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Abstract 

Background Exfoliation syndrome (XFS) is an age‑related systemic disorder characterized by excessive production 
and progressive accumulation of abnormal extracellular material, with pathognomonic ocular manifestations. It is 
the most common cause of secondary glaucoma, resulting in widespread global blindness. The largest global meta‑
analysis of XFS in 123,457 multi‑ethnic individuals from 24 countries identified seven loci with the strongest associa‑
tion signal in chr15q22–25 region near LOXL1. Expression analysis have so far correlated coding and a few non‑coding 
variants in the region with LOXL1 expression levels, but functional effects of these variants is unclear. We hypothesize 
that analysis of the contribution of the genetically determined component of gene expression to XFS risk can provide 
a powerful method to elucidate potential roles of additional genes and clarify biology that underlie XFS.

Results Transcriptomic Wide Association Studies (TWAS) using PrediXcan models trained in 48 GTEx tissues lever‑
aging on results from the multi‑ethnic and European ancestry GWAS were performed. To eliminate the possibility 
of false‑positive results due to Linkage Disequilibrium (LD) contamination, we i) performed PrediXcan analysis in 
reduced models removing variants in LD with LOXL1 missense variants associated with XFS, and variants in LOXL1 
models in both multiethnic and European ancestry individuals, ii) conducted conditional analysis of the signifi‑
cant signals in European ancestry individuals, and iii) filtered signals based on correlated gene expression, LD and 
shared eQTLs, iv) conducted expression validation analysis in human iris tissues. We observed twenty‑eight genes in 
chr15q22–25 region that showed statistically significant associations, which were whittled down to ten genes after 
statistical validations. In experimental analysis, mRNA transcript levels for ARID3B, CD276, LOXL1, NEO1, SCAMP2, and 
UBL7 were significantly decreased in iris tissues from XFS patients compared to control samples. TWAS genes for XFS 
were significantly enriched for genes associated with inflammatory conditions. We also observed a higher incidence 
of XFS comorbidity with inflammatory and connective tissue diseases.

Conclusion Our results implicate a role for connective tissues and inflammation pathways in the etiology of XFS. 
Targeting the inflammatory pathway may be a potential therapeutic option to reduce progression in XFS.
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Introduction
Exfoliation syndrome (XFS) is an age-related sys-
temic disorder characterized by excessive production 
and progressive accumulation of abnormal extracel-
lular material, with pathognomonic ocular manifes-
tations [1, 2]. The exact pathophysiological processes 
that underline XFS is still unclear. However exfoliative 
material typically builds up at the anterior part of the 
eye, including in and around the trabecular meshwork 
slowing aqueous humor outflow and causing elevation 
in intraocular pressure [3–5]. It is the most common 
cause of secondary glaucoma, resulting in widespread 
global blindness [6]. In addition to ocular manifes-
tations, exfoliation syndrome deposits have been 
observed in visceral organs, such as the lung, kidney, 
liver and gallbladder [2, 7]. In addition to elastic tissue 
disorders, XFS has also been associated with increased 
risk of vascular diseases [8–10]. Associations of XFS to 
several systemic biomarkers of inflammation, includ-
ing complement components and homocysteine, have 
also been reported [6, 11, 12].

Genetic mechanisms have substantial influence on 
XFS etiology as evidenced in family and twin studies 
[13, 14]. There have been eight genome-wide associa-
tion studies (GWAS) of XFS [10, 15–20], three of which 
include meta-analysis [10, 15, 21], that have cumulatively 
identified > 60 associated genetic variants. The larg-
est meta-analysis of XFS involved > 123,000 individuals 
(13,620 XFS cases, 109,837 controls) from 24 countries 
across six continents and identified seven loci with the 
strongest association signal in chromosome 15 near the 
lysyl oxidase-like 1 gene (LOXL1) [15, 21], which encodes 
a member of family of proteins involved in formation 
of crosslinks in collagen and elastin [22]. The signal on 
chr15 involved 54 potential causal variants. Overall, (i) 
two missense variants in LOXL1, rs1048661 (encoding 
LOXL1 p.Leu141Arg) and rs3825942 (p.Gly153Asp), are 
likely to confer risk of developing XFS, with very high 
heterogeneity across populations because the alleles 
show an effect reversal [15, 18, 21, 23–26], (ii) the asso-
ciated variants in the locus showed population-specific 
frequency and LD patterns [15, 18, 21, 24], (iii) haplo-
types that carry the risk alleles depending on the popu-
lation are correlated with reduced LOXL1 expression 
levels, however, (iv) no clear functional effects for the 
haplotypes that represent the two variants have been 
shown [10, 27, 28]. The non-coding variants associ-
ated with XFS at this chr15 locus could confer regula-
tory effects. Some of these non-coding variants regulate 
expressions of the sentinel LOXL1 and the neighboring 
STRA6 gene [10, 29, 30].

After considering all the reports on genetic architec-
ture of XFS to date, we hypothesize that analysis of the 

contribution of the genetically determined component 
of gene expression to XFS risk can provide a power-
ful method to elucidate potential roles of additional 
genes in XFS. We used a gene-based TWAS method, 
PrediXcan [31], implemented on GWAS summary 
statistics (Summary PrediXcan; S-PrediXcan) [32] to 
identify genetically determined gene expression traits 
associated with disease risk. Models were trained on 
48 Genotype-Tissue Expression (GTEx ver. 8) pro-
ject tissues: Adipose - Subcutaneous, Adipose - Vis-
ceral (Omentum), Adrenal Gland, Artery - Aorta, 
Artery - Coronary, Artery - Tibial, Brain - Amygdala, 
Brain - Anterior cingulate cortex (BA24), Brain - Cau-
date (basal ganglia), Brain - Cerebellar Hemisphere, 
Brain - Cerebellum, Brain - Cortex, Brain - Frontal 
Cortex (BA9), Brain - Hippocampus, Brain - Hypo-
thalamus, Brain - Nucleus accumbens (basal ganglia), 
Brain - Putamen (basal ganglia), Brain - Spinal cord 
(cervical c-1), Brain - Substantia nigra, Breast - Mam-
mary Tissue, Cells - Cultured fibroblasts, Cells - EBV-
transformed lymphocytes, Colon - Sigmoid, Colon 
- Transverse, Esophagus - Gastroesophageal Junction, 
Esophagus - Mucosa, Esophagus - Muscularis, Heart - 
Atrial Appendage, Heart - Left Ventricle, Liver, Lung, 
Minor Salivary Gland, Muscle - Skeletal, Nerve - Tib-
ial, Ovary, Pancreas, Pituitary, Prostate, Skin - Not 
Sun Exposed (Suprapubic), Skin - Sun Exposed (Lower 
leg), Small Intestine - Terminal Ileum, Spleen, Stom-
ach, Testis, Thyroid, Uterus, Vagina, Whole Blood 
[33, 34]. GTEx is a comprehensive public resource to 
study tissue-specific gene expression and regulation 
[33, 34]. We estimated the correlation between geneti-
cally determined gene expression and XFS risk by 
leveraging on XFS GWAS summary statistics from a 
previously reported multi-ethnic study [21]. The phe-
nomenon of TWAS association with multiple signals 
within the same locus can be a statistical artifact of 
the correlation due to LD between SNPs that are sepa-
rately predictive of the measured expression of physi-
cally co-locolized genes [35] hampering the ability to 
prioritize the true causal gene(s). To address this limi-
tation, we performed sequential conditional analysis in 
each tissue, starting with the gene that was the strong-
est signal in the initial PrediXcan analysis. In addition, 
we sequentially rebuilt prediction models excluding 
variants in models of other genes in the loci that were 
in LD with any variants of the strongest signal. We also 
analyzed individual-level GWAS data from three addi-
tional European ancestry populations, German, Italian 
and American [10, 31]. We followed these extensive 
statistical analyses by functional validation in human 
iris tissues of the prioritized top gene-level associa-
tions. Finally, to gain clinical insights into our findings, 
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we explored the health consequences to individuals 
carrying high XFS genetic risk in a large biobank with 
links to electronic health records.

