be biased. Therefore, such biomarkers may often fail in 
independent samples from different cohorts. Moreo-
ver, like the standardization of data, preprocessing is 
also required when applying quantitative expression 
levels-based biomarkers, making them difficult to apply 
to individual clinical practice [11]. Another problem is 
current serum miRNA biomarkers for glioma still can-
not have satisfactory diagnostic accuracy. For example, 
the diagnostic area under the curve for serum miR-100 
was 0.839, with a sensitivity and specificity of 83.33 
and 77.89%, respectively [6]. The area under the curve 
for miR-29b was 0.866 (sensitivity = 83.18%, specific-
ity = 81.25%) [8]. Also, previous studies lacked inde-
pendent large sample size validations, which may hinder 
their applicability.

To overcome the limitations mentioned above and 
identify robust miRNA biomarkers for screening and 
specific glioma detection, we conducted an extensive 
case study containing 15,460 serum samples involv-
ing 13 cancer types and non-cancer control samples, 

and four other brain diseases and healthy samples. The 
relative expression orderings (REOs) of serum miRNAs 
were employed in developing predictive models, which 
belonged to the kind of single sample classifier [12]. 
Compared to the quantitative expression levels, REO-
based biomarkers are insensitive to batch effects, data 
normalization methods, partial RNA degradation, and 
RNA amplification bias [13]. Therefore, we developed 
two models based on within-sample REOs of serum 
miRNAs using large samples (n  = 15,460). The first 
model was used to differentiate between glioma and 
non-cancer control samples. The second model was used 
to discriminate gliomas from other cancers specifically. 
Prior to this, few studies have identified glioma-specific 
diagnostic biomarkers from serum. Considering the clin-
ical ease of use of serum material and the stability and 
robustness of REO-based biomarkers, the two models 
we developed would have the potential to provide addi-
tional benefits for glioma screening and specific diagno-
sis in clinical practice.

Methods
Data source and data preprocessing
We downloaded six cancer datasets of serum miRNA 
expression from the GEO database (http://​www.​ncbi.​
nlm.​nih.​gov/​geo/), with a total of 12,447 samples, of 
which 8032 were non-cancer control samples, and 4415 
were serum samples of 13 cancer types (Detailed infor-
mation in Table  1). We also collected three datasets 
of serum miRNA expression for four brain diseases: 
stroke (GSE117064; n  = 1785: stroke = 173, healthy con-
trols = 1612), Alzheimer’s disease (GSE120584; n  = 1309: 
Alzheimer’s disease = 1021, healthy controls = 288), menin-
gioma and PCNSL (GSE139031; n = 59: meningioma = 17, 
PCNSL = 42). These data were assayed by the 3D-Gene 
Human miRNA V21_1.0.0 platform, detecting a total of 
2550 miRNAs. GSE113486 was used as the training set, 
and all other datasets were used as the validation set.

To ensure the reliability of the data, we removed outlier 
samples from each phenotype in each dataset by the fol-
lowing criteria. First, the correlation coefficient between 
the expression levels of miRNAs of any two samples was 
calculated. If the mean value of the correlation coeffi-
cients between one sample and other samples was out-
side twice the standard deviation of the mean value of 
all samples, the sample was considered an outlier sample 
and removed from the dataset.

Discovery of relative expression ordering‑based 
biomarkers
Given a training set containing control and case sam-
ples, we defined the REO of two miRNAs within a sam-
ple as EmiRNAa > EmiRNAb or EmiRNAa ≤ EmiRNAb. Suppose a 
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significant difference exists in the distribution of REOs 
of a miRNA pair (miRPair) between the control and case 
samples. The REO of the miRPair can be naturally used 
to predict to which group an unknown sample belongs. 
Based on this hypothesis, the flow of identifying REO-
based biomarkers is as follows (Fig. 1A).

