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Abstract 

Background:  Retained placenta (RP) is a prevalent disorder in cattle with many health-related and economic costs 
for the farm owners. Its etiology has not been clarified yet and there is no definite therapy for this disorder. In this 
study we conducted RNA-seq, hematologic and histologic experiments to survey the causes of RP development.

Methods:  Blood samples were collected from 4 RP and 3 healthy cows during periparturtion period for hematologi-
cal assessments followed by placentome sampling within 30 min after parturition. Cows were grouped as RP and con-
trol in case the placenta was retained or otherwise expelled, respectively. Total RNA was extracted from placentome 
samples followed by RNA-sequencing.

Results:  We showed 240 differentially expressed genes (DEGs) between the RP and control groups. Enrichment 
analyzes indicated immune system and lipid metabolism as prominent over- and under-represented pathways in RP 
cows, respectively. Hormonal assessments showed that estradiol-17β (E2) was lower and cortisol tended to be higher 
in RP cows compared to controls at the day of parturition. Furthermore, histologic experiment showed that villi-crypt 
junctions remain tighter in RP cows compared to controls and the crypts layer seemed thicker in the placentome of 
RP cows. Complete blood cell (CBC) parameters were not significantly different between the two groups.

Conclusion:  Overall, DEGs derived from expression profiling and these genes contributed to enrichment of immune 
and lipid metabolism pathways. We suggested that E2 could be involved in development of RP and the concentra-
tions of P4 and CBC counts periparturition might not be a determining factor.
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Background
Retained placenta (RP) is a prevalent disorder in cat-
tle with many negative health- and reproduction-related 
implications for the cow and economic losses for the 

farms [1–3]. The incidence of RP can range from 1.3 to 
39.2% in different herds [4]. Retained placenta corre-
lates with reduced uterine chemotaxis and immunity and 
potentially affects uterine involution [2, 5–7]. This disor-
der is also associated with decreased milk yield, delayed 
return to heat after calving, increased days open and 
number of inseminations and reduced conception rate 
[2, 3]. The central sites of problem in the occurrence of 
RP are placentomes. Placentomes in cattle are the sites 
of fetomaternal interactions and substance exchanges. 
Fetal villi are fitted into maternal crypts through various 
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adhering links that maintain these structures closely 
attached to each other throughout the gestation [2, 8]. 
By approaching parturition, placentome maturation and 
degradation of extracellular matrix (ECM) between the 
fetal and maternal sides lead to loosening of the existing 
links. This placentome maturation is partly under hor-
monal influence of estrogen and progesterone [9]. Upon 
parturition, a culmination of ECM degradation, apop-
totic events and morphologic changes help in separation 
and expulsion of placenta from the maternal caruncles 
[10, 11]. Retained placenta is defined as a condition, in 
which fetal membranes are not expelled within 12 h after 
parturition [2]. Despite numerous studies, the etiology 
of RP is not clear yet and there is no definite therapy for 
this disorder. The inclusion of immune system, deficiency 
in degradation of ECM and hormonal imbalances have 
been described as the probable etiologies of RP and some 
molecules such as major histocompatibility complex 
(MHC) class I, matrix metalloproteinases (MMPs) and 
Prostaglandin F2α have been attributed to this disorder 
[12]. Defective immunogenic signaling between fetal and 
maternal tissue in placentomes is a major contributor 
to placental retention [13]. Decreased activity of mac-
rophages and neutrophils is associated with increased 
incidence of RP [5, 14]. Some hematologic alternations 
such as neutrophil decline and increased red blood cell 
count in the blood of cows with retained placenta com-
pared to healthy ones have also been reported [15]. Bac-
terial invasions due to defective immune defense are 
also mentioned as one of the etiologies of RP [16]. Vari-
ous cell types including leukocytes have been claimed to 
release proteolytic enzymes such as MMPs around the 
time of parturition and it has been shown that the release 
and activity of collagenases could be affected by various 
upstream factors such as progesterone, serotonin, relaxin 
and cytokines [10, 12, 17, 18]. In addition, a network 
of metabolic disturbances, hormonal imbalances and 
immune dysfunctions has been proposed as the causes 
of RP [19–24]. Nutrition and metabolic status of cows 
could involve in retention of placenta [25] and RP could 
be higher in the cows with intense fat metabolism [26]. 
The link between the level of lipid compounds and inci-
dence of RP has been reported by various studies and it 
seems that the levels of cholesterol, HDL and fatty acids 
need to be monitored in transition period [27–31]. Ele-
vated lactate is another risk factor for RP in cattle. In one 
study, lactate remained elevated in RP cows from 8 weeks 
before parturition to the week of parturition and even to 
4 weeks after parturition [22].

Rapid hormonal changes in plasma concurrent with 
reduced luteal function and pre-partum stimulation of 
placental P450c17 activity are among the fundamental 
physiologic events which occur during periparturition 

period and affect normal calving and expulsion of fetal 
membranes [10, 32, 33]. Dysfunction of aromatase activ-
ity has been attributed to insufficient estrogen produc-
tion and difficulties in expulsion of fetal membranes 
[10]. In this regards, downregulation of CYP19, which is 
involved in conversion of progesterone to estrogen has 
been mentioned as a potential contributor to develop-
ment of RP [34]. Dysregulation of cortisol, progesterone 
and estradiol-17β are always receiving attention when 
considering the hormonal differences between cows 
with RP and healthy cows. However, the link between 
the concentration of these hormones and development 
of RP is somewhat controversial. While in some studies, 
periparturition plasma concentrations of these hormones 
have been different between RP and healthy cows, other 
studies have not seen a similar meaningful difference 
[9, 23, 35, 36]. A whole transcriptome study by micro-
array determined the gene sets that were differentially 
expressed in placentomes obtained from the cows with 
early induced parturition compared to placentomes har-
vested after normal calving [11]. Genes associated with 
immune system and apoptosis and also MMPs as extra-
cellular matrix remodeling factors were enriched in this 
study. However, this study has not directly compared the 
whole transcriptome of RP and healthy cows. In order to 
shed more light on the mechanisms of RP development, 
we performed clinical investigation on the cows with or 
without RP, followed by a gene expression profiling on 
the placentomes collected from the cows.