Results
PrediXcan analysis
We performed single-tissue PrediXcan analysis of 
the global multi-ethnic GWAS (13,620 XFS cases and 
109,837 controls) summary data, identifying 23 genes 
(defined as signals with P < 2.02 ×  10− 7 after Bon-
ferroni corrections) on chromosome 15: CYP1A2, 
CYP1A1, STOML1, LOXL1, ISLR2, RPP25, INSYN, ISLR, 
STRA6, CD276, NEO1, ARID3B, COX5A, PML, CPLX3, 
LMAN1L, UBL7, MPI, CLK3, CSK, SEMA7A, TBC1D21, 
and NPTN that mapped to region 15q22–25 region that 
spans ~ 3 Megabases (Fig. 1a, b and Suppl. Table S2).

To determine the joint effects of gene expression vari-
ation predicted across all 48 tissues analyzed, we per-
formed a multivariate regression multi-tissue analysis. 
Each of the 23 associations from the single-tissue Pre-
diXcan analysis remained significant in multi-tissue 
analysis (Suppl. Table S3). Additionally, five genes within 
the same region that were associated with XFS at sub-
genome-wide significance in the single-tissue analysis 
(p < 3.02e-6) were associated in the multi-tissue analy-
sis: ADPGK (p = 7.32E-07), CYP11A1 (p = 1.36E-16), 
HEXA (p = 1.03E-06), PARP6 (p = 1.82E-06), SCAMP2 
(p = 1.65E-10) (Fig. 1b).

Seven additional genes located on chromosomes 1 
(LGR6 p = 2.20E-06; SDHB p = 8.07E-08), 6 (PRRT1 
p = 9.10E-07), 8 (PRSS55 p = 4.18E-13), 10 (CDH23 
p = 1.86E-07; PITRM1 p = 8.45E-12) and 19 (CALM3 
p = 2.60E-07), were significantly associated in the multi-
tissues analysis (Fig.  1a, Suppl. Table S3). All seven sig-
nals mapped to genomic regions harboring GWAS SNP 
variants showing subgenome-wide significance with 
XFS risk, except for PRRT1, which corresponds to the 
AGPAT1 GWAS locus [36]. The data indicates that com-
bining information across variants in genes and then 
across tissue expression improves the power to identify 

additional XFS-associated loci. To ensure that the associ-
ation observed at the 23 genes from the larger multi-eth-
nic dataset was not an artefact of population structure, 
we confirmed the signals in a subset of European ances-
try individuals (Materials and Methods, Suppl. Fig. S3, 
Suppl. Table S4, S5, S6).

Correlated expression among significant genes
To determine whether the 23 observed association gene 
signals were artefacts of LD contamination, we calculated 
the pair-wise correlation in measured expression among 
the significant genes, using the reference GTEx panel. 
We further checked the relationship between expres-
sion correlation for each of the chr15p22–25 genes with 
LOXL1 and STOML1 and the PrediXcan associations for 
the two genes in each tissue. We made two important 
observations from this analysis. First, there was a sig-
nificant correlation between the correlation of measured 
gene expression of the other genes in chr15p22–25 with 
LOXL1 or STOML1 and the gene-level associations with 
XFS in most tissues (Fig. 2e, f, Suppl. Fig. S4, Suppl. Table 
S7a). Secondly, there is substantial correlation between 
STOML1 and LOXL1  (r2 = 0.67, p = 0.009) (Fig.  2e, f, 
Suppl. Fig. S4). These results indicate that the associa-
tions by one of the genes might be due to LD contamina-
tion or the presence of shared variants in the prediction 
models of the two genes (Fig. 2g, Table 2).

To dissect the potential source of LD contamination in 
the PrediXcan analysis, we looked into the effect of the 
two GWAS missense variants implicated in XFS that 
have mostly been linked to LOXL1 and shown to play 
regulatory roles [27], followed by the effect of LOXL1 and 
STOML1 signals on chr15q22–25 region observed asso-
ciations in each tissue. We also determined the effect of 
shared variants between prediction models for the genes 
in the region.

We modified our prediction models by excluding: i) 
rs3825942 missense variant, ii) rs4886776 intronic vari-
ant, which is at near perfect LD (pair-wise, r2 = 0.982) 
with the rs1048661 missense variant, and iii) all the 

Fig. 1 Manhattan plot for GWAS meta‑analysis and PrediXcan analysis of the genotyping data for XFS. a The lower half of the plot is for the XFS 
meta‑analysis summary statistics data Aung et al., 2017, while the upper half of the plot shows results from PrediXcan analysis for 48 GTEx tissues. 
On the X axis is plot of variant/gene associations along the chromosomes, while Y axis represent the significance levels for the associations. The 
legend for PrediXcan analysis on the 48 GTEx tissues, a color for each tissue, is on the right. For both plots the blue dotted line is the “suggestive” 
genome‑wide significant threshold (p < 1e‑4), while the red line is the genome‑wide significant threshold. On the lower plot, the gene labels 
are for genes reported/mapped to genome‑wide significant signals in GWAS result, while in the upper plot is for genes that are associated at 
genome‑wide significant threshold. For genes associated with XFS at genome‑wide threshold in more than one tissues, only the tissue with lowest 
p‑value is labeled. The GWAS plot has been truncated to p < 1e‑220 for clarity. b genes in the region in chromosome 15 that show significant 
association. The size of the balloon for each gene‑tissue association is proportional to ‑log10pvalue and color corresponds to the predicted direction 
of expression changes: dark‑red and blue for increased and decreased expression changes, respectively. Only four genes (EDC3, ULK3, HCN4 & 
FAM219B) in the whole region were not associated with XFS

