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Abstract 

Background:  Carcass traits are important in pig breeding programs for improving pork production. Understanding 
the genetic variants underlies complex phenotypes can help explain trait variation in pigs. In this study, we integrated 
a weighted single-step genome-wide association study (wssGWAS) and copy number variation (CNV) analyses to 
map genetic variations and genes associated with loin muscle area (LMA), loin muscle depth (LMD) and lean meat 
percentage (LMP) in Duroc pigs.

Results:  Firstly, we performed a genome-wide analysis for CNV detection using GeneSeek Porcine SNP50 Bead chip 
data of 3770 pigs. A total of 11,100 CNVs were detected, which were aggregated by overlapping 695 CNV regions 
(CNVRs). Next, we investigated CNVs of pigs from the same population by whole-genome resequencing. A genome-
wide analysis of 21 pigs revealed 23,856 CNVRs that were further divided into three categories (851 gain, 22,279 loss, 
and 726 mixed), which covered 190.8 Mb (~ 8.42%) of the pig autosomal genome. Further, the identified CNVRs were 
used to determine an overall validation rate of 68.5% for the CNV detection accuracy of chip data. CNVR association 
analyses identified one CNVR associated with LMA, one with LMD and eight with LMP after applying stringent Bonfer-
roni correction. The wssGWAS identified eight, six and five regions explaining more than 1% of the additive genetic 
variance for LMA, LMD and LMP, respectively. The CNVR analyses and wssGWAS identified five common regions, of 
which three regions were associated with LMA and two with LMP. Four genes (DOK7, ARAP1, ELMO2 and SLC13A3) 
were highlighted as promising candidates according to their function.

Conclusions:  We determined an overall validation rate for the CNV detection accuracy of low-density chip data 
and constructed a genomic CNV map for Duroc pigs using resequencing, thereby proving a value genetic variation 
resource for pig genome research. Furthermore, our study utilized a composite genetic strategy for complex traits in 
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Background
In recent decades, pork has made up a large share of 
total worldwide meat production to meet demands 
for more animal protein products and accommodate 
growing human consumption [1]. For the pig indus-
try, carcass traits are known to play an essential role in 
pig breeding programs with the purpose of improving 
pork production. One of the strategies that can acceler-
ate the genetic progress of these economically impor-
tant traits is to incorporate of genome-wide association 
studies (GWASs) results in genomic prediction models, 
which can improve genomic prediction accuracy [2]. 
For polygenic quantitative traits, GWAS using high-
density single-nucleotide polymorphisms (SNPs) has 
become a powerful tool to dissect the genetic archi-
tecture of complex traits by leveraging linkage dis-
equilibrium (LD) between the causative mutations and 
common SNP markers [3]. Many studies have focused 
on this important point and utilized multiple strategies 
to detect quantitative trait loci (QTLs) and genes for car-
cass traits, such as the identified QTLs for loin muscle 
area (LMA), loin muscle depth (LMD) [4], and lean meat 
percentage (LMP) [5]. GWASs for these traits in pigs 
were performed based on animals that were genotyped 
and phenotyped. However, much genealogical informa-
tion of animal breeding farms has been ignored in the 
innovation of GWAS methodology. To make full use of 
genealogical information and phenotypes of genotyped 
and non-genotyped animals, a GWAS method under the 
single-step genomic best linear unbiased prediction (ssG-
BLUP) framework was developed and referred to as a 
“weighted single-step GWAS” (wssGWAS) [6]. This pow-
erful method has been used in pigs [7] to detect QTLs 
and genes associated with economically important traits. 
These traits are polygenic quantitative traits and may be 
influenced and regulated by multiple forms of genetic 
variations that consequently are expressed as different 
phenotypes of specific traits. However, the associations 
between copy number variation (CNV) and LMA, LMD 
and LMP have not been widely investigated. CNVs can be 
defined as segments of DNA including gains and losses 
of genomic sequence (over a length of > 1 kb) that differ 
from the reference genome [8]. It has been shown that 
CNVs play important roles in regulating gene expression, 
consequently affecting specific phenotypes in pigs [9]. 
Regarding the detection of CNVs in pigs, SNP arrays were 
the popular platform and several studies have focused on 