Materials and methods
Animals and sampling
Holstein cows included in this study were held in the 
same barn in the last month before parturition and were 
fed with the same diet. Blood samples were collected 
from the cows that had signs of parturition in the follow-
ing days twice a day at 08:00 AM and 06:00 PM using 10 
ml EDTA-tubes. We did not use heifers in this study. One 
milliliter of each blood sample was used for CBC assess-
ment. Plasma was separated from the rest of the blood 
sample by centrifugation at 900 × g for 15 min. Plasma 
was then maintained at -80◦C for hormonal assessments. 
All the cows delivered a calf with normal health status. 
Within 30  min after parturition, placentomes were col-
lected from the cows according to the method described 
previously [37]. In brief, a 0.3  mm steel acoustic guitar 
string and a brass tubing were used as a placentome col-
lection device. A loop was made on one end of the string 
and the other end was passed through three holes drilled 
on the shaft of the brass tubing as a handling object. The 
anus and vaginal area of the cow was cleaned and dis-
infected using warm water and povidone-iodine 10%, 
respectively. Then, the hand of the operator was covered 
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with an arm length veterinary glove and the collection 
loop was passed through the vagina reaching the placen-
tomes in the uterus. The loop was positioned at the base 
of the caruncle and the placentome was separated by 
pulling the handle outward and closing of the loop. Three 
placentomes from each cow were collected, washed with 
normal saline and placed in phosphate buffer saline con-
taining 10 mg streptomycin and 1 mg penicillin per 100 
ml, immediately [38]. The fetal-maternal junction was 
retained and not separated. Biopsies were then taken 
from the placentomes by systematic random sampling 
[39] according to the previous study [11]. In brief, placen-
tomes were sliced vertically from the fetal to the mater-
nal side by 0.5  cm cuts. The slices were placed under a 
1 × 1  cm grid and random biopsy cuboids were taken 
from the fetal-maternal junction site of the slices. The 
cuboids were divided into two equal smaller cuts. One 
cuboid was placed in liquid nitrogen for RNA-Seq assay 
and real-time PCR, while the other one was placed in 
10% neutral buffered formalin for histologic experiments. 
The other sampled cuboids from the slices were cut and 
stored in the same way and were pooled with the previ-
ous ones. The tissue cuboids fixed in formalin were pro-
cessed routinely and embedded in paraffin.

The cows that did not expel their placenta until 24  h 
after parturition were considered as RP and the cows that 
expelled their placenta within 24 h after parturition were 
considered as normal. However, all the normal cows in 
this study expelled their placenta within 12 h after partu-
rition and none of the RP cows expelled its placenta even 
after 24  h postparturition and they received veterinary 
therapies thereafter.

Sample collection was continued until four cows 
showed placental retention and eight cows had nor-
mal placental expulsion. Then, the four RP cows (RP 
group) and three randomly selected healthy cows (Con-
trol group) were used for further experiments including 
RNA-sequencing. Information about the cows included 
in this study is shown in Table 1. Mean values between 
the two groups were compared using student’s T-test.

Assessment of blood hormones and hematological 
parameters
Plasma concentrations of estradiol-17β (E2), progester-
one (P4) and cortisol were assessed using a commercial 
ELISA kit (Catalog No. DEH3355, DE1561 and DEH3388, 
respectively; Demeditec, GmbH, Germany), according to 
the manufacturer’s protocol. Assay ranges demonstrated 
by the manufacturer for E2, P4 and cortisol were 10.6 pg/
mL – 2000 pg/mL, 0.140 ng/mL – 40 ng/mL and 10 ng/
mL – 800 ng/mL, respectively. Intra-assay coefficient of 
variation calculated by our lab for all the three hormonal 
assessments was less than 10%.

Hematological parameters (red blood cell count, white 
blood cell count, mean corpuscular hemoglobin, mean 
corpuscular hemoglobin concentration, mean corpus-
cular volume, platelet count, packed cell volume and 
hemoglobin concentration) were also measured by a 
Hematology Analyzer (Seac-Radim Hemat 8, Italy). The 
percentage of each leukocyte cell population on blood 
smears was measured as well, using a light microscope 
immediately after samples were delivered to laboratory. 
The mean of the two daily blood assessments was calcu-
lated and presented as the value for each periparturtion 

Table 1  Information about the cows used in this study

a Significantly different means between the groups (P < 0.05)

Subject Parity Calf gender Milk yield 
in previous 
lactation (kg)

Length of 
last gestation 
(days)

Age at the 
time of last 
parturition 
(days)

Age at first 
pregnancy 
(days)

Mean interval 
between each 
parity after 
first pregnancy 
(days)

Length of 
last days 
open

Control 1 8th Female 8411 285 4315 701 452 251

Control 2 6th Male 8690 281 2667 457 368 125

Control 3 7th Male 10,223 282 3041 440 372 85

RP 1 3rd Female 11,480 287 2021 594 476 240

RP 2 4th Male 12,492 278 1858 423 359 91

RP 3 5th Male 8796 284 2470 541 386 177

RP 4 6th Female 7930 281 2738 452 381 103

Mean of Controls 
(± Sd)

7 ± 1 9108 ± 975 282.6 ± 2.1 3341 ± 864 533 ± 146 397 ± 47 154 ± 87

Mean of RPs 
(± Sd)

4.5 ± 1.3a 10,174 ± 2161 282.5 ± 3.9 2272 ± 404 503 ± 79 401 ± 52 153 ± 69
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day to minimize the effect of daily alternations in the 
parameters.

RStudio® was used for statistical analysis of the hor-
monal and hematological parameters. Data normality 
was checked using Shapiro Wilk’s test function. Repeated 
measures ANOVA and pairwise between-subject com-
parisons in each time point were also conducted using 
nlme (version 3.1.152) and emmeans (version 1.6.0, 
method: tukey adjusted p value) packages, respec-
tively. P-values less than 0.05 considered as statistically 
significant.