Detection of stable and reversed miRNA pairs
The miRNAs detected in the training set were paired 
to form n(n-1) miRPairs. Then, for a miRPair (miR-
NAa, miRNAb), the percentage P of its REO exhibiting 
as EmiRNAa > EmiRNAb in the control samples was calcu-
lated as follows,

Table 1  Data analyzed in this study

a The number in the bracket indicates the remaining sample size after removing outlier samples

Phenotype GSE113486 [14] GSE112264 [15] GSE113740 [16] GSE106817 [17] GSE139031 [9] GSE122497 [18]

non-cancer 100(97)a 41(39) 10(10) 2759(2611) 157(151) 4965(4720)

Biliary Tract Cancer 40(39) 50(48) 25(25) – – –

Bladder Cancer 392(370) 50(48) 25(24) – – –

Breast Cancer 40(37) – 25(24) 115(111)

Colorectal Cancer 40(38) 50(48) 25(24) 115(107) – –

Esophageal Cancer 40(39) 50(48) 25(24) 88(83) 566(542)

Gastric Cancer 40(39) 50(49) 25(24) 115(110) – –

Glioma 40(38) 50(48) 25(24) – 170(164) –

Hepatocellular Carcinoma 40(39) 50(47) 40(39) 81(76) – –

Lung Cancer 40(37) 50(49) 25(23) 115(109) – –

Ovarian Cancer 40(37) – 25(23) 320(306) – –

Pancreatic Cancer 40(39) 50(46) 25(24) 115(110) – –

Prostate Cancer 40(38) 809(773) 25(24) – – –

Sarcoma 40(38) 50(48) 4(4) 115(111) – –

Fig. 1  A Flow chart of the detection of the biomarkers; B The identification of a combination with maximum sample coverage
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where k represents the number of those samples with 
EmiRNAa  > EmiRNAb in control samples, and m represents 
the total number of control samples.

Suppose the percentage P of a miRPair in the control 
samples is no less than a threshold, for example, 95%, 
which is adjustable as needed. Then, the REO of the miR-
Pair is considered stable in the control samples and is 
called a stable miRPair.

For each stable miRPair, the numbers of control and 
case samples showing the REOs of EmiRNAa  > EmiRNAb 
and EmiRNAa ≤ EmiRNAb were calculated and denoted by 
n1 and n2, m1 and m2, respectively. Fisher’s exact test 
was used to test whether the distribution of REOs of 
the miRPair in the controls differed from that in the 
case samples. If the BH adjusted p-value is smaller than 
5%, the REO of the miRPair was considered signifi-
cantly reversed under the case condition and defined as 
a reversed miRPair.

Determination of candidate miRPairs
For a reversed miRPair, △P was calculated, where 
△P=Pcontrol(EmiRNAa  > EmiRNAb)-Pcase(EmiRNAa  > EmiRNAb). 
The greater the △P value, the more significant the dif-
ference in the distributions of REOs between control 
and case samples. For a miRPair, △P = 1 indicates 
that the REOs of the miRPair in control samples are all 
EmiRNAa  > EmiRNAb, while in case samples are all EmiR-

NAa ≤ EmiRNAb. Those miRPairs satisfying △P > Pt (Pt is a 
given threshold) were determined as candidate miRPairs.

Calculation of activity scores of candidate miRPairs
We identified a combination with maximum sample 
coverage for each candidate miRPair. The steps were as 
follows.

First, we defined the reference pattern of REO as 
showing EmiRNAa  > EmiRNAb under the control condition 
or EmiRNAa ≤ EmiRNAb under the case condition. The com-
bination covered a sample if at least one miRPair it pos-
sessed exhibited the reference pattern on that sample. 
Sample coverage was then calculated as the percentage 
of covered samples to the total sample number in the 
training set.

Then, we searched for a combination with the maxi-
mum sample coverage for each candidate miRPair. For 
a candidate miRPairi, at first, the combination is {miR-
Pairi}. The search process is shown in Fig.  1B and is 
described as follows. Except for miRPair(s) already in 
the combination, each remaining candidate was sepa-
rately added to the combination, and the corresponding 

P(EmiRNAa > EmiRNAb) = k/m× 100%,
sample coverage was calculated. The combination {miR-
Pairi, miRPairj} with the most extensive sample cover-
age was selected. Then, the search process for the next 
miRPair is kept on from the remaining candidates until 
adding a miRPair into the combination cannot increase 
the sample coverage. The obtained combination is the 
maximum sample coverage combination identified for 
the candidate miRPairi.

After searching combinations with the maximum sam-
ple coverage, we can then define an activity score for each 
candidate miRPair, i.e., the number of occurrences in all 
combinations. The higher the active score, the greater the 
importance of the candidate miRPair.