multiple pig breeds to identify existing CNVs and further 
define the number of CNV regions (CNVRs) using SNPs 
Bead chip [10]. With the rapidly decreasing costs of next 
generation sequencing (NGS) and the possibility of dis-
covering a multitude of variant classes, NGS-based CNV 
detection have been used in domestic animals, including 
pigs [11]. Moreover, improvement in NGS technology 
that increase accuracy would significantly facilitate the 
discovery of CNVs by using small sample size in compar-
ison with that used in SNP array-based studies [11].

The main objective of this study was to identify genetic 
variations and genes associated with carcass traits includ-
ing LMA, LMD and LMP, by integrating a wssGWAS and 
CNV analyses in approximately 3770 Duroc pigs that 
were genotyped with the GeneSeek Porcine SNP50 Bead 
chip. Herein, we also investigated CNVs of 21 Duroc pigs 
from this population by NGS data and then, we used the 
resequencing pigs to determine an overall validation rate 
for the CNV detection accuracy of chip data. These two 
approaches (CNVR and SNP based GWAS) were com-
plementary to each other and such a utilization of com-
posite genetic strategy for complex traits in pigs provides 
valuable insights into elucidating the genetic architecture 
that may be influenced and regulated by multiple forms 
of variations.

Results
Genome‑wide detection of CNVs and CNVRs
For 50 K SNP array, 3261 animals and 38,894 SNPs were 
remained to identify CNV events after applying strin-
gent filtering criteria. A total of 11,100 CNV events (8093 
gains and 3007 losses) were detected, which were aggre-
gated by overlapping 695 CNVRs. The length of these 
CNVRs ranged from 11.80  kb to 4.25  Mb (Additional 
file 1: Table S1). Among these CNVRs, 273 corresponded 
to CNV gains, 301 to losses, and 121 were mixed. These 
CNVRs covered approximately 174.43  Mb of the pig 
autosomal genome and corresponded to 7.7% of the 
genome sequence (Additional file 2: Table S2). For NGS 
data, A genome-wide analysis of 21 pigs revealed 23,856 
CNVRs (Fig. 1) that were further divided into three cat-
egories, i.e., gain (n = 851), loss (n = 22,279), and mixed 
(n = 726) CNVRs, covering 190.8  Mb (~ 8.42%) of the 
pig autosomal genome (Table  1). Among these CNVRs, 
96.89% (23,114) of CNVRs’ segment length were less 
50 kb. The proportion of CNVRs varied from 5.5% (Sus 
scrofa chromosome 17, SSC17) to 11.94% (SSC16) across 

pigs, which will contribute to the study for elucidating the genetic architecture that may be influenced and regulated 
by multiple forms of variations.

Keywords:  Pigs, Copy number variation, GWAS, Carcass traits



Page 3 of 16Ding et al. BMC Genomics          (2022) 23:590 	

Fig. 1  The overall CNVR map for Duroc pigs in the 18 autosomes. Three types of CNVR are identified, including gain (red), Loss (green), and Mixed 
(blue). Y-axis values are autosomes, and X-axis values are chromosome position in Mb

Table 1  Chromosome distribution of all 23,856 CNVRs detected in the porcine genome (Sscrofa 11.1 reference genome assembly) by 
next generation sequencing data

Chr Chr length (bp) CNVR count Total CNVR length 
(bp)

Average size (bp) Percentage (%)