Hematoxylin‑eosin staining
Placentome tissue sections were prepared from paraffin-
embedded tissues using a microtome. The sections were 
deparaffinized by xylene and hydrated by 100%, 96% and 
70% ethanol and subsequently by distilled water followed 
by hematoxylin and eosin staining and dehydration by 
70%, 96% and 100% ethanol and xylene, respectively. 
Finally, the sections were mounted by Entellan™ rapid 
mounting medium (Catalog No. 1.07961; Merck, Ger-
many) and investigated under a light microscope.

Gene expression profiling
RNA extraction and sequencing
Total RNA was extracted from placentome biopsies using 
TRIzol™ (Catalog No. 15,596,018, USA) reagent and fol-
lowing routine extraction procedures. Total extracted 
RNA was then treated with DNase I (Catalog No. 
18,068,015, Invitrogen™, USA) and finally, the quantity of 
total RNA was measured by NanoDrop™ (Thermo Fisher 
Scientific, USA) and its quality was assessed by BioAna-
lyzer 2100 (Agilent Technologies, USA). Total RNAs 
from all samples had RIN score of 7 or higher. RNA 
samples were shipped to Genotypic Institute in India 
for RNA-sequencing. Illumina’s protocols were used for 
poly(A) selection and paired-end sequencing was per-
formed using Illumina HiSeq X ten platform. Average 
read lengths was set to 150 bp.

For RT-qPCR experiments, a remaining part of the 
extracted total RNA (equalized concentration for all sam-
ples) was reverse transcribed using ExcelRT™ reverse 
transcription kit (Catalog No. RP1300, SMOBIO, Tai-
wan), according to the manufacturer’s protocol. To 
perform qPCR assessment, duplicate reactions were pre-
pared for each sample using RealQ Plus 2x Master Mix 
Green (Catalog No. A323402, Ampliqon, Denmark), 
forward and reverse primers (0.2 µM each) and cDNA 
(25 ng), adjusted to total volume of 10 µL using molec-
ular grade H2O. Amplification cycles continued for 40 
cycles using an ABI stepone-plus™ real-time PCR instru-
ment. The amplification efficiency and relative expres-
sion (RPs compared to controls) for each gene were 

calculated using the method described previously [40]. 
The sequences of primers used in this study are provided 
in Table S1 (see Additional file 1).

Bioinformatic analysis of sequencing data
The quality of raw data was assessed by Fastqc [41] and 
the reads were trimmed using Trimmomatic [42]. The 
trimmed reads were aligned to the reference genome 
(ARS-UCD1.2) by HISAT2 [43] and the number of reads 
assigned to each gene was determined using feature-
Counts [44]. Differentially expressed genes between the 
RP and control groups were determined using EdgeR 
[45]. To identify DEGs, a cutoff (median log CPM > -2.2) 
was initially set for the genes read counts to exclude the 
genes with very low read counts throughout the samples. 
Then, effective library sizes were calculated by trimmed 
mean of M-values (TMM). Dispersions estimated via 
quantile-adjusted conditional maximum likelihood 
(qCML) and DEGs were determined by the exact test. 
Genes with FDR < 0.05 and fold change > 1.5 or < -1.5 
were considered as significantly DEGs.

Gene ontology analysis was done by over-representa-
tion analysis (ORA) on upregulated and downregulated 
DEGs, separately, via Webgestalt online tool [46]. The 
STRING online tool (https://​string-​db.​org) was used to 
investigate the interaction network between the upregu-
lated and downregulated genes [47]. Protein-protein 
interaction (PPI) option was used to retrieve the poten-
tial interactions between the proteins. Medium confi-
dence (0.4) was set for the interaction scores. To further 
explore how E2 could hypothetically affect the drawn 
PPI networks from the up- and down regulated genes, 
we imported annotated nuclear E2 receptors (ESR1 and 
ESR2) to the above networks as well. The retrieved net-
work from STRING (excluding ESR1 and ESR2) was then 
transferred to Cytoscape software (v3.8.2) to survey the 
functional enrichment of the interacting proteins [48].

Results
Clinical data of the cows
Plasma concentration of E2, P4, cortisol and the E2/P4 
ratio and various blood cell parameters in RP and control 
groups in periparturition days were assessed. The time × 
group interaction was not significant (P > 0.05) for all the 
above variables. The concentration of E2 was significantly 
lower (P = 0.025) in RP group, compared to controls at 
the day of parturition (Fig. 1). Its concentration was also 
higher in controls than RPs in all the days periparturtion, 
however, the differences were not statistically significant. 
At the day + 1, the concentration of E2 dropped to low 
levels (lower than 400 pg/mL plasma) in the both groups 
and its decrease was significant within each group com-
pared to parturition or preparturition days (Fig. 1).

https://string-db.org
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No significant difference in P4 concentrations was 
observed between RP and control groups. Similar to E2, 
the concentration of P4 decreased to low levels at the 
day + 1 and its decrease was significant compared to 
the days − 1 and day − 3 within the RP group (Fig.  1). 
Although E2/P4 ratio changed similarly in the RP and 
control groups, the temporary elevation of this parame-
ter in the day of parturition was only significant (P < 0.05) 
within the control group compared to preparturition 
days (Fig. 1). Cortisol concentration tended to be higher 
(P = 0.068) in RPs than controls in the day of parturition. 
It also showed significantly higher concentration in RP 
(P < 0.05) and not control group in the day of parturition 
and day + 1, compared to days − 1 and − 3 (Fig. 1).

None of the blood cell parameters were significantly 
different between the RP and control groups. However, 
packed cell volume, hemoglobin, mean corpuscular vol-
ume and eosinophils changed significantly within RP, 
control or both groups at different days periparturition 
(Fig.  1). In RPs, hemoglobin showed an increasing pat-
tern during the days preparturition to postparturition 
and it reached to significantly higher level at day + 1 
compared to days − 1 and − 3. In controls, this param-
eter was almost constant in all the days periparturition 
(Fig.  1). Packed cell volume experienced a similar trend 
to hemoglobin in the both groups and within RP group, 
its level was significantly different between days + 1 and 
− 1 (Fig.  1). Mean corpuscular volume was significantly 
higher in the day + 1 compared to the days preparturition 
within the control group (Fig.  1). Eosinophils showed a 
decreasing pattern in the both groups and its decrease 
was significant between the day + 1 and the days prepar-
turition in RP and the day − 3 in control group (Fig. 1). 
Red and white blood cell count had an almost constant 
level in the both groups during periparturtion days. 
However, white blood cell count was non-significantly 
higher in control group than RPs in day + 1 (P > 0.05). 
Segmented neutrophils and lymphocytes were lower and 
higher, respectively, by about 15% in RPs than controls 
in day + 1. However, the differences were not significant 
(P > 0.05). Mean corpuscular hemoglobin, mean cor-
puscular hemoglobin concentration, monocytes, band 
neutrophils and platelets were not significantly different 
within the groups at different time points.