Determination of final REO‑based biomarkers
The candidate miRPairs are sorted according to their 
activity scores, from the largest to the smallest. The 
top k miRPairs are taken as prediction biomarkers, 
respectively, where k = 1: n (n is the number of candi-
date miRPairs). Then, the prediction models are con-
structed based on the voting rules according to the 
REOs of miRPairs in the model. The geometric mean of 
negative predictive value (NPV) and positive predictive 
value (PPV) is calculated, and the top k miRPairs that 
reach the maximum first are used as the final predic-
tion biomarker.

Differential miRNA identification and functional analysis
Differentially expressed miRNAs between phenotypes 
were identified using the Student’s t-test and were con-
sidered significant at a false discovery rate (FDR) smaller 
than 5%.

The miRNA functional annotation was based on miEAA 
online miRNA functional enrichment and annotation tool 
[19], which can automatically predict the target mRNAs 
for identified miRNAs and perform functional enrichment 
analysis. The miRNAs involved in miRPairs were analyzed 
using the Tissue Atlas database for tissue-specific expres-
sion enrichment analysis [20] and the KEGG database [21] 
for pathway enrichment analysis.

Statistical analysis
All statistical analyses in this study were performed with 
R 3.6.1 software.

Results
Serum diagnostic model of 5‑miRPairs for glioma
The 97 non-cancer control and 38 glioma serum samples 
in GSE113486 were used as control and case samples for 
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training. With P(EmiRNAa > EmiRNAb) ≥ 95% in non-cancer 
control samples, we identified a total of 1,337,295 stable 
miRPairs, and 94.63% (1,265,546) of them still main-
tained the REOs of EmiRNAa > EmiRNAb in 95% of the 4720 
non-cancer samples in GSE122497. This result indi-
cated that the within-sample REOs of miRNAs had high 
stability.

Then, we assessed the REO alterations in glioma 
serum. Among the 1,265,546 stable miRPairs, 857,298 
showed a significant reversal of REOs in the serum of 
glioma (FDR < 5%, Fisher’s exact test). We found that 
34 reversed miRPairs showed an REO completely 
reversed between non-cancer and glioma, i.e., all 
showed EmiRNAa > EmiRNAb in non-cancer samples, while 
in glioma, all showed EmiRNAa  ≤ EmiRNAb (ΔP = 1, see 
Methods), indicating that all 34 of them can be predic-
tive biomarkers. For simplicity, in the natural order, 
the first five of the 34 significantly reversed miRPairs 
were selected to construct the glioma prediction 
model. The five miRPairs were (hsa-miR-125a-3p, hsa-
miR-1914-5p), (hsa-miR-125a-3p, hsa-miR-3162-3p), 
(hsa-miR-887-3p, hsa-miR-1225-3p), (hsa-miR-1203, 
hsa-miR-1470), and (hsa-miR-1203, hsa-miR-7108-3p), 
referred to as 5-miRPairs.

A model of prediction by majority voting based on the 
5-miRPairs was developed. A sample was predicted as 
non-cancer control if more than three miRPairs exhib-
ited a pattern of EmiRNAa > EmiRNAb, and vice versa for gli-
oma samples. In the three independent validation sets of 
GSE13901, GSE112264, and GSE113740, the prediction 
accuracy was  100% (Table  2). The GSE106817 included 
no glioma samples, and only the 2611 non-cancer sam-
ples were predicted, with an accuracy of 95.90%. This 
result indicates the excellent prediction efficacy of the 

5-miRPairs model for classifying glioma and non-cancer 
samples.

Low cancer specificity of 5‑miRPairs for glioma
We predicted other cancer types based on the same 
majority voting rule to verify whether the 5-miR-
Pairs model was glioma-specific. The model averagely 
grouped 95.70% of the 12 cancer types in GSE113486 
to glioma (Table  3). In GSE112264, an average of 
95.20% of the ten cancer types were predicted as 
glioma. Similarly, 95.80% of the 12 cancer types in 
GSE13470 were classified as glioma, suggesting that 
the model is not glioma specific.