1 274330532 2187 24465457 11186.77 8.92

2 151935994 1570 15064612 9595.29 9.92

3 132848913 1347 7921458 5880.82 5.96

4 130910915 1528 9733311 6369.97 7.44

5 104526007 1163 6678547 5742.52 6.39

6 170843587 1474 10681625 7246.69 6.25

7 121844099 1405 7533446 5361.88 6.18

8 138966237 1499 16186457 10798.17 11.65

9 139512083 1462 13185580 9018.86 9.45

10 69359453 1025 6445133 6287.93 9.29

11 79169978 1245 7090443 5695.13 8.96

12 61602749 863 4177951 4841.19 6.78

13 208334590 1913 22275135 11644.09 10.69

14 141755446 1330 8144486 6123.67 5.75

15 140412725 1386 14849166 10713.68 10.58

16 79944280 992 9542775 9619.73 11.94

17 63494081 822 3493138 4249.56 5.50

18 55982971 645 3326,348 5157.13 5.94

Total 2265774640 23856 190795068 7997.78 8.42
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the 18 autosomes. We calculated the allele frequencies of 
the CNVRs in the 21 re-sequencing Duroc pigs. Results 
showed the detecting frequency for loss was higher than 
that for gain and mixed CNVRs (Fig. 2).

Validation of CNVRs detected in 50 K SNP array
We investigated CNVs of 20 pigs from the same popu-
lation by whole-genome resequencing to determine an 
overall validation rate of 68.5% for the CNV detection 

accuracy of chip data. 50 of the 73 CNVRs detected in 
50  K SNP array of the 20 pigs were validated in NGS-
based CNVRs results (Additional file  3: Table  S3). Fur-
thermore, we randomly selected six CNVRs (CNVR ID: 
CNVR 99, 219, 241, 321, 450, and 589) that co-localized 
with ADAP1, FANCA, GPR153, LRPAP1, MCF2L, and 
CFAP46 genes, respectively. Five of these CNVRs (CNVR 
99, 219, 321, 450, and 589) were successfully validated 
(Fig. 3).

Fig. 2  The allele frequencies of variants in the resequencing Duroc pigs

Fig. 3  The results of qPCR validation in selected CNVRs detected in 50 K SNP array. The x-axis represents the tested sample ID. The y-axis represents 
different copy number. Values of approximately 2 were considered normal. A value of 3 or more and a value of 1 or less represented gain and loss 
statuses, respectively
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CNVR‑based association analyses for carcass traits
After quality control for the identified CNVRs in 50 K 
SNP array prior to conducting association analyses, 
117 CNVRs remained to perform association tests for 
LMA, LMD and LMP in this Duroc pigs. A stringent 
criterion of Bonferroni correction was adopted for the 
association tests for LMA, LMD and LMP to deter-
mine the genome-wide significant P value threshold, 
which was defined as 8.55E-05 (0.05/117). As shown in 
Table  2 and Fig.  4, we detected 10 CNVRs associated 
with carcass traits, of which one (ID: CNVR241) was 
associated with LMA (Fig. 4a), one (ID: CNVR71) was 
associated with LMD (Fig. 4b) and eight (ID: CNVR71, 
CNVR99, CNVR101, CNVR219, CNVR450, CNVR534, 
CNVR589, and CNVR654) were associated with LMP 
(Fig.  4c). For LMA, the significant CNVR241 was a 
mixed-type CNVR located on SSC6, 66.98 – 67.38 Mb, 
and covering approximately 393  kb of the genome 
sequence, together with 11 genes. Interestingly, 
CNVR27, located on SSC2, 76.01 – 76.54 Mb and cov-
ering 521 kb of the genome sequence, was found to be 
associated with both LMD and LMP traits in this Duroc 
pigs. Within the CNVR27, we detected 14 protein-
coding genes that potentially contribute to both traits. 
For LMP, the most significant CNVR, CNVR450, was 
located on SSC11, 77.14 – 78.78  Mb. Seventeen genes 
including COL4A2, RAB20, NAXD, CARS2, ING1, 

ANKRD10, ARHGEF7, TUBGCP3, ATP11A, MCF2L, 
PCID2, CUL4A, GRTP1, DCUN1D2, TMCO3, TFDP1, 
and ATP4B were detected and highlighted as potential 
candidates for LMP. Other prominent CNVRs associ-
ated with LMP were also analyzed, and genes within 
these CNVRs were detected according to the porcine 
reference genome annotation from the Ensembl data-
base (Table 2).