The fetal villi and maternal crypts of the placentomes 
were loose and somewhat detached in healthy cows. On 
the other hand, in RP cows the attachments were more 

firm and sustained. Some collapsed structures were seen 
in RP placentomes which might be associated with devel-
opment of RP due to impaired detachment (Fig. 2).

Overview of the RNA‑Seq data and gene expression 
profile of the RP and control cows
Accession number
All RNA-seq raw data and raw read count matrix have 
been deposited into the Gene Expression Omnibus 
(GEO) under accession number GEO: GSE194033.

RNA‑seq data analysis
Information about the total reads produced, alignment 
rates and total counted reads per sample is available in 
Table S2 (see Additional file 1). After counting the reads 
by featureCounts, an approximate average of 22,280,000 
reads were mapped to each sample and an average of 807 
reads were mapped to each gene in the samples before 
cleaning the genes with low read count. After excluding 
the genes with a median count per million (CPM) of the 
reads lower than − 2.2, 16,723 genes (out of 27,607 total 
genes) were retained for differential expression analyzes 
and an average of 1332 reads were mapped to each gene 
throughout the samples. Also, an approximate average of 
22,275,000 reads for each sample remained after filtering 
the low read counts.

Samples correlation heatmap and PCA plot are shown 
in Fig.  3a and b. These plots visualize gene expression 
relationship between the samples. As indicated, control 
samples have a higher correlation with each other. RP1 
shows a higher correlation with RP2. Also, RP3 shows a 
higher correlation with RP4. However, RP1 and RP2 seem 
to have less pronounced correlation with RP3 and RP4.

EdgeR yielded a total of 240 genes with significant 
differential expression out of which, 64 genes upregu-
lated while 176 genes downregulated in the RP group 
in comparison with control group (Table S3 (Additional 
file 1)). The volcano plot depicts the distribution of ana-
lyzed genes by their log2 fold change (x axis) and –log10 
adjusted P value (y axis) (Fig. 3c).

Functional annotation of gene sets
Upregulated genes did not show enriched biologi-
cal process with FDR < 0.05. However, top 10 enriched 
process option was used to obtain the biological pro-
cesses that had highest over-representation. “Mature B 
cell differentiation”, “Positive regulation of lymphocyte 

Fig. 1  Concentration of hormones and various blood parameters in RP and control groups during periparturition days. The level of E2 at the 
parturition day was significantly different between the RP and control groups (P = 0.025; showed by asterisk). Other parameters were not 
significantly different between the groups (P > 0.05). Letters with corresponding colors have been used to indicate within group significant changes 
between different periparturition time points. Different letters indicate significant differences (P < 0.05). Each data point is shown as Mean ± SE

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Fig. 2  Transverse sections of the cows’ placentomes. The villi-crypts intersections are looser in the control cows compared to the RP ones which 
are seen as wider white spaces between fetal villi and maternal crypts. The maternal stroma seems to be thicker in some regions in RP cows. Some 
collapsed or degenerated structures which probably used to be intact villi-crypts are also seen in some regions of the placentome sections of RP 
cows. Arrow heads specifically show the collapsed villi-crypts which may be due to the elimination of the existing spaces between the fetal villi and 
maternal crypts. The cows’ number are corresponding to the cows used for RNA-sequencing
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migration” and “T-helper 1 type immune response” 
were the pathways with highest enrichment ratio. The 
over-represented processes and their correspond-
ing genes are shown in Table 2. Top 10 biological pro-
cesses obtained through ORA on downregulated genes 
enriched “fatty acid metabolic process”, “monocarbox-
ylic acid metabolic process”, “oxoacid metabolic pro-
cess”, “organic acid metabolic process” with FDR < 0.05. 
Complete list of the top 10 under-represented pathways 
and their corresponding genes are shown in Table 3.

Top 10 upregulated and downregulated biologi-
cal processes retrieved through gene set enrichment 
analysis (GSEA) as well (Fig. S1 and Tables S4 and S5 
(see Additional file  1)). The main part of upregulated 

pathways enriched in this analysis were related to 
immune system. On the other hand, the main part 
of downregulated pathways was related to lipid 
metabolism.

PPI network analysis
Interactions between the protein of up- and down-
regulated genes retrieved from STRING are shown 
in Figs.  4 and 5, respectively. Functional enrichment 
of the upregulated genes via Cytoscape did not show 
any significant enriched pathway. However, functional 
enrichment of the downregulated genes enriched 
lipid metabolism pathway. As shown in Fig.  4, ARL2, 
UCN119 and HGF are in an interacting network which 

Fig. 3  a Correlation heatmap shows the relationship between different samples. b PCA scatter plot shows the level of variations between different 
samples. Regarding the proximity between samples, a control/RP1-RP2/RP3-RP4 clustering could be deduced. Note that in the RP group, RP1 and 
RP4 had female and RP2 and RP3 had male calves. Also, in the control group, Control 1 had female and Control 2 and Control 3 had male calves. The 
percentage of variations obtained by the principal components is specified on each axis. c Volcano plot shows the distribution of the DEGs. Genes 
with –log10 FDR > 1.3 and log2 fold change > 0.59 or < -0.59 considered as significant (shown with red and blue circles, respectively). Top 5 genes 
(upregulated or downregulated) with highest relative expression (RP vs. control) have been specified with their gene symbol (or gene ID if the gene 
is not yet annotated)
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links the pathway “positive regulation of cell substrate 
adhesion” to “peptidyl-tyrosine modification” repre-
sented in Table  2. Also, regarding the downregulated 
genes, the interacting network between CYP1A2, 