We analyzed the reasons for the low glioma speci-
ficity of the 5-miRPairs model from the perspective 
of differential miRNAs. In the training set, a compari-
son of the miRNA expression in the 13 cancers with 
non-cancer control samples revealed that each of the 
eight miRNAs involved in the model was differentially 
expressed in at least six cancers (Fig.  2A). The aver-
age number of differential miRNAs per cancer was 
7 ± 1.08, with hsa-miR-125a-3p, hsa-miR-887-3p, and 
hsa-miR-1203 being differentially expressed in all 13 
cancer types. Studies reported that these three miR-
NAs are associated with cancerogenesis and progres-
sion in multiple cancers [22–24]. This result suggests 
common alterations in serum miRNAs in different 
cancer types.

Glioma‑specific serum diagnostic model of 32‑miRPairs
To further identify the glioma-specific biomarker, we 
constructed a model with glioma as the case group and 
the other cancers as the control (non-glioma) group. The 
training set GSE113486 contains 13 types of cancers, 

Table 2  The performance of the predictive models in independent validation datasets

Abbreviation: SEN sensitivity, SPE specificity, ACC​ accuracy, PPV positive predictive value, NPV negative predictive value

Dataset #Non-cancer #Glioma SEN% SPE% ACC% PPV% NPV%
5-miRPairs

  GSE139031 151 164 100% 100% 100% 100% 100%

  GSE112264 39 48 100% 100% 100% 100% 100%

  GSE113740 10 24 100% 100% 100% 100% 100%

  GSE106817 2611 – – – 95.90% – –

Dataset #Non-glioma #Glioma SEN% SPE% ACC% PPV% NPV%
32-miRPairs

  GSE112264 1204 48 97.92% 99.58% 98.74% 90.38% 99.91%

  GSE113740 282 24 100% 100% 100% 100% 100%

  GSE106817 1123 – – – 98.31% – –

  GSE139031 – 164 – – 95.73% – –

  GSE122497 542 – – – 99.45% – –
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Table 3  The performance of 5-miRPairs in predicting other cancer types

a The percentage of samples predicted to be positive

Cancer type GSE113486 GSE112264 GSE113740

No. Percentagea No. Percentage No. Percentage

Bladder Cancer 370 91.08% 48 87.50% 24 95.83%

Breast Cancer 37 94.59% – – 24 95.83%

Biliary Tract Cancer 39 94.87% 48 95.83% 25 96.00%

Colorectal Cancer 38 89.47% 48 93.75% 24 87.50%

Esophageal Cancer 39 100% 48 100% 24 100%

Gastric Cancer 39 100% 49 95.92% 24 100%

Hepatocellular Carcinoma 39 100% 47 100% 39 100%

Lung Cancer 37 100% 49 97.96% 23 100%

Ovarian Cancer 37 94.59% – – 23 95.65%

Pancreatic Cancer 39 100% 46 100% 24 100%

Prostate Cancer 38 84.21% 773 85.25% 24 83.33%

Sarcoma 38 100% 48 95.83% – –

Fig. 2  Differential analysis of miRNAs in the models. A Differential expression of 5-miRPairs in 13 cancer types compared to non-cancer controls; B 
Differential expression of 32-miRPairs in 12 cancer types compared to glioma samples
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including 370 cases of bladder cancer and about 40 cases 
of other cancers. To maintain a balanced sample size, we 
randomly selected 40 cases of bladder cancer. A total of 
1,208,616 stable miRPairs were identified in the non-gli-
oma group when controlling P(EmiRNAa > EmiRNAb) ≥ 80%. 
Among them, 753,316 had significantly reversed REOs 
in the glioma group (FDR < 5%, Fisher’s exact test). Con-
trolling ΔP ≥ 0.7 (here ΔP=Pnon-glioma(EmiRNAa > EmiRNAb)-
Pglioma(EmiRNAa  > EmiRNAb), see Methods), we obtained 
1105 candidate miRPairs, and then we searched for the 
maximum combination of covered samples for each 
candidate miRPairs. The activity scores were calculated 
and sorted from largest to smallest. The result showed 
that the top 32 candidate miRPairs could first classify 
the training set with 100% accuracy (Fig.  3A). There-
fore, they can be used as the serum glioma-specific 
biomarker, referred to as 32-miRPairs, involving 36 miR-
NAs (Table S1). A sample was predicted as non-glioma 
cancer if more than 16 miRPairs exhibited a pattern of 
EmiRNAa > EmiRNAb, and vice versa for glioma samples.