Weighted single‑step genome‑wide association study
The estimated heritability based on pedigree information 
for LMA, LMD, and LMP was 0.48 ± 0.06, 0.43 ± 0.07, 
and 0.60 ± 0.07, respectively (Additional file 4: Table S4). 
Nineteen genomic windows were detected each explain-
ing > 1% of the additive genetic variance for the three 
traits on SSC1, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, and 18 
(Table  3 and Fig.  5). The explained genetic variance of 
SNPs within the significant windows for LMA, LMD, 
and LMP were list in Additional file  5: Table  S5, Addi-
tional file  6: Table  S6, and Additional file  7: Table  S7, 
respectively. Moreover, these significant genomic win-
dows explained 9.89%, 7.86%, and 6.76% of the additive 
genetic variance for LMA, LMD and LMP, respectively. 
Of the 19 windows, eight were found to be associated 
with LMA (Fig.  5a). The most significant window (ID: 
4_88), explaining 1.72% of the additive genetic vari-
ance for LMA, was located at 88.52 – 88.84  Mb and 

Table 2  Significant CNVRs associated with LMA, LMD and LMP in Duroc pigs

Traits Chr CNVR ID Type Start (bp) End (bp) Length (bp) P-value Genes

LMA 6 CNVR241 Mixed 66986351 67379563 393212 6.01E-05 KCNAB2, CHD5, RNF207, HES3, GPR153, ACOT7, HES2, ESPN, PLEKHG5, 
TNFRSF25, NOL9

LMD 2 CNVR71 Mixed 76013400 76535013 521613 1.21E-05 GADD45B, LMNB2, TMPRSS9, SPPL2B, LSM7, LINGO3, PEAK3, DOT1L, 
AMH, JSRP1, AP3D1, IZUMO4, MOB3A, MKNK2

LMP 2 CNVR71 Mixed 76013400 76535013 521613 3.39E-05 GADD45B, LMNB2, TMPRSS9, SPPL2B, LSM7, LINGO3, PEAK3, DOT1L, 
AMH, JSRP1, AP3D1, IZUMO4, MOB3A, MKNK2

3 CNVR99 Mixed 162027 2026411 1864384 2.21E-06 FAM20C, PDGFA, PRKAR1B, DNAAF5, SUN1, COX19, CYP2W1, C7orf50, 
GPER1, ZFAND2A, UNCX, MICALL2, INTS1, MAFK, TMEM184A, PSMG3, 
ELFN1, MAD1L1, SNX8, EIF3B, CHST12, GRIFIN, LFNG, TTYH3, IQCE, 
BRAT1, GNA12

3 CNVR101 Mixed 2457661 3480462 1022801 1.02E-06 SDK1

6 CNVR219 Mixed 51842 1347980 1296138 3.05E-05 PRDM7, GAS8, DEF8, TCF25, SPIRE2, FANCA, ZNF276, VPS9D1, CDK10, 
DPEP1, SPG7, ANKRD11, CDH15, ACSF3, CBFA2T3, PABPN1L, GALNS, 
APRT, PIEZO1, CTU2, RNF166, SNAI3, MVD, CYBA, IL17C, ZC3H18, 
ZFPM1, ZNF469

11 CNVR450 Mixed 77144460 78780052 1635592 1.92E-10 COL4A2, RAB20, NAXD, CARS2, ING1, ANKRD10, ARHGEF7, TUBGCP3, 
ATP11A, MCF2L, PCID2, CUL4A, GRTP1, DCUN1D2, TMCO3, TFDP1, 
ATP4B