(See figure on next page.)
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variants in our gene models that were in LD with the 
two variants (r2 > 0.1). The two missense variants had 
wide ranging effect on the genetically predicted expres-
sion of many chr15q22–25 region genes, with the largest 
effect on LOXL1. The strength of the association signals 

diminished in six of the nine tissues for which we had the 
gene’s predicted expression. Association signals in three 
of these tissues fell below genome-wide threshold in the 
global dataset (Suppl. Table S7b). In addition, association 
signals for seven additional genes in the region besides 

a

b

Fig. 1 (See legend on previous page.)
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STOML1 lost genome-wide significance: CD276 (2 tis-
sues), COX5A, CYP1A1, LMAN1L, MPI, SCAMP2 and 
TBC1D21.

Interestingly, association signals for eight genes were 
strengthened, four of which attained genome-wide signif-
icance threshold in reduced models: INSYN1, CYP1A1, 
NPTN and LOXL1 (Suppl. Table S7b). These shifts in 
association strength, i.e., an increase in effect size, seem 

to be due to the exclusion of select variants (Suppl. Tables 
S7c, S7d). Moreover, the shifts in association strength are 
correlated with the excluded variants’ level of LD with the 
missense variant rs3825942 (r2 = 0.64) (Suppl. Tables S7c, 
S7d). Notably, the three GWAS variants identified to have 
effect reversal in South Africans relative to other popula-
tions were in high LD with rs3825942 (Suppl. Table S7g) 
[21]. Our results indicate that the missense variants have 

Fig. 2 Conditional analysis to prioritize XFS associated genes: a) Manhattan plot for PrediXcan analysis of European ancestry individuals in tissues 
with predicted gene expression for a) LOXL1 and b) conditioned on LOXL1 predicted gene expressions c) Manhattan plot for PrediXcan analysis of 
European ancestry individuals in tissues with predicted gene expression for STOML1 and d) conditioned on STOML1 predicted gene expressions 
e) correlation in gene expression in for genes in chr15q22–25 in lung tissue for i) reference GTEx data f) predicted gene expression in BioVU 
cohort. In each case on the X axis is plot of variant/gene associations along the chromosomes, while Y axis represent the significance levels for the 
associations. The legend for PrediXcan analysis on the GTEx tissues, a color for each tissue, is on the right. For both plots the blue dotted line is the 
“suggestive” genome‑wide significant threshold (p < 1e‑4), while the red line is the genome‑wide significant threshold. On the lower plot, the gene 
labels are for genes reported/mapped to genome‑wide significant signals in GWAS result, while in the upper plot is for genes that are associated at 
genome‑wide significant threshold. For genes associated with XFS at genome‑wide threshold in more than one tissues, only the tissue with lowest 
p‑value is labeled. g linkage disequilibrium between variants in prediction models for LOXL1 and other chr15q22–25 genes associated with XFS in 
lung tissue based on pairwise  r2 and D′ parameters. Relative genome location for variants in each gene models are roughly demarcated by diagonal 
lines next to gene symbols. Proximate location for the variant shared between LOXL1 and STOML1, rs12102019 is labelled
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enhancing or diminishing effects on the PrediXcan asso-
ciation signals, in chr15q22–25, with XFS, consistent 
with allele reversal reported for the GWAS variants [36].

To check whether the association signals in the 
chr15q22–25 region for each tissue were independent of 
the ‘sentinel’ LOXL1 signal, we excluded, from the pre-
diction models, variants that were in LD (r2 > 0.1) with 
any variants in LOXL1 or STOML1 tissue models. We 
also excluded variants that were shared between two or 
more genes in their original prediction models. Seven 
of the genes that were associated with XFS at genome-
wide threshold in their original models showed dimin-
ished signals, including four below significance levels: 
UBL7, ISLR, LMAN1L and COX5A in reduced models 
(Suppl. Table S7e). Association signals for CYP1A1 and 
CYP1A2 were slightly diminished in reduced models 
relative to the original models, but remained at signifi-
cant genome-wide thresholds (Suppl. Table S7e). How-
ever, association signals for six genes strengthened, four 
of which attained genome-wide association significance 
levels in the reduced models: INSYN1, CLK3, CYP1A1 
and NEO1 (Suppl. Table S7e). These shifts in association 
strength seem to be due to few variants that are either in 
LD with variants in LOXL1 and STOML1 models or are 
shared with other genes’ models (Suppl. Tables S7e, S7f ). 
However, these variants causing the shifts in association 
signals upon exclusion from the models, were not in LD 
with the missense rs3825942 variant (Suppl. Table S7g). 
This indicates that there are signals of allele reversal inde-
pendent of the known missense variants in LOXL1.

Excluding variants that are in LD with SNPs in the 
LOXL1/STOML1 models did not have any effect on the 
association signals for six genes that were associated with 
XFS at genome-wide threshold in the original models: 
CSK, STRA6, CD276, ARID3B, MPI & TBC1D21, with 
the latter three in testis, for which we had no models for 
both LOXL1 and STOML1 (Suppl. Table S7e). The results 
indicate that some of the observed signals were artefacts 
of LD contamination from LOXL1 and STOML1 (ISLR, 
LMAN1L and COX5A), while some of the signals were 
masked in the original models (INSYN1, CLK3, CYP1A1 
and NEO1). There was inconsistent result for UBL7, 
where there was no effect in its association signal in a tis-
sue, enhanced effect in another tissue, and diminished 
signal in two other tissues, one of which went below the 
genome-wide threshold, albeit the reduced model had 
only a single variant in the prediction (Suppl. Table S7e).

Conditional analysis
Conditional analysis was performed in tissues with any 
genome-wide significant chr15p22–25 region gene sig-
nals against the predicted gene expression for the strong-
est observed signals in the European subset. As in the 

global dataset, the strongest signals in the European data-
set were at LOXL1 (Table 1, Suppl. Fig. S3). In all nine of 
the 48 tissues with LOXL1 predicted expression, only the 
STOML1 gene showed a significant association signal (in 
addition to LOXL1) (Table 1, Suppl. Fig. S3). After con-
ditioning on LOXL1 in these tissues, the STOML1 sig-
nal disappeared, but association signals at SCAMP2 and 
INSYN1 were observed in artery-aorta and lung tissues, 
respectively (Fig.  2a, b, Suppl. Table S8). This indicated 
that the association of STOML1 with XFS is an artefact of 
a strong LOXL1 signal, consistent with LOXL1 being the 
true signal and STOML1 a proxy signal. In addition, asso-
ciation signals for SCAMP2 and INSYN1 were masked by 
the LOXL1 signal.