Then, we evaluated the classification efficacy of 32-miR-
Pairs using five independent datasets, namely GSE112264 
(n = 1252), GSE113740 (n = 306), GSE106817 (n = 1123), 
GSE139031 (n = 164), and GSE122497 (n = 542). The 
results showed that the prediction accuracy of 32-miR-
Pairs was 98.74, 100, 98.31, 95.73, and 99.45% for the five 
independent datasets (Table 2), respectively, indicating that 
32-miRPairs had reasonable glioma specificity.

Glioma‑specific 32‑miRPairs model significantly enriched 
in brain functional abnormalities
In comparison with glioma samples, we then separately 
detected the differential miRNAs for the 12 cancer types 

in training set GSE113486. Results showed that among 
the 36 miRNAs in 32-miRPairs, an average of 31.25 ± 0.96 
was differentially expressed in each cancer type, and 21 
were differentially expressed in all cancer types (Fig. 2B).

We conducted the functional enrichment analy-
sis of the 36 miRNAs in 32-miRPairs using the miEAA 
online miRNA functional enrichment tool, based on 
the Human miRNA tissue atlas database and the KEGG 
database. Figure 3B showed that, in the Human miRNA 
tissue atlas database, these miRNAs could be signifi-
cantly enriched in the spinal cord (p = 0.013) and brain 
(p = 0.015). In the KEGG database, the target mRNAs of 
these miRNAs were significantly enriched in DNA rep-
lication (p = 0.021), Fatty acid degradation (p = 0.026), 
Glutathione metabolism (p = 0.037), Retrograde endo-
cannabinoid signaling (p = 0.009) and PPAR signaling 
pathway (p = 0.035), as shown in Fig.  3C. All of them 
were previously reported to be associated with glioma 
[25–28]. The results suggest that the 32-miRPairs may 
regulate brain-specific miRNA expression.

Discrimination of glioma from other brain diseases
Considering the enrichment of brain-related functions 
of the 32-miRPairs, we also collected serum miRNA data 
to evaluate whether the models can be applied to distin-
guish glioma from other brain diseases. Two non-neo-
plastic brain diseases (stroke and Alzheimer’s disease), 
one benign brain tumor (meningioma), and one malig-
nant brain tumor (PCNSL) were collected. As shown in 
Table 4, for the stroke dataset, none of the 165 samples 
were predicted to be glioma by the 5-miRPairs. A similar 
result was observed for Alzheimer’s disease serum data. 
Notably, all the healthy controls in these two datasets 

Fig. 3  A The geometric mean of PPV and NPV of candidate top miRPairs in the training set; B The 32-miRPairs associated tissues in Human miRNA 
tissue atlas database; C The 32-miRPairs associated KEGG pathways
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were also classified correctly, demonstrating the potential 
of the 5-miRPairs to assist in population screening. All 
samples for the two neoplastic diseases were predicted 
as glioma by the 5-miRPairs. When applying the 32-miR-
Pairs, 82.15% of the meningioma and 92.31% of the 
PCNSL were classified as glioma. This result indicated 
that the 32-miRPairs might also distinguish neoplastic 
brain diseases from other cancers and possess brain-spe-
cific expression.

Discussion
Glioma is highly infiltrative, difficult to remove surgically, 
and has a poor prognosis [29]. Because of the complex 
mechanism of glioma development, it is often diagnosed 
at an advanced stage, and confirming the diagnosis of 
glioma before the presentation of clinical symptoms 
remains a significant challenge. Traditional diagnostic 
techniques mainly include pathologic tissue biopsy and 
imaging, but both have limitations [3]. Therefore, there 
is an urgent need for clinically translatable biomarkers 
that may aid early detection and population screening 
before clinical symptoms appear. Blood-derived miRNAs 
serve as promising biomarkers for diagnosing glioma 
and stratification of glioma subtypes but still have some 
limitations [30, 31]. We developed a method for detecting 
robust predictive biomarkers based on the within-sample 
REOs of serum miRNAs. We identified two panels using 
12,447 samples. The first comprised five serum miRNA 
pairs that are highly accurate in discriminating between 
glioma and non-cancer control samples. The second con-
sisted of 32 serum miRNA pairs that distinguish glioma 
from other cancer samples. In addition, we independently 
validated the two biomarkers in multiple serum cohorts, 
underscoring their future clinical translational potential 
for non-invasive detection and population screening of 
specific glioma.