13 CNVR534 Mixed 206578011 208240759 1662748 9.15E-09 RRP1B, RRP1, AGPAT3, AIRE, PFKL, CFAP410, TRPM2, TSPEAR, UBE2G2, 
PTTG1IP, ADARB1, COL18A1, SLC19A1

14 CNVR589 Mixed 139524158 141719266 2195108 1.22E-07 TCERG1L, BNIP3, JAKMIP3, DPYSL4, STK32C, LRRC27, PWWP2B, INPP5A, 
NKX6-2, CFAP46, ADGRA1, KNDC1, ADAM8, TUBGCP2, CALY, MTG1, 
SCART1, CYP2E1

16 CNVR654 Mixed 78550922 79365542 814620 2.49E-05 IRX4, NDUFS6, MRPL36, LPCAT1, SLC6A3, CLPTM1L, SLC6A18, SLC6A19, 
SLC12A7
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Fig. 4  Manhattan plots of CNVR-based association analyses for LMA (a), LMD (b) and LMP (c) in Duroc pigs
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contained the genes OLFML2B, ATF6, DUSP12, and 
FCRLB. For LMD, six windows (Fig. 5b) were associated 
with the trait. The most significant windows (ID: 12_26 
and 18_53) both explained 1.56% of the additive genetic 
variance for LMD and were located at 26.33 – 26.83 Mb 
and 53.36 – 53.82  Mb, respectively. The analysis of the 
association with LMP identified five windows (Fig.  5c) 
that were located on SSC1, 7, 13, and 17. Window 13_197 
explained 1.73% of the additive genetic variance for LMP 
and seven related genes were highlighted as candidates 
for LMP.

Common regions identified by the wssGWAS and CNVR 
analyses
We identified common regions between the wssGWAS 
and CNVR analyses on SSC6 (7.94 – 8.42 Mb), SSC8 (1.87 
– 3.85 Mb), and SSC9 (7.16 – 7.64 Mb) that were asso-
ciated with LMA, and on SSC13 (197.09 – 197.58  Mb) 
and SSC17 (48.23 – 48.71 Mb) that were associated with 
LMP (Table 4). Protein-coding genes within the common 
regions were highlighted as candidates for the traits ana-
lyzed. Moreover, the windows on SSC6 and SSC13 were 
in detection CNVRs; the windows on SSC8 and SSC9 
were in mixed CNVRs; and the window on SSC17 was in 
a duplication CNVR.

KEGG and GO enrichment analyses
The KEGG and GO enrichment analyses of the 219 genes 
from all carcass traits revealed seven significant pathways 
(such as metabolic pathways, collecting duct acid secre-
tion, MAPK signaling pathway and ubiquitin mediated 
proteolysis) and 75 significant GO terms. Detailed infor-
mation on the significant pathways and terms is listed in 
Additional file 8: Table S8.

Discussion
General discussions about the genetic detection of LMA, 
LMD and LMP traits
In this study, the combination of a region-based GWAS 
with CNVR analyses improved the detection efficiency 
of genomic regions and genes associated with LMA, 
LMD and LMP and consequently identified additional 
genetic variants and genes. LMA and LMD, which are 
regarded as carcass traits, play essential roles in the 
determination of LMP and other growth traits [12]. 
Previously, we utilized a meta-analysis of GWASs 
to identify QTLs associated with LMA and LMD in 
two Duroc pig populations and successfully detected 
remarkable QTLs for the traits analyzed [4]. However, 
previous genetic studies conducted for LMA, LMD and 
LMP utilized a classic GWAS based on single marker 
regression in genotyped animals. This inadequate use 

Table 3  Identification of genes based on the additive genetic variance (gVar) explained by 0.5 Mb windows of the adjacent SNPs

Traits Chr window ID Start position (bp) End position (bp) nSNPs gVar (%) Candidate genes