In 17 tissues with STOML1 predicted gene expres-
sion, we observed significant association signals for 8 
other genes (in addition to STOML1) (Fig.  2c, d, Suppl. 
Table S8). After conditioning on STOML1 predicted 
gene expression, associations with four genes (CYP1A1, 
INSYN, LOXL1, SCAMP2) remained, while association 
with four other genes (ISLR, LMAN1L, MPI & SEMA7A) 
disappeared. In addition, associations with five more 
genes (ARID3B, CPLX3, CYP1A2, PML & UBL7) attained 
genome-wide significance after the conditional analysis.

Overall, conditional PrediXcan analysis of genetic 
signals in the chromosome 15 region in the European 

Table 1 Genes associated with XFS and replicated in European 
Ancestry individuals

Gene associated with XFS in single tissues analysis at genome-wide 
significance threshold (< 2.02e-7) in global GWAS summary statistic

Gene associated with XFS in cross-tissue analysis (< 9.5e-6) and in single tissues 
analysis at suggestive significance threshold (<1e-4) in global GWAS summary 
statistics

Significance values in European ancestry data single tissue analysis of genes 
associated with XFS ***p value< 2..02e7, ** p value <1e-4, * p value < 0.05
a genes associated with XFS in global dataset but with no association signals in 
European ancestry data at even nominal threshold (< 0.05)
b Additional genes associated with XFS in cross-tissue analysis of European ancestry 
data but not in global dataset

Chromosome Genes associated with XFS

chr1 aLGR6;aSDHB

chr6 aPRRT1

chr8 aPRSS55

chr10 PITRM1*;aCDH23

chr11 aTMEM136

chr15 SEMA7A***;STOML1***;ADPGK;MPI***;
HEXA*;LOXL1***;CPLX3*;INSYN1***;
SCAMP5**;ISLR***;CYP11A1*;NPTN*;CS
K**;NEO1*;UBL7***;CD276**;STRA6**;
PARP6*;LMAN1L***;ISLR2*;ARID3B*;C
LK3*;PML*;SCAMP2***;aTBC1D21;
CYP1A2*;CYP1A1***;aRPP25;bULK3**

chr16 bCDYL2**

chr19 aCALM3
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dataset in a limited number of tissues was mostly con-
sistent with PrediXcan analysis using the reduced mod-
els above. The analysis confirms the associations for 
LOXL1, ARID3B, CPLX3, CYP1A1, CYP1A2, INSYN1, 
NEO1, PML, SCAMP2, and UBL7, all of which, except 
for INSYN1, have been shown to be highly expressed in 
eye tissues [37] (Suppl. Fig. S5). However, INSYN1 has 
enhanced expression in brain tissues [38, 39]. Collec-
tively, these results suggest that some of the identified 
gene-level association signals between XFS and geneti-
cally imputed expression were driven by correlation to 
the strong LOXL1 and its “proxy” STOML1 signal.

Enrichment and pathway analysis
Genes at genome-wide significance (p < 2.02e-7) and 
nominal significance (p < 0.05) were evaluated for enrich-
ment of known pathways, using Enrichr [40, 41]. Genes 
at genome-wide significance were enriched for genes 
reported for, or mapped to, GWAS variants implicated 
in several caffeine-related (coffee and caffeine consump-
tion, and caffeine metabolism [42–44]) and blood pres-
sure [45] traits. The enrichment for coffee consumption 
is replicated for the larger gene set that is associated with 
XFS at nominal significance [36]. Some of these genes, 
CYP1A1 and CYP1A2 [46], are involved in fatty acid oxi-
dation and estrogen receptor pathways. In addition, these 
two genes are also observed in the Reactome enrichment 
of protectin synthesis (Table 2, Suppl. Table S9).

Our gene set is also enriched for genes associated with 
carcinoma and three inflammatory conditions: rheuma-
toid arthritis, Type 1 diabetes, vitiligo in Jensen Diseases, 

a database that integrates evidence on disease-gene asso-
ciations from automatic text mining, manually curated 
literature, cancer mutation data, and GWAS (https:// 
disea ses. jense nlab. org/).

We further analyzed our gene list against compounds 
in Drug Signatures Database (DSigDB, http:// tanlab. 
ucden ver. edu/ DSigDB), a gene set resource that relates 
drugs/compounds and their target genes. Our gene set 
is enriched for genes that are targets of cyclosporin A 
(p = 9.66E-11), and genes that are targets for compounds 
that are either 1) carcinogenic: Aflatoxin B1, potassium 
chromate, methyl methanesulfonate and copper sulfate, 
2) neuroactive: valproic acid and methamphetamine, 3) 
neuroprotective: quercetin and epigallocatechin gallate, 
or 4) analgesic: acetaminophen (Table 2, Suppl. Table S9). 
Cyclosporin A is an immunosuppressant taken to treat 
rheumatoid arthritis and other autoimmune conditions, 
while quercetin and acetaminophen have been shown to 
have anti-inflammatory effects [47, 48].

Analysis in Gene Set Enrichment Analysis (GSEA) 
using a ranked association gene list based on effect 
sizes confirmed some of the enrichment observations 
using Enrichr. GSEA besides replicating enrichment 
for acetaminophen, showed enrichment for: 1) six syn-
thetic estrogens, 2) estrogen regulators (Clomifene), 3) 
antiarrhythmic (quinidine), and 4) an anti-fungal (keta-
conazole) (Table  2, Suppl. Table S9). The gene set was 
also enriched for genes that were associated with the 
collagen fibril crosslinking (FDR = 0.0313) Reactome 
pathway. Analysis of the gene list in relation to the lat-
est Reactome library (https:// react ome. org/) returned 