The REO-based biomarkers were developed by pair-
ing two miRNAs. Compared to single miRNAs, they can 

resist fluctuations in expression levels [32]. As qualitative 
biomarkers, they could overcome the drawback of quan-
titative expression level-based biomarkers. In contrast 
to the quantitative biomarker, the REO-based biomark-
ers are insensible to batch effects, data normalization 
methods, partial RNA degradation, RNA amplification 
bias, and the proportion of different cancer epithelial 
cells [13], and thus can be directly applied to individual-
ized clinical diagnosis. The 5-miRPair prediction models 
would help avoid unnecessary biopsies and could be used 
in routine screening.

We included the non-cancer samples as controls in the 
study during the discovery phase to identify biomark-
ers suitable for early diagnosis. Unlike most studies that 
compare GBM patients with healthy serum populations, 
the identified 5-miRPairs are more suitable for clini-
cal application scenarios of cancer detection, i.e., dis-
tinguishing whether one has cancer or not, as the early 
diagnosis population is relatively rarely wholly healthy. 
By applying to the serum data of stroke and Alzheimer’s 
diseases, the 5-miRPairs model achieved 100% diagnostic 
accuracy in these non-neoplastic brain disease samples. 
For healthy control samples, it still performed well, with 
none of them classified as glioma. Therefore, our setting 
of the control population would be suitable for clinical 
application scenarios of early detection.

One of the data sets we used was derived from Ohno 
et  al. [9]. This study investigated whether miRNAs in 
serum could detect glioma and distinguish between glio-
blastoma, primary central nervous system lymphoma, 
and metastatic brain tumors. In contrast to their study, 
which focused only on brain tumors, we investigated the 
potential of serum miRNAs in discriminating glioma 
from all other cancers. To our knowledge, our study is the 
first to use large samples for glioma-specific biomarker 
identification and validation based on within-sample 
REOs of serum miRNAs. The identified 32-miRPairs 
achieved high classification accuracy for glioma and 

Table 4  The performance of the predictive models in predicting other brain diseases

a The number in the bracket indicates the remaining sample size after removing outlier samples
b The number outside the bracket and the percentages inside the bracket indicate the number and percentage of samples predicted to be positive, respectively

GEO accession Phenotype Sample No. 5-miRPairs No. (Percentage)b 32-miRPairs 
No. 
(Percentage)

GSE117064 Healthy 1612(1543)a 0(0%) –

Stroke 173(165) 0(0%) –

GSE120584 Healthy 288(277) 0(0%) –

Alzheimer’s disease 1021(973) 0(0%) –

GSE139031 Meningioma 17(16) 16(100%) 13(82.15%)

PCNSL 42(39) 39(100%) 36(92.31%)
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other cancers, demonstrating its potential as a glioma-
specific biomarker. We have independently validated the 
identified biomarkers in an extensive sample of serum 
data to provide evidence for their robustness and utility 
in a diverse patient population. As these two biomarkers 
performed well in the training set and numerous valida-
tion sets, they could have potential translational utility.

One of the study’s limitations is the lack of stage or 
grade information in serum glioma samples; thus, we 
could not directly evaluate the performance of our mod-
els in early glioma detection. Another limitation is the 
lack of data from different platforms. The data used in 
this study were all from the 3D-Gene Human miRNA 
V21_1.0.0 platform. However, this should not hinder the 
potential clinical translation of the developed biomark-
ers. As discussed by Liu et  al., different platforms only 
affect the number of marker gene pairs and do not affect 
the diagnostic efficacy of the biomarkers [32]. Our results 
illustrated that the identified glioma-specific biomarkers 
could achieve acceptable predictive accuracy even with 
only a few gene pairs. As shown in Fig. 3A, the geomet-
ric mean of NPV and PPV for only five miRPairs was still 
above 90%.

The number of candidate miRPairs selected for the 
construction of biomarkers was based on the goals pur-
sued in clinical practice: ease of use and better diagnos-
tic performance. Theoretically, more candidate miRPairs 
are better. However, as the degrees of reversal of miRPairs 
(measured by △P) differed, more candidate miRPairs 
might not necessarily improve the predictive power. For 

example, the accuracy decreased when using 121 candi-
date miRPairs for constructing a model discriminating 
glioma and non-cancer controls. For the glioma-specific 
model, the accuracy decreased when using 144 candidate 
miRPairs. Therefore, we chose five candidate miRPairs for 
the first model, considering the clinical ease of use, as five 
pairs have already achieved 100% classification accuracy. 
For the second model, we chose 32 candidate miRPairs 
because they first reached the maximum of the geometric 
mean of negative and positive predictive values.