LMA 4 4_88 88528079 88837975 7 1.72 OLFML2B, ATF6, DUSP12, FCRLB

6 6_7 7944029 8429029 24 1.40 /

6 6_47 47252470 47728980 9 1.07 CATSPERG, PSMD8, GGN, SPRED3, FAM98C, RASGRP4, MAP4K1, 
ACTN4, HNRNPL, CAPN12, ECH1, RINL, SIRT2, NFKBIB, CCER2, 
MRPS12

6 6_136 136587431 137008535 12 1.31 ST6GALNAC3

8 8_2 2113824 2538785 18 1.09 DOK7, ADRA2C, HMX1

9 9_7 7165800 7643984 11 1.08 PDE2A, ARAP1, ATG16L2, FCHSD2

9 9_13 13689451 14174146 23 1.05 /

10 10_21 21285879 21768391 13 1.17 ATP6V1G3, PTPRC

LMD 1 1_21 21550279 22025895 14 1.20 PHACTR2, FUCA2, PEX3, ADAT2, AIG1

5 5_94 94705788 95188437 17 1.01 /

9 9_32 32672891 33160648 7 1.28 CEP126, CFAP300, YAP1, BIRC3, TMEM123

12 12_26 26333018 26829227 9 1.56 PPP1R9B, SGCA, COL1A1, TMEM92, XYLT2, MRPL27, EME1, 
LRRC59, ACSF2, CHAD, RSAD1, MYCBPAP, EPN3, SPATA20

15 15_126 126576898 127069740 30 1.24 DOCK10, NYAP2

18 18_53 53366998 53823227 16 1.56 SUGCT​

LMP 1 1_253 253922492 254393867 10 1.60 PRPF4, RNF183, WDR31, BSPRY, HDHD3, ALAD, C9orf43, RGS3

7 7_12 12342523 12829394 11 1.04 ATXN1

13 13_197 197092574 197585514 23 1.73 TMEM50B, DNAJC28, GART, SON, DONSON, CRYZL1, ITSN1

17 17_5 5673866 6148397 14 1.02 PCM1, ASAH1

17 17_48 48234481 48714245 13 1.36 NCOA5, CDH22, SLC35C2, ELMO2, OCSTAMP, SLC13A3
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Fig. 5  Manhattan plots of wssGWAS for LMA (a), LMD (b) and LMP (c) in Duroc pigs. The results of the weighted single-step GWAS are represented 
by the proportion of additive genetic variance explained by 0.5 Mb windows. Windows that each explain > 1% of the additive genetic variance are 
highlighted
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of genealogical information and genetic variants may 
result in ignoring other important loci in the genome. 
By using a wssGWAS and CNV analyses, the present 
study identified missing QTLs that were not detected 
previously, thus overcoming the aforementioned defi-
ciencies to some extent. The SNPs within identified 
regions will be useful for the genetic improvement of 
carcass traits by allowing the associated SNPs to be 
assigned with higher weights in genomic selection. 
In this study, we removed 578 CNVRs applying strin-
gent filtering criteria to reduce the false-positive rates 
of results and a stringent criterion of Bonferroni cor-
rection was adopted for the association tests for LMA, 
LMD and LMP to determine the genome-wide signif-
icant P value threshold. This led to a limited number 
CNVRs were used in the association analyses. Although 
the findings of identified CNVRs may help elucidate the 
genetic architecture of carcass traits that may be influ-
enced and regulated by multiple forms of variations, 
the translation of the CNVs in these regions into appli-
cations in the pig industry will not be as direct as that 
of SNPs in the genomic selection for LMA, LMD and 
LMP [13]. These variants, however, may have value in 
increasing selection accuracy by genotyping the CNVR 
types according to the copy number value and stetting 
the CNVRs represented in a specific genotype [14], 
and then incorporated them as prior biological infor-
mation into genomic models such as genomic feature 
BLUP approach (GFBLUP) [15]. Moreover, there are 
some limitations of this study that should be pointed 
out. In the procedure of wssGWAS, we calculated the 
SNP weights followed default recommendations made 
by the developers of the BLUPF90 software packages. 
Such weighting methodology may overestimate some 
regions while shrinking others to 0. Recently, the devel-
opers proposed several new procedures for calculat-
ing SNP weights in wssGBLUP that can be effective 
in improving both the accuracy of genomic estimated 
breeding values (GEBV) and SNP effects [16]. In the 
future, these advanced approaches for calculation of 
SNP weights should be used to reach maximum predic-
tively of SNP effects.