Table 2 Enrichment analysis of genes that are associated with XFS

Tool Database enrichment Name # found # total Adj-p-values/FDR

Reactome reactome pathway Endosomal/Vacuolar pathway 59 82 1.83E‑07

GSEA reactome pathway Crosslinking of collagen fibrils 5 8 0.031

Enrichr Jensen Diseases Disease Rheumatoid_arthritis 119 310 8.32E‑08

Type_1_diabetes_mellitus 68 158 .69E‑06

Carcinoma 2619 11,318 0.013

Vitiligo 28 63 0.029

Enrichr GWAS Catalog traits Caffeine consumption 11 14 0.019

Enrichr DSigDB Drugs cyclosporin A_CTD_00007121 1258 4826 9.66E‑11

VALPROIC ACID_CTD_00006977 2041 8313 1.75E‑09

Copper sulfate_CTD_00007279 1508 6017 3.04E‑08

quercetin_CTD_00006679 812 3159 7.82E‑05

acetaminophen_CTD_00005295 1017 4136 0.007

AFLATOXIN B1_CTD_00007128 773 3082 0.006

(−)‑Epigallocatechin gallate_CTD_00002033 546 2115 0.005

POTASSIUM CHROMATE_CTD_00001284 491 1898 0.011

METHAMPHETAMINE_CTD_00006286 40 102 0.030

METHYL METHANESULFONATE_CTD_00006307 940 3685 0.047

https://diseases.jensenlab.org/
https://diseases.jensenlab.org/
http://tanlab.ucdenver.edu/DSigDB
http://tanlab.ucdenver.edu/DSigDB
https://reactome.org/
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significant enrichment for the endosomal-vacuolar path-
way (p = 8.14E-11), an enrichment that was replicated 
in gene sets that were predicted to be downregulated 
(p = 3.24E-8). Our results broadly recapitulated results 
above, even after excluding genes in HLA and chr17 
inversion regions from the enrichment analysis of the 
gene set (p < 0.05) (Table 2, Suppl. Table S9).

Quantitative expression validation analysis
Expression levels of ARID3B, CD276, INSYN1, LOXL1, 
NEO1, SCAMP2, STOML1 and UBL7 were measured 
in XFS (N = 12) and control (N = 19) eye tissues. We 
selected iris tissue because it is one of the tissues that are 
part of the anterior segment structures bathed by aque-
ous humor and upon which the flaky XFS materials are 
deposited [3–5]. Other affected structures include the 
trabecular meshwork, lens capsule, ciliary body, zonules 
and corneal endothelium [3–5]. All transcript levels were 
found to be decreased in iris tissues obtained from XFS 
patients compared to control samples, with significant 
differences for ARID3B, CD276, LOXL1, NEO1, SCAMP2 
and UBL7 (p < 0.05) (Fig. 3). INSYN1 and STOML1 were 
not significantly downregulated in diseased eyes rela-
tive to normal eyes in validation analysis. STOML1 is the 
closest gene to and potentially proxy for LOXL1 among 
those that show association in our PrediXcan results 
within the chr15q22–25 region. We included it as a nega-
tive control in the validation analysis, while LOXL1 was 
a positive control considering that it had already been 

shown to exhibit pattern of downregulation in gene 
expression in diseased relative to normal tissues [36]. 
CD276 was selected for functional validation in eye tissue 
despite no significant association with XFS in single-tis-
sue analysis in the European ancestry data because it was 
significantly associated with XFS in multi-tissue analy-
sis in European data. In addition, it was one of the gene 
associations signals which were not affected by excluding 
variants that were in LD with LOXL1/STOML1 model 
SNPs in the multi-ethnic global dataset. Overall, our vali-
dation results replicate the associations found using the 
genetically determined gene expression.

Comorbidity/pleiotropy analysis
To gain further biological insights into the gene asso-
ciations we observed in our PrediXcan analysis, we per-
formed logistic regression analysis of both XFS ICD9/10 
diagnosis, and Polygenic Risk Score generated from the 
multi-ethnic summary data across the BioVU individuals, 
Vanderbilt University’s electronic health records data-
base linked to genetic information, as the target dataset 
(Materials and Methods). XFS diagnosis was associated 
with an increased risk of 96 phenotypes in BioVU, includ-
ing 12 musculoskeletal phenotypes, 4 infectious dis-
eases, and 1 cardiovascular phenotype. These results are 
consistent with higher comorbidity of diseases affecting 
inflammation, connective tissue, and the circulatory sys-
tem in individuals with XFS (Suppl. Fig. S6a, Suppl. Table 
S10a).

Fig. 3 Expression of NEO1, CD276, INSYN1, LOXL1, STOML1, UBL7, ARID3B and SCAMP2 mRNA in iris tissues derived from normal human donors 
(control) (n = 19) and donors with XFS syndrome (n = 12) using real‑time PCR technology. Expression levels were reduced in XFS specimens 
compared to control specimens, with significant differences for NEO1, CD276, LOXL1, UBL7, ARID3B and SCAMP2. The relative expression levels were 
normalized relative to GAPDH and are represented as mean values ± SD (*p < 0.05; **p < 0.01, ***p < 0.001)
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XFS polygenic score was not significantly associated 
with any phenotypes in the analysis (Suppl. Fig. S6b). 
This potentially indicated that PRS generated from the 
global multi-ethnic GWAS summary might not be pow-
ered to detect association with traits in the EHR, and we 
might require scores from a more homogeneous and a 
much larger sample size. However, among the top PRS 
associations, we found several inflammatory diseases 
(Suppl. Table S10b), consistent with the enrichment 
results reported above.

Discussion
We performed gene-based association analysis using 
GWAS summary statistics and conducted extensive sta-
tistical validation of genes associated with XFS. From 
our PrediXcan analysis, we identified 35 associated 
genes with XFS, 23 in single-tissue analysis and the rest 
in multi-tissue analysis. To eliminate the possibility of 
false-positive results due to LD contamination, we per-
formed extensive additional analyses. First, we performed 
PrediXcan analysis in reduced models removing variants 
in LD with the two LOXL1 missense variants associated 
with XFS, and variants in LOXL1/STOML1 models in 
both global multiethnic and a subset of European ances-
try individuals. Secondly, we conducted conditional 
analysis of the significant signals in European ancestry 
individuals. Thirdly, we then filtered signals based on cor-
related gene expression, LD and shared eQTLs and con-
firmed thirteen genes to be associated with XFS. Finally, 
expression analysis in human iris tissues further con-
firmed six of these seven signals, which were significantly 
downregulated in diseased XFS relative to normal eye 
tissues: ARID3B, CD276, LOXL1, NEO1, SCAMP2 and 
UBL7.

Our results suggest potentially substantial roles of 
inflammation and environment in the etiology of XFS. 
All the six genes prioritized here by prediction and 
extensive validation analyses have inflammatory roles. 
ARID3B, CD276, LOXL1 and NEO1 are immunoregula-
tory molecules involved in the interaction between dif-
ferent tumors and the immune system [49–52]. SCAMP2 
is important in granule exocytosis, a process crucial in 
membrane fusion in normal cellular functions in diverse 
systems including the immune system’s inflammatory 
response [53–55]. CD276 is involved in regulation of 
Ag-specific T cell-mediated immune responses and par-
ticipates in the innate immunity-associated inflamma-
tory response [56, 57]. LOXL1 has also been implicated 
in fibrosis in response to inflammation in human breast 
cancer [36], in liver and lungs in model animals [36, 
36,36]. UBL7 encodes a member of the ubiquitin protein 
family, that is crucial in immune response and regulation 
of inflammatory response [58–60].