FASN, ACOX1, ACSL1, PDK1 and PLA2G15 which has 
been linked to AASS, OAT and PLD1 with mediatory 
action of FAAH is depicted (Fig. 5). These are the genes 
that are related to lipid metabolism as represented in 

Table 2  Top 10 over-represented biological processes enriched by up-regulated genes. The genes contributed to enrichment of each 
biological process are specified by italic characters

No bolded biological process shows that none of the processes had FDR < 0.05

Enriched biological processes and their associated genes Enrichment ratio P value

Mature B cell differentiation
CMTM7, LGALS1

52.878 0.00059822

Positive regulation of lymphocyte migration
CXCL14, ITGB3

26.439 0.0025034

T-helper 1 type immune response
IL27RA, RELB

24.884 0.0028288

Positive regulation of cell-matrix adhesion
ITGB3, NINJ1

23.502 0.0031729

Positive regulation of cell-substrate adhesion
ARL2, ITGB3, NINJ1

15.108 0.00098375

Positive regulation of leukocyte migration
CXCL14, ITGB3, THBS4

13.220 0.0014535

Positive regulation of peptidyl-tyrosine phosphorylation
THBS4, UNC119, HGF

10.755 0.0026362

Regulation of peptidyl-tyrosine phosphorylation
ITGB3, THBS4, UNC119, HGF

9.4006 0.00080833

Peptidyl-tyrosine phosphorylation
ITGB3, THBS4, UNC119, HGF

6.1756 0.0037929

Peptidyl-tyrosine modification
ITGB3, THBS4, UNC119, HGF

6.0432 0.0040986

Table 3  Top 10 over-represented biological processes of down-regulated genes. The genes contributed to enrichment of each 
biological process are specified by italic characters

Biological processes with FDR< 0.05 are shown  by bold characters

Enriched biological processes and their associated genes Enrichment ratio P value

Glucosylceramide metabolic process
FA2H, UGCG​

60.2 0.000403

Response to platelet aggregation inhibitor
GNAI1, FDX1

40.133 0.000997

Fatty acid metabolic process
ACSL1, SLC27A6, PLA2G15, FA2H, FASN, PDK1, CPT1A, HACD2, ACOX1

6.7304 6.29E-06

Monocarboxylic acid metabolic process
CYP1A2, ACSL1, SLC27A6, ATP8B1, PLA2G15, FA2H, FASN, PDK1, CPT1A, HACD2, ACOX1

5.1734 6.92E-06

Oxoacid metabolic process
CYP1A2, GLCE, ACSL1, SLC27A6, ATP8B1, OAT, PLA2G15, AASS, FA2H, BCAT1, FASN, PDK1, CPT1A, HACD2, ACOX1

3.6857 8.1E-06

Organic acid metabolic process
CYP1A2, GLCE, ACSL1, SLC27A6, ATP8B1, OAT, PLA2G15, AASS, FA2H, BCAT1, FASN, PDK1, CPT1A, HACD2, ACOX1

3.612 1.03E-05

Carboxylic acid metabolic process
CYP1A2, ACSL1, SLC27A6, ATP8B1, OAT, PLA2G15, AASS, FA2H, BCAT1, FASN, PDK1, CPT1A, HACD2, ACOX1

3.6017 2.23E-05

Cellular lipid metabolic process
CYP1A2, ACSL1, SLC27A6, PLA2G15, FA2H, FASN, UGCG, PDK1, PLD1, CPT1A, HACD2, ACOX1

3.1965 0.000291

Lipid metabolic process
CYP1A2, ACSL1, SLC27A6, ATP8B1, PLA2G15, FDX1, FA2H, FASN, UGCG, PDK1, PLD1, CPT1A, HACD2, ACOX1

2.8473 0.000283

Small molecule metabolic process
CYP1A2, GLCE, AHCYL2, ACSL1, SLC27A6, ATP8B1, OAT, PLA2G15, ACPP, FDX1, AASS, FA2H, BCAT1, FASN, PDK1, PDXK, 
CPT1A, EPM2AIP1, HACD2, ACOX1

2.5536 4.69E-05
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Table  3. Furthermore, these two networks have been 
linked to GNAI1 through the mediatory action of 
PLCG2 and IGF1R (Fig.  5). Therefore, this may be 
the functional network that associates lipid metabo-
lism to the pathway “response to platelet aggregation 
inhibitor”.

Gene expression data validation using quantitative RT‑PCR
An RT-qPCR assessment conducted to validate RNA-
Sequencing (Fig.  6). Five genes that had prominent 

contribution to enrichment analyzes were selected 
for RT-qPCR. RPS23 and PPP2R5B were used as ref-
erence genes [11]. The genes ITGβ3, CXCL14 and 
THBS4 upregulated in both RNA-seq and RT-qPCR. 
Also, PIP and FA2H downregulated in the both plat-
forms. Absolute delta fold changes (∆FC; qPCR 
– RNA-seq) were 0.48, 0.36, 0.35, 2.04, 0.66 for the 
above genes, respectively. Due to similar pattern of 
expression, the RT-qPCR validated the results of 
RNA-sequencing.

Fig. 4  PPIs derived from STRING using upregulated genes. Interaction between ITGβ3 and THBS4 is shown. Also, MAPK10 seem to play a 
connective role between HGF, UNC119 and ARL2. The estrogen receptors (ESR1 and ESR2) show the hypothetic pathway of the effect of 
estradiol-17b in the network of the upregulated genes

Fig. 5  PPIs derived from STRING using downregulated genes. FAAH seems to play a connective role between CYP1A2, FASN, ACOX1, PDK1, ACSL1,  
PLA2G15, PLD1, OAT and AASS  which are the genes involved in lipid metabolism. Also, PLCG2 and IGF1R connect lipid metabolism network 
to GNAI1 which seems to play a central role in the whole network with seven connections. The estrogen receptors (ESR1 and ESR2) show the 
hypothetic pathway of the effect of estradiol-17b in the network of the downregulated genes
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Discussion
In this study, we conducted RNA-seq on bovine pla-
centome samples from the cows with or without RP and 
determined DEGs between these two groups. We also con-
ducted a series of clinical experiments including assess-
ment of blood parameters and histological analysis to gain 
more insight into the physiologic aspects of these cows.