CNV detection accuracy and comparison with previous 
studies of porcine CNVRs
The validation results of CNVRs detected in 50  K SNP 
array implied that the CNV detection accuracy of chip 
data in the present study were relatively low, since the 
overall validation rate between resequencing data and 
microarray data in human was 83.5%, which utilized a 
population-level of 266 paired-end Illumina data to call 
CNVs [17]. In this study, among the CNVRs detected in 
resequencing data, 96.89% (23,114) of CNVRs’ segment 
length were less 50 kb while the value was 9.93% (69) of 
50  K SNP array, implying that the CNVRs detected by 
microarray data was sparsely distributed on the genome. 
Although using resequencing data to call CNVs improved 
the CNVR map density in pig genome, it seemed that 
genome resequencing of large-scale individuals and 
higher sequence coverage have the potential to increase 
the CNV detection accuracy both for low coverage rese-
quencing and microarray data, or using third-generation 
sequencing-based data may be the better strategy for 
CNV calling [18]. Thus, stringent quality control should 
be applied for CNVRs while conducting subsequent 
association analyses. To determine whether the CNVRs 
identified in our study overlapped with those reported in 
previous studies, we compared our results in Duroc pigs 
to those CNVRs identified in several different swine stud-
ies [8, 10, 19–22]. All CNVRs identified in other studies 
were converted to Sscrofa 11.1 genome assembly using 
the liftOver tool. In total, 56.69% (394/695) of the CNVRs 
in the present study overlapped with the merged CNVRs 
of previous studies by at least 1  bp (Additional file  9: 
Table  S9). For instance, Chen et  al. [21] detected 565 
CNVRs in 1693 pigs from 18 diverse populations using 
the Porcine SNP60 Bead chip and PennCNV algorithms 
and consequently, 47 CNVRs overlapped with this study 
with a total CNVR length of 4,668,695  bp. Wang et  al. 
[20] performed CNV discovery in 12 pigs from the Asian 
wild boar population, six Chinese indigenous breeds, and 
Yorkshire and Landrace commercial pigs using a custom-
designed 1  M array comparative genomic hybridization 
(CGH) and detected 758 CNVRs, covering 47.43 Mb of 
the pig genome. Among these 758 CNVRs, we identified 

Table 4  Common regions between CNVRs and the significant windows detected by wssGWAS

a  as of “Start position” columns are the characterization of the CNVRs

Traits Chr window ID CNVR ID Start position (bp)a End position (bp) Type Length (bp)