Genes that show significant association of predicted 
expression with XFS at nominal significance are enriched 
for genes associated with three inflammatory conditions: 
rheumatoid arthritis, Type 1 diabetes and vitiligo in the 
Jensen Diseases database, with genes associated with the 
former two conditions enriched even with HLA region 
excluded. This is also consistent with the enrichment we 
find in DSigDB and DrugBank for cyclosporin A, aceta-
minophen and quercetin, which are compounds that 
have anti-inflammatory effects [61].

Enrichment of predicted genes in this study in the pol-
yunsaturated fatty acid (PUFA) and steroid derivatives: 
protectin (Reactome), omega fatty acid and estrogen 
(WikiPathways) are also consistent with the potential role 
of inflammation in XFS. Protectin, a derivative of PUFA 
including Omega-3 that are major components of fish oil, 
has an anti-inflammatory, anti-amyloidogenic, and anti-
apoptotic activities in human neural cells [36, 62, 63]. 
Omega fatty acid has been suggested as an IOP reducing 
supplement [36, 64, 65] because of its anti-inflammatory 
effects [66]. Association of steroid derivative estrogen 
with glaucoma has been previously explored with higher 
levels of estrogen in reduction in IOP and conferring a 
possible reduced risk of glaucoma [67]. The synthetic 
form of estrogen, estradiol, has been shown in a rat glau-
coma model to inhibit optic nerve axonal degeneration 
by inducing a protein that is crucial in protecting RGC 
from oxidative damage [68, 69].

The association with inflammation is consistent with 
studies in limited numbers of XFS patients that found 
elevated inflammatory markers relative to controls, 
including cytokines, and markers such as interleukin-6 
(IL-6) and IL-8 [70, 71], tumor necrosis factor-α (TNF-
α) and YKL-40 [72, 73]. However, there are conflicting 
results for high sensitivity C-reactive protein [74, 75].

In addition, the XFS gene sets are enriched for genes 
that map to variants implicated in coffee and caffeine 
intake. Effects of caffeine consumption in the etiology of 
XFS have been studied, on the premise that coffee con-
sumption increases plasma homocysteine levels that 
are speculated to enhance XFS material formation by 
contributing to vascular damage, oxidative stress, and 
extracellular matrix alterations [36, 76–78]. Consump-
tion of coffee has been reported to have both pro- and 
anti-inflammatory effects [79]. However, review of fifteen 
studies on the effect of coffee and caffeine on inflamma-
tion inferred the former had anti-inflammatory action, 
while the latter had complex effects on the inflammatory 
response with both proinflammatory and anti-inflam-
matory responses reported [36]. Caffeine might have a 
neuroprotective role by regulating pathways that produce 
inflammatory molecules via adenosine receptors in brain 
cells [80, 81]. Posttranscriptional regulation of LOXL1 
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gene expression has been also shown to be modulated by 
caffeine [82].

Globally, our results of the six novel functionally vali-
dated genes also confirm the role of connective tissue 
involvement in the etiology of XFS. Aung, et  al. [36], 
demonstrated the role of haplotypes that carry LOXL1 
XFS causal coding variants in upregulating extracellu-
lar matrix components such as elastin and fibrillin, and 
increasing cell-cell adhesion. In addition, two of the novel 
genes in our study, ARID3B and NEO1, among the other 
six genes identified and validated in both studies, have 
adhesive roles in the body. ARID3B in conjunction with 
FDZ5 protein increases adhesion to ECM components, 
collagen IV, fibronectin and vitronectin, that are compo-
nents of exfoliation deposits [83, 84]. NEO1 has also been 
shown to play adhesive role during organogenesis [85].

Results from our enrichment analysis of genes associ-
ated with XFS are also consistent with a role of dysregu-
lation in connective tissue metabolism in the etiology 
of XFS. Cylosporin_A regulate lysyl oxidase expression 
and collagen metabolism probably by inhibiting an 
isomerase involved in protein folding [36, 86, 87]. Other 
anti-inflammatory compounds identified from our 
enrichment analysis in the current study, epigallocat-
echin gallate, valproic acid, quercetin, ketoconazole and 
acetaminophen have also been shown to suppress colla-
gen and/or are anti-fibrotic in variety of tissues by yet to 
be elucidated mechanism [88–92]. Moreover, coffee and 
caffeine inhibit collagen expression and deposition, and 
have anti-fibrotic effects by blocking expressions and/or 
by modulating effects of profibrotic factors [93–96].

Our results that show enrichment in crosslinking of 
collagen fibrils, a crucial constituent of connective tis-
sues, and endosomal-vacuolar Reactome pathways, in 
our associated genes further confirm the importance of 
connective tissues in the etiology of XFS. In addition, 
there may be anomalies in an endosomal-vacuolar path-
way shown to be involved in the accumulation of other 
aberrant proteins, including: Aβ peptides [97], prion [98], 
and Huntingtin [99] in neurons, and implicated in neu-
rodegeneration. Moreover, inflammation has also been 
suggested in migratory failure and subsequent deposition 
of aberrant proteinaceous materials in affected tissues in 
conjunction with other molecular actors [71, 100–105].

Finally, our comorbidity analysis in the BioVU EHR 
indicated XFS association with several chronic inflam-
matory dermatological, musculo-skeletal, respiratory, 
and infectious conditions. Moreover, extracellular matrix 
dysregulation is also suggested by our PheWAS results 
indicating XFS comorbidity with Vitamin D deficiency. 
Vitamin D regulate collagen cross-linking in  vitro by 
upregulating gene expression of specific lysyl hydroge-
nase and oxidase enzymes [36].

Limitations of the study
This study has two main limitations. First, even though 
GTEx data for the 48 tissues represent the most compre-
hensive eQTL data set of human tissues, it does not con-
stitute a complete representation of all human tissues and 
may fail to identify the real causal genes in the unsam-
pled ocular tissue. However, we have confirmed from an 
ocular tissue database that novel signals identified in this 
study are robustly expressed in XFS relevant eye tissues. 
Moreover, recent analysis shows that the majority of the 
human body tissues exhibit higher degrees of tissue sim-
ilarities [106]. In addition, it has been shown that most 
complex conditions, including XFS, might actually mani-
fest in many diverse tissues in the body [106].