The 5-miRPairs and 32-miRPairs overlapped two con-
stituted miRNAs which may be attributed to the different 
settings when constructing the biomarkers. The control 
samples for constructing 5-miRPairs were non-cancer 
controls, while the control samples for 32-miRPairs were 
non-glioma cancer samples. Due to the different settings, 
the two biomarkers captured potentially different expres-
sion features. The 5-miRPairs tended to capture com-
mon features of different cancers. Our results have shown 
that miRNAs in 5-miRPairs were differentially expressed 
in more than six of the 13 cancers. The 32-miRPairs was 
inclined to contain differences between gliomas and other 
cancers, and such differences are more likely to be brain-
specific. Thus, these two biomarkers have fewer over-
lapping miRNAs, with only two, has-miR-3162-3p and 
has-miR-7108-3p. Further analysis of the expression of the 
two miRNAs revealed that, in the training set, they were 
expressed at the highest levels in glioma samples, lower in 
the other 12 cancer types, and lowest in non-cancer con-
trols (Fig. 4). Considering the control settings of these two 

Fig. 4  Comparison of expression levels of miRNAs shared by 5-miRPairs and 32-miRPairs. The legend is as following: ***p < 0.001 (Student’s t-test)
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biomarkers, glioma relative to non-cancer controls and 
glioma relative to other cancer types, such miRNAs could 
commonly emerge for both application scenarios.

Although we could not find the correlation with gli-
oma from literature for all 36 miRNAs involved in the 
32-miRPairs, many were previously reported to be 
associated with glioma progression. For example, the 
over-expression of hsa-miR-134-5p and hsa-miR-149 
inhibited cell proliferation and migration of glioma 
cells [33, 34]. The inhibition of hsa-miR-885-3p pro-
moted the proliferation and migration of glioblastoma 
by antagonizing the effects of HOXB-AS1 knockdown 
[35]. In glioblastoma, hsa-miR-495-3p promotes tumor 
progression through the spongy action of LGMN pseu-
dogene [36]. Of the 36 miRNAs we identified, hsa-
miR-328-3p [37], hsa-miR-320b [38], hsa-miR-4449 
[39], hsa-miR-346 [40], hsa-miR-4763-3p [9], hsa-miR-
133a-3p [41], hsa-miR-637 [42] were reported previ-
ously as diagnostic or prognostic biomarkers in glioma. 
These 36 miRNAs were also associated with glioma via 
multiple pathways such as Retrograde endocannabinoid 
signaling, DNA replication, Glutathione metabolism, 
Fatty acid degradation, and PPAR signaling pathways. 
A striking result was that the 36 miRNAs were directly 
enriched in the spinal cord and brain tissue-specific 
expressed miRNAs. As glioma is produced by the brain 
and spinal cord glial cells [43], 32-miRPairs may regu-
late brain-specific gene expression, supported by the 
results that the 32-miRPairs classified most meningi-
oma and PCNSL samples to be glioma. In conclusion, 
these studies further prove the significance and clinical 
diagnostic value of the glioma-specific 32-miRPairs.

This study combined all glioma cases into one group. 
Given the complexity of glioma disease with different 
types and grades, another more promising utility of non-
invasive serum biomarkers lies in determining between 
high- and low-grade glioma. For example, to distinguish 
IDH mutant glioma (typically present as low-grade) 
and IDH wild-type glioblastoma (typically grade four 
tumors). This issue deserves further attention and will be 
our study topic when more serum miRNA data are avail-
able for different grades of glioma.

Conclusion
In conclusion, the within-sample relative expression 
orderings are more suitable and robust than quantitative 
levels to serve as serum biomarkers for glioma. Upon 
12,447 microRNA-profiled serum samples, we identified 
five and 32 serum microRNA pairs for diagnosis screen-
ing and cancer-specific glioma detection with high 
diagnostic performance in retrospective cohorts. These 
biomarkers will be prospectively validated to demon-
strate their clinical applicability further.
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