According to the PCA plot from the RNA-seq analysis, 
correlation between samples showed a rather control/
RP1-RP2/RP3-RP4 clustering relationship. This shows 
that RP1-RP2 and RP3-RP4 had a more similarity to each 
other. Due to the diverse etiology of RP, it is not unlikely 
that these samples show different clusters. However, we 
placed all the RP samples in one group and tried to dis-
cover the mutual enriched pathways in the RP samples 
that lead us to shared up- and down-regulated genes.

Over representation analysis on the up-regulated 
genes revealed the primary involvement of immune sys-
tem in development of RP. Mature B cell differentiation 
and positive regulation of lymphocyte migration which 
were enriched by upregulated genes may occur following 
the liberation of the immune system from suppression 
around the time of parturition and activation of humoral 
and cellular immune responses by indirect presentation 
of fetal trophoblast MHC-I peptides to the lymphocytes 
[21, 49]. In this regard, CMTM7 and LGLAS1 promote 
B cell differentiation and regulate immunoglobulin pro-
duction [50–52]. ITGB3 and CXCL14 were the enriched 
genes in lymphocyte migration biological process. Inte-
grins have a key role in lymphocytes migration [53]. B 
lymphocytes express CXCL14 in inflammatory states 
and its murine homolog could stimulate chemotaxis of B 

cells [54, 55]. The third enriched biological process was 
T-helper 1 (Th1) immune response which is known to 
recognize MHC-I and MHC-II at the time of parturition 
[21, 56]. Also, this is consistent with the suggestion that 
there is a shift towards Th1 dominance around the time 
of parturition [57–59]. This dominance seems to be facil-
itated by IL27RA and RELB as reported previously [60, 
61]. Th1 has also been associated with apoptotic events 
which occur in placentomes at the time of parturition 
and facilitates detachment of placenta [62]. Therefore, 
upregulation of this pathway may be due to a late effort of 
placentomes from RP group to detach the placenta.

Cell matrix adhesion is an important biological pro-
cess that has been attributed to development of RP [2, 
11]. In the present study, the enriched biological pro-
cess showing cell matrix adhesion shows the importance 
of this process as well. ITGβ3, NINJ1 and ARL2 are the 
genes that have been upregulated and contributed to 
over-representation of this biological process. Integrins 
are the principal cellular components that tie the cells to 
their extracellular matrix. There are 18 α and 8 β subu-
nits of integrins that constitute 24 different αβ integrin 
heterodimers [63–65]. ITGβ3 is a subunit β contain-
ing integrin that could contribute to making αVβ3 and 
αIIbβ3 integrins which are involved in cell to cell interac-
tions and cell matrix adhesion [66, 67]. ITGβ1 has pre-
viously been detected in the cells that reside in bovine 
placentomes and it was suggested that this protein is 
involved in feto-maternal cell communications [68]. 
Moreover, the differences between uninucleate tropho-
blast cells and binuclear trophoblast giant cells regarding 
their interactions with their ECM environment has been 

Fig. 6  Validation of RNA-seq results by RT-qPCR. Log 2 fold change (RP to Control) obtained from each gene profiling platform (qPCR or RNA-seq) is 
shown by bar plots
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attributed to the differential expression of integrins [69]. 
However, according to our knowledge, our result is the 
first report that suggests the involvement of ITGβ3 in the 
etiology of RP. NINJ1 is basically a cell surface protein 
that mediates cell communication and could promote 
leukocytes migration and activity. It regulates leukocytes 
inflammatory response and their tissue remodeling func-
tions in the targeted tissues. When cleaved by MMPs, 
this protein could reverse its functions on leukocytes 
[70]. ARL2 is shown to inhibit dissociation of cell adhe-
sions in epithelial cell [71]. Therefore, its upregulation in 
the placentome of RP cows might also be associated with 
maintenance of cell attachments.

THBS4 is also a gene that is seen frequently in the 
enriched pathways. PPI network in STRING showed an 
interaction between THBS4 and ITGβ3. THBS4 plays 
and important and distinct role in ECM assembly and 
cell-cell adhesion [72]. It regulates production, organiza-
tion and assembly of collagen fibers and binds to differ-
ent types of collagens and adhesive fibers on cell matrix 
and membranes [73]. Integrins are primary receptors 
for thrombospondins and integrin αvβ3 is expressed in 
monocytes, neutrophils and endothelial cells and acts as 
THBS4 receptor [74–76]. Thus, the involvement of the 
interaction between ITGβ3 and THBS4 and its contri-
bution to villi-crypts attachments in placentome of the 
cows is plausible.

Peptidyl-tyrosine phosphorylation is also a general 
term which is important in cell signaling that is mainly 
induced by tyrosine phosphorylation [77]. The protein of 
the genes indicated under this enriched biological pro-
cess are able to trigger signaling pathways in the cells and 
to induce tyrosine phosphorylation [78–81].

Initial studies on the involvement of immune system 
in placental expulsion showed that reduced immune 
function and uterine chemotaxis is a major contribu-
tor to development of RP [6, 82]. It was suggested that 
RP could be due to inhibited chemotaxis in cotyledons 
or suboptimal function of leukocytes despite the pres-
ence of chemotaxis [82]. In the present study, we showed 
over-representation of immune functions in RP cows 
that is possibly due to the more provoked inflammatory 
state at the placentomes region. Our results suggest that 
chemotactic part of immune system continues its activ-
ity in the placentomes of the cows that retain their pla-
centa. However, its reaction may be impaired or actually 
delayed to detach the morphologically collapsed imma-
ture placentomes.

The first biological pathway that was enriched by the 
downregulated genes was glucosylceramide metabolic 
process. Glucosylceramide is synthesized by the UGCG 
enzyme [83, 84]. Glycosylated sphingolipids reside in 
cell membranes and are involved in cell-cell adhesion 

and signal transduction [85]. Glycosylated sphingolipids 
could further become hydroxylated by FA2H and these 
hFA-SLs have ranges of activities [86]. Glucosylcera-
mides are a precursor for diverse glycosphingolipids with 
many cellular functions including cell differentiation, 
proliferation and apoptosis [87]. In epidermal cells these 
molecules are secreted to the intercellular membranes 
and contribute to normal formation of lamellar bodies 
in keratinocytes. Whereas silencing of FA2H decreases 
2-OH glucosylceramide and interfere with formation of 
these lamellar bodies [88]. Whether the corporation of 
hydroxylated glucoceramides play a role in cell matrix 
adhesion, membrane structure or signal transduction of 
the placentome cells needs to be elucidated in future.