Second, only a third of the signals identified in the 
larger data were robustly confirmed in a European data-
set at genome-wide significance. This raised the possibil-
ity that most of the initial signals identified an artefact 
of local LD leakage or shared eQTLs with the sentinel 
LOXL1/STOML1 signal. Using statistical validation with 
reduced models including no SNPs in LD with senti-
nel variants, we confirmed associations independent of 
LOXL1 for at least ten genes including seven that were 
experimentally validated. In addition, results from a 
recent study are consistent with two other association 
gene signals confirmed using multi-tissue analysis of 
European dataset and PrediXcan of reduced models in 
multi-ethnic global data, ISLR2 and STRA6 [29]. ISLR2 
and STRA6 are both significantly downregulated in tis-
sues of XFS patients together with other key components 
of the STRA6 receptor-driven Retinoic acid (RA) signal-
ing pathway, and that siRNA-mediated downregulation 
of RA signaling induces upregulation of LOXL1 and XFS-
associated matrix genes in XFS-relevant cell types [29]. 
These data indicate that dysregulation of STRA6 and 
impaired retinoid metabolism are involved in the patho-
physiology of XFS syndrome. Retinoic acid, the active 
metabolite involved in the signaling pathway implicated 
by Berner et al. [29] in XFS through regulation of ISLR2, 
STRA6 and LOXL1, has been shown to control critical 
checkpoints in inflammation and to promote an inflam-
matory environment [107–109].

Conclusions
Our analysis of predicted gene expression and extensive 
functional analysis in eye tissue prioritized six genes in 
association with XFS. Our results further confirmed the 
role of connective tissues and highlighted the importance 
of inflammation in the etiology of XFS. Thus, molecu-
lar elements that underlie the interaction of connec-
tive tissue biosynthesis and inflammatory pathways may 
play a central role in the etiology of XFS. Targeting the 
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inflammatory pathway may be a potential therapeutic 
option to reduce progression in XFS.

Materials and methods
We used an extension of PrediXcan [36] that uses GWAS 
summary statistics, S-PrediXcan [11], to analyze GWAS 
summary statistical data from a multi-ethnic GWAS 
study on XFS [36]. This dataset consisted of 13,620 XFS 
cases and 109,837 controls. We also performed PrediX-
can on individual-level genetic data from two independ-
ent datasets comprising 4127 cases and 9075 controls. 
The first dataset comprised case and control samples 
from two cohorts of European ancestry (from Germany 
and Italy). The second dataset comprised adult patients 
of European ancestry at Vanderbilt University Medical 
Center (VUMC) from the local communities surround-
ing Nashville, TN. The BioVU cases and controls were 
genotyped on five different Illumina genotyping arrays; 
Human660W-Quad, HumanOmni1-Quad, Infinium 
Omni5–4, OmniExpress-8v1–2-B and Infinium Multi-
Ethnic Global-8 (MEGA). The data was processed using 
established GWAS quality control procedures [8] and 
imputed on the Michigan Imputation server. Details on 
how subject selection for BioVU data and genotyping was 
performed is found in extended materials and methods 
section (Supplemental Information, Suppl. Fig. S1, S2).

Statistical analysis
We used the gene-based method, PrediXcan, that pro-
vides a framework for correlating imputed gene expres-
sion with phenotype [9]. Gene expression prediction 
models for 48 different human tissues were trained using 
GTEx ver. 8 data, subsampled to use only the European 
ancestry samples. Models with non-zero weights that 
met a set significance criterion (r > 0.10, q < 0.05) were 
retained [31]. Given the lack of eye tissue in the GTEx 
data, we performed PrediXcan analysis in all available 
tissues to leverage the shared regulatory architecture of 
gene expression across tissues [110]. We referred to the 
association analysis in each tissue between predicted 
expression and XFS as “single-tissue analysis.” Because 
XFS is considered a systemic disorder, we also aggregated 
evidence across the different tissues to improve our abil-
ity to prioritize genes relative to a single unrelated tis-
sue. We determined the joint effects of gene expression 
variation predicted across all 48 tissues using the Multi-
Tissue PrediXcan (MultiXcan), a multivariate regression 
method that integrates evidence across multiple tissues 
taking into account the correlation between the tissues 
[32, 34]. We refer to this association analysis as “multi-
tissue analysis.”

We used S-PrediXcan [36] to analyze GWAS summary 
statistic data from the multi-ethnic study of Aung, et al. 

[36]. Since the summary-based method has been shown 
to be conservative and tends to underestimate signifi-
cance in cases where there is some linkage disequilib-
rium-structure mismatch between reference and study 
cohorts [36], we retained and reported S-PrediXcan 
results that had a univariate S-PrediXcan P < 0.0001. We 
used Bonferroni adjustment for multiple hypothesis test-
ing. Genome-wide significance for a gene-level associa-
tion in single-tissue and multi-tissue PrediXcan analysis 
were defined as p < 2.02e-7 and p < 3.02e-6, respectively.

Conditional analysis and linkage disequilibrium evaluation
To determine whether multiple association signals within 
the same locus are due to independent causal genes or 
statistical artefacts of correlation in measured expression 
and predicted gene expression for adjacent genes [35], we 
examined the correlation in the gene expression among 
genome-wide significant genes in the reference GTEx 
data. We assumed that there is concordance in correla-
tion in measured and predicted gene expressions, but 
depending on the quality of our predictions, correlation 
in predicted expression for a pair of genes may be missed. 
We verified the extent of LD in the 1000 genomes data-
base [111, 112] between variants in the prediction mod-
els for significantly associated genes in each tissue.

To measure potential regulatory effects of the two clas-
sical LOXL1 missense variants in our PrediXcan analy-
sis, we excluded them and all the variants in our gene 
models that were in LD with them (defined as pairwise 
 r2 > 0.1) to generate “reduced models”. We predicted 
gene expression and performed association analysis 
using reduced models in both the global multiethnic and 
the European subset for the genes in chromosome 15 
region. To assess whether the association signals in the 
chr15q22–25 region for each tissue are independent of 
the ‘classical’ LOXL1 signal, we excluded variants in the 
prediction models of genes in the region that were in LD 
(pairwise  r2 > 0.1) with any variant in the LOXL1 model. 
In tissues without a LOXL1 model (i.e.,  r2 > 0.10, q < 0.05), 
we excluded variants for chr15q22–25 region genes that 
were in LD (r2 > 0.1) with variants in the STOML1 mod-
els. In addition, we excluded variants that were shared 
between prediction models for genes in the region. In 
each case, we performed association analysis using the 
reduced models and compared the results with the origi-
nal models.

To determine whether additional genes within the 
region were significantly associated with XFS, inde-
pendently of the most highly associated genes (LOXL1 
and STOML1) identified in the primary analysis, 
we performed conditional analysis using ancestrally 
‘homogenous’ individual-level genotype data that 
included our BioVU cohort and a subset of Aung, 
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et  al. consisting of three European ancestry cohorts. 
For each tissue with a significant association, the con-
ditional analysis was performed on the gene that was 
the most statistically significant as identified from 
the initial PrediXcan analysis. We generated geneti-
cally determined expression for each individual in the 
dataset and then performed association analysis using 
Genetic Association Analysis Under Complex Survey 
Sampling (SUGEN: version 8.8) [113] on the individual 
imputed gene expression data, including age, sex, first 
5 principal components and relatedness in the regres-
sion model. A new logistic regression model was then 
fit to the case-control data by sequentially adjusting 
for the expression data of the top significant signals 
as a covariate. We then performed a meta-analysis for 
the PrediXcan summary statistics from the four data-
sets. We repeated this procedure until no genes in the 
region attained our threshold for statistical signifi-
cance in the tissues tested (< 0.05/total # of e-genes x # 
of tissues tested for each top round of tests).

Enrichment and pathway analysis
Genes that were predicted to be associated with XFS at 
genome-wide significance in both single-tissue and multi-
tissue analysis, and at nominal significance (p < 0.05) in 
single-tissue analysis were checked for enrichment of 
particular categories in several databases using the web-
based enrichment tools, Enrichr [40, 41]. This was done 
by using the strongest signal at nominal significance 
across the 48 tissues for each of the genes analyzed in 
PrediXcan. Enrichr implements Fisher’s exact test and 
uses over 100 gene set libraries to compute enrichment 
[40]. We also performed rank-based Gene Set Enrich-
ment Analysis (GSEA) using another web-based enrich-
ment tool, 2019 Webgestalt [114–117] with a more recent 
database (Gene Ontology January 2019, KEGG Release 
88.2, Reactome ver.66 September 2018 and PANTHER 
v3.6.1 Jan 2018) and the current Reactome database ver. 
69 (June 12 2019) [118]. In this case the strongest signal 
in the PrediXcan result across the 48 tissues for each of 
the genes analyzed was used. Based on previous studies 
indicating limitation in accurately quantifying expres-
sion effects of variants in highly polymorphic regions 
[119, 120], we also performed enrichment analysis after 
excluding a total of 310 genes in ~ 6 Mb chromosomes 
6 HLA region (hg19 28 Mb–34 Mb) that encompassed 
GPX6 – CUTA  genes (238 genes) and ~ 2.5 Mb chromo-
some 17 region that encompassed CCDC43 – NPPEPS 
that include the 900 kb inversion common in population 
of European ancestries (72 genes).

Quantitative expression validation analysis
Human tissues
Human donor eyes from European ancestry individuals 
used for corneal transplantation were processed within 
20 hours after death with appropriate research consent 
obtained from the donors or from relatives for those 
who are deceased [29]. The procedure of the study 
was approved by the Ethics Committee of the Medical 
Faculty of the Friedrich-Alexander-Universität Erlan-
gen-Nürnberg (No. 4218-CH) and consistent with the 
tenets of the Declaration of Helsinki [29].

For RNA and DNA extractions, 12 donor eyes with 
manifest XFS syndrome (mean age, 77 ± 9 years) and 
19 normal-appearing control eyes without any known 
ocular disease (mean age, 74 ± 6 years) were used. All 
XFS tissues donors were previously confirmed XFS 
patients based on routine ophthalmologic examination 
after pupillary dilation. The presence of characteristic 
XFS material deposits was assessed by macroscopic 
inspection of anterior segment structures and con-
firmed by electron microscopic analysis of small tissue 
sectors. Iris tissues were prepared under a dissecting 
microscope and frozen rapidly in liquid nitrogen.

Real‑time PCR
For quantitative real-time PCR, iris tissues (N = 31, 
12 XFS and 19 control eyes) were extracted using the 
Precellys 24 homogenizer and lysing kit (Bertin, Mon-
tigny-le-Bretonneux, France) together with the AllPrep 
DNA/RNA kit (Qiagen, Hilden, Germany) according 
to the manufacturer’s instructions including an on-
column DNaseI digestion step using the RNase-free 
DNase Set (Qiagen). First-strand cDNA synthesis and 
PCR reaction was performed as previously described 
[36]. Exon-spanning primers (Eurofins Genomics, 
Ebersberg, Germany), designed with Primer 3 soft-
ware (http:// bioin fo. ut. ee/ prime r3/), are summarized 
in Suppl. Table S1. Quantitative real-time PCR was 
performed using the CFX Connect thermal cycler and 
software (Bio-Rad Laboratories, München, Germany). 
Probes were run in parallel and analysed with the 
∆∆Ct method. Averaged data represent at least three 
biological replicates. Unique binding was determined 
with UCSC BLAST search (https:// genome. ucsc. edu/) 
and amplification specificity was checked using melt 
curve, agarose gel and sequence analyses with the 
Prism 3100 DNA-sequencer (Applied Biosystems, Fos-
ter City, CA). For normalization of gene expression 
levels, mRNA ratios relative to the house-keeping gene 
GAPDH were calculated.

http://bioinfo.ut.ee/primer3/
https://genome.ucsc.edu/
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Group comparisons were performed using a Mann-
Whitney U test using SPSS v.20 software (IBM, Ehningen, 
Germany). P < 0.05 was considered statistically significant.

Testing for comorbidity/pleiotropy
To determine the comprehensive health consequences 
of high genetic risk to XFS, we performed a phenome-
wide association analysis (PheWAS) [121]. First, we 
examined the comorbidity of other phecodes with 
XFS (365.5 – ICD9 365.52/ICD10 H40.14xx) in a total 
of 752,024 individuals in the VUMC EHR (418,371 
females and 333,653 males), by performing logistic 
regression analysis conditioned on gender, age and 
the self-reported ancestry as covariates in the regres-
sion model. For this analysis we used a total of 600,107 
European, 103,209 African, 12,411 Asian and 36,297 
other ancestry patients, of which 222 were uncu-
rated XFS cases (coded as 1) and the rest controls. To 
determine other health consequences of high genetic 
risk to XFS, we performed a PheWAS analysis [30] 
(n = 52,251) on the polygenic risk score generated from 
the Aung et al’s. [36] XFS global dataset against patients 
genotyped on Illumina Mega-array chip in BioVU with 
about 18 k ICD-9 /ICD-10 codes, accounting for age, 
gender, and the first 5 principal components.
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