Most of the biological processes enriched by the down-
regulated genes were associated with lipid metabolic 
pathways. Cows are often faced with metabolic disorders 
during the transition period [89]. The disturbed lipid 
metabolism and its implication for placental detach-
ment has been shown previously [90–93]. Thiobarbituric 
acid reactive substances, hidroperoxides and conjugated 
dienes as lipid peroxidation products were higher in pla-
centome of cows with RP than healthy controls [90]. In 
another study, cows with RP were suffering from fatty 
liver and altered blood biochemical parameters as well 
[91]. High concentrations of cholesterol, NEFA, BHBA 
and lactate during periparturition period is associated 
with higher risk of development of RP [22, 92, 93]. In one 
study, by each 0.1 mmol/L increase in serum concentra-
tion of cholesterol or fatty acids in the week before par-
turition, the risk of development of RP increased by 5% 
[29]. Also, higher concentrations of cholesterol and NEFA 
were suggested as potential early predictive indicators of 
development of RP [93]. Our results suggest that this dis-
turbed lipid metabolism may occur at placentomes level 
as well and its metabolic or hormonal implications may 
impair placental detachment. Reduced lipid metabolism 
capacity of placentomes may also make them permis-
sive for NEFAs to impair their normal physiologic and 
immune functions. Several genes such as CYP1A2, FASN, 
ACSL1, SLC27A6 and PDK1 are seen frequently in the 
enriched pathways that are relating to lipid metabolism. 
This shows that these genes play a central role in multiple 
lipid metabolism oriented pathways and may make them 
appropriate candidate genes for further investigations.

Cytochrome P450 (CYP) is a family of enzymes which 
oxidize a variety of substances [94] and the expression 
of CYPs have previously been reported in the placen-
tome of cattle [95, 96]. Cyp1A2 is involved in biotrans-
formation of sex hormones specially hydroxylation of 
estrogen and progesterone [97–99]. In human, Cyp1A2 
has been detected in placental cell line (BeWo) [100]. 
In the present study, the RP group showed decreased 
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levels of CYP1A2 compared to controls. The plasma 
level of E2 was also lower in RP group compared to 
control. Whether the lower CYP1A2 is a cause of defi-
cient metabolism and biotransformation of estrogens in 
the RP group is not clear.

FASN is involved in the synthesis of long chain fatty 
acids. Kusakabe et  al., [101] showed that FASN is 
expressed in many cell types which are mainly active 
in lipid metabolism or hormone production and cyto-
trophoblasts, decidua and various fetal cells were 
among these FASN positive cells. This enzyme is prob-
ably responsible for de novo synthesis of deficient fatty 
acids for the placental growth or for the fetus. There-
fore, its downregulation may show the disturbed meta-
bolic events in placentomes.

The main upregulated and downregulated processes 
in this study were related to immune system and meta-
bolic pathways, respectively. The similarity between 
the ORA and GSE analyzes also reinforces the idea 
that the immune system and lipid metabolism have 
actually become more and less active, respectively, in 
RP cows. Functional enrichment of downregulated 
genes using Cytoscape also enriched the lipid meta-
bolic process. We may gain more insight into the eti-
ology of RP by understanding of the links between 
these two systems in the body of affected cows. Some 
aspects of concurrent metabolic and immune imbal-
ances in RP disorder have been described previously 
[21]. It has been shown that metabolic disturbances are 
associated with the development of RP [102]. It also 
was suggested that high concentrations of NEFA and 
cholesterol peripartum could adversely affect immune 
function and increase the risk of uterine diseases [24]. 
Metabolic stresses around the time of parturition could 
activate the hypothalamic-pituitary axis and increase 
the level of corticosteroids including cortisol [21, 103]. 
As a result, cortisol could suppress expression of MHC 
molecules and decrease prostaglandins production 
[21, 104]. In the present study, cortisol in RP group 
showed a steeper increase from day − 1 to day + 1 com-
pared to controls and tended to be significantly differ-
ent between the groups at the day of parturition. This 
might be associated with the observed metabolic and 
immunologic discrepancies that reflected in the enrich-
ment analyzes. However, as the alternations in cortisol 
levels is not firmly different between the two groups, 
concurrent involvement of other factors in develop-
ment of these discrepancies is plausible.

The concentration of E2 in the present study was higher 
in control group than RPs and it was significant at the day 
of parturition. This result is consistent with previous data 
[9, 35]. Progesterone level was not different between the 
two groups, which is consistent [35, 105] and inconsistent 

with previous reports [23, 36]. Our PPI analysis on up and 
downregulated genes showed that there are several pre-
sumptive pathways that could be affected by E2. The ten-
dency to having higher level of cortisol in RP cows in our 
study is also similar to the previous studies [35, 36]. The 
low number of cows in our study may have prevented the 
CBC and hormonal assessments to become significant at 
some time points, but the lower concentration of E2 and 
higher concentration of cortisol in RP cows is accord-
ing to expectations. However, our data suggests that the 
RP cows do not necessarily have higher P4 compared to 
healthy ones consistent with the data of Wischral et  al., 
[35]. E2/P4 ratio was not significantly different between 
the groups. However, it was higher in control group than 
RP. Apart from the differences between the two groups, 
the time dependent changes in the hormones from days 
− 3 to + 1 within each group may also have effects on 
development of RP. For example, the level of P4 at the day 
− 1 was significantly higher than the day of parturition 
in RP groups. Also the raise in cortisol level was signifi-
cantly higher at the day of parturition and day + 1 com-
pared to day − 1 in this group. Therefore, the time point 
alternations in the plasma level of hormones should also 
be considered when concluding about the effect of hor-
mones on development of RP.

Histologic experiment on the placentomes of the cows 
in this study showed that the villi-crypts interactions in 
RP cows remain tight and this leads to development of 
RP. Also maternal crypts seemed to be thicker in RP cows 
which may be due to the higher levels of P4 throughout 
the gestation or lower levels of E2. Estrogen receptors are 
found in stromal cells of maternal crypts during bovine 
pregnancy and it has been suggested that estrogens can 
regulate stromal cell growth in placentomes [106, 107]. 
Therefore, the altered paracrine activity of estrogens 
on stromal cells in RP cows may be a reason for thicker 
crypts septa in these cows.

Moretti et  al., [15] have reported a significant decline 
in the neutrophil count between the cows with placental 
retention compared to healthy cows in immediate post-
partum period. However, similar to our results, other 
hematological parameters such as lymphocytes, mono-
cytes, hemoglobin and white blood cells were not signifi-
cantly different between their experimental groups. Our 
data also show a tendency to reduction in the neutrophil 
counts immediately after parturition. However, it was 
not statistically significant yet on the day + 1. Altogether, 
the hematological parameters did not differ between the 
two groups. However, such as the hormonal parameters, 
PCV% and hemoglobin experienced a significant raise by 
approaching the parturition in RP and not control group, 
which might be due to some level of dehydration in RP 
cows.
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In this study, we presented a productive and reproduc-
tive history for each cow and compared the means of 
each parameter between the RP and control groups. In 
this regard, mean interval between each parity through-
out the cows’ life (until our last record) was not signifi-
cantly different between the two groups. This could show 
that the cows in the both groups have had comparable 
past reproductive performance. In addition, the milk 
yield, length of gestation, age and length of last days open 
were not significantly different between the two groups 
showing that these variables may not have impacted 
the status of placental expulsion in the cows. However, 
the average parity was lower in RP group compared to 
controls. This was due to the limited number of calving 
cows (with the same parity) in the herd within a logical 
length of time. Although this could be a variation source 
in the data, prolonged sampling time to match the pari-
ties could introduce other variations (such as season 
effect) to the data. We presume that parity should not 
have an overestimated contribution to gene profiling of 
the retained placenta, or even if it has, our results should 
show the most common genes involved in retained pla-
centa among different parities.

In a previous study, Streyl et al., [11] conducted a gene 
expression profiling on placentomes obtained from nor-
mal (non-RP) cows 12 days antepartum (via induced 
calving) and after parturition (intrapartum) using micro-
array platform. Physiologic processes that mainly upregu-
lated in intrapartum group were immune response, ECM 
remodeling and apoptosis. In fact, their results were an 
anticipation of the  genes which contribute to placen-
tome maturation and normal expulsion of placenta. In 
the present study, we conducted RNA sequencing on 
placentomes extracted from RP and healthy cows within 
the same time after parturition and with unmanipulated 
calving. Therefore, our gene profiling data should provide 
a more equal context for comparison of RP and healthy 
cows and malfunctioning processes and genes involved 
in RP. Despite the similarities between our results with 
the above study, namely the enrichment of immune and 
cell matrix related processes, the overall processes and 
genes seem to have significant differences. This could 
originate from several issues. First, the large differences 
between the number of DEGs derived from the two stud-
ies. While 1226 DEGs were introduced by the previous 
study, the number of DEGs in the present study were 240. 
This could partly be a result of their higher FDR cutoff 
(< 0.1) besides other objective and methodology differ-
ences. Second, in the previous research, maybe not all 
the processes could be attributed to placental detach-
ment due to the healthy nature of the cows investigated. 
In fact, some processes might be related to other mecha-
nisms naturally occurring in preparturition period inside 

the placentomes. Finally, our results may show that other 
novel trends, not necessarily starting from weeks before 
parturition, could contribute to development of RP.

Study limitations
In this study, the real-time PCR experiment to validate 
the RNA-seq results yielded similar up or downregula-
tion of the five investigated genes. However, there was 
differences in the fold changes obtained from the two 
platforms (qPCR and RNA-seq). ∆FCs were < 1 for 
ITGβ3, CXCL14 and THBS4 and FA2H and = 2 for PIP. 
Deviations in differential expressions (at least in a pro-
portion of genes) resulting from RNA-seq and qPCR 
is not an uncommon phenomenon and has been dealt 
with or occurred elsewhere [108–113]. These discrepan-
cies could originate from various genes features such as 
the length and GC content, number of exons, number 
of paralogs and expression level or from the differences 
in wet lab and analysis workflows, primers and system-
atic quantification technologies between RNA-seq and 
RT-qPCR [108, 109, 112]. The source of deviations in the 
fold changes observed in the present study is unclear. 
However, due to the low ∆FCs and similar pattern of 
expressions, the qPCR assays are in agreement with and 
confirm our RNA-seq results.

Regarding the identified DEGs, a considerable issue 
was that a marked proportion of the genes were not 
characterized yet. For example, the highest upregulated 
(ENSBTAG00000054018) and highest downregulated 
(ENSBTAG00000048304) genes in RP cows did not have 
an identified protein. In addition, due to slower advance-
ment in enrichment programs for analysis of RNA-seq 
data from Bos taurus species (compared to homo sapi-
ens), some important pathways in the etiology of RP may 
remain hidden at the present time. However, the present 
study tried to have a wider look at the etiology of retained 
placenta in cattle and the genes identified in this study 
may be good candidates for future studies.

Conclusion
In this study, we found 240 differentially expressed 
genes between the placentome of the cows with or 
without retained placenta. By enrichment of these 
genes we found that immune system pathways are 
over-represented and lipid metabolic pathways are 
under-represented in RP cows compared to controls. 
Genes ITGB3, THBS4, CXCL14, FASN, FA2H, UGCG​ 
and CYP1A2 were among the genes that seem to have 
important role in development of RP and may prove 
useful candidates for future studies. We also showed 
that at the day of parturition E2 was significantly lower 
in RP cows. Therefore, our results further reinforce the 
role of E2 in retained placenta and show that P4 does 
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not necessarily change in RP cows at least within the 
peri-parturition period. Hematological parameters 
were also not significantly different between the two 
groups, but histologic experiment showed that the villi-
crypts junctions remain tighter in RP cows compared 
to healthy ones and this leads to retained placenta. The 
role of many genes identified in this study has not been 
previously reported in etiology of RP and our study 
could be used for future investigations.
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