LMA 6 6_7 CNVR_222 8252860 8393964 Loss 141104

8 8_2 CNVR_321 1876229 3858083 Mixed 1981854

9 9_7 CNVR_365 7165800 7526785 Mixed 360985

LMP 13 13_197 CNVR_526 197092574 197570477 Loss 477903

17 17_48 CNVR_675 48351314 48427404 Gain 76090
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19 CNVRs that overlapped with the reported CNVRs in 
this study with a total CNVR length of 699,128 bp. Zhang 
et  al. [22] performed genome-wide CNV detection on 
46 pigs including Suhai, Minzhu, and Large White based 
on NGS data and 11,173 CNVRs were detected. Among 
these CNVRs, we identified 323 CNVRs that overlapped 
with the reported CNVRs in this study. Recent reports 
regarding the detection and characterization of CNVRs 
include a study evaluating the traits of piglets born alive 
in a Duroc pig population [8]. Using Porcine SNP80 Bead 
chip data and the PennCNV algorithm, the study iden-
tified 425 CNVRs covering 197  Mb of the pig genome 
from 3520 Duroc pigs, and 56 CNVRs with a total CNVR 
length of 8,534,850 bp overlapped with the CNVRs in our 
study. Specifically, NGS is capable of revealing far more 
novel data, and efforts to uncover differences between 
SNP array data and next-generation sequencing data in 
terms of detecting CNVs have largely emphasized the 
examination of the number of SNPs and the density and 
influence of different calling platforms [11, 19]. There-
fore, different CNVR map patterns in pigs were observed 
after comparison with the results of the aforementioned 
studies using different genotyping platforms. In this 
study, we used a relatively low-density GeneSeek Porcine 
SNP50 Bead chip on 3770 animals to detect CNV events, 
and the detection efficiency of this study was sufficient 
compared to that of a previous study (sample size = 3520 
Duroc pigs) that used a Porcine SNP80 Bead chip (CNVR 
count in our study vs. previous study = 695 vs. 425) [8]. 
Copy number variation is a major component of genomic 
variation and is considered a promising source for some 
economically important traits in multiple species, such 
as rock pigeons (Columba livia) and pigs [9, 23]. Numer-
ous populations have been genotyped with SNP chips or 
NGS panels for CNV identification. However, overlap-
ping CNVRs detected in this way have been limited due 
to the relatively low sample size of analyzed populations 
and potential breed-specific characteristics [8]. On the 
other hand, CNV detection studies targeting diverse pig 
breeds and using different platforms provide important 
complementary data to the CNV map of the pig genome. 
We also investigated CNVs of 21 pigs from the same pop-
ulation by whole-genome resequencing to reveal 23,856 
CNVRs, covering 8.42% of the pig autosomal genome. 
The NGS-based CNVRs results provide a high supple-
ment density for the high-resolution map of copy num-
ber variation in the porcine genome in comparison with 
that using SNP array. With the development and cost of 
high-throughput sequencing, we believe that there will 
be more studies using large-scale whole-genome rese-
quencing data to uncover copy number variations under-
lying traits of interest in pig.

Genomic regions and candidate genes reveal 
the complexity of the genetic architecture of carcass traits 
in pigs
Copy number variation has been considered a major 
source of genomic variation, and multiple CNVR-based 
association analyses have been conducted to provide evi-
dence for the impact of CNV on phenotypes in pigs [10, 
19]. For LMA, the candidate gene ACOT7, located in 
CNVR241, encodes a member of the acyl coenzyme fam-
ily, and the encoded protein hydrolyzes the CoA thioester 
of palmitoyl-CoA and other long-chain fatty acids [24, 
25]. A previous meta-analysis of GWASs revealed that 
the ACOT7 gene is associated with the metabolism and 
transport of fatty acids or lipids in the longissimus mus-
cle in pigs [26], and is therefore involved in longissimus 
muscle development. The GADD45B and JSRP1 genes are 
mapped to the CNVR71 region (SSC2: 76.01 – 76.54 Mb) 
and were found to be associated with LMD and LMP 
traits in pigs. The GADD45B gene is a member of a group 
of genes whose transcript levels are increased following 
stressful growth arrest conditions and treatment with 
DNA-damaging agents. The functions of the GADD45B 
gene include the regulation of growth and apoptosis [27], 
and GADD45B has been suggested to be overexpressed 
in beef longissimus thoracis muscles [28]. The JSRP1 gene 
encodes a protein that is involved in excitation–contrac-
tion coupling at the sarcoplasmic reticulum, and JSRP1 
interacts with CACNA1S, CACNB1, and calseques-
trin to help regulate calcium influx and efflux in skeletal 
muscle [29]. In addition, the SDK1 gene, located on the 
CNVR101 region, and the PTTG1IP gene, located on the 
CNVR534 region, were identified to be associated with 
LMP. The SDK1 gene encodes a protein that is a member 
of the immunoglobulin superfamily. Previous GWASs 
have shown that SDK1 is a candidate gene for pork meat 
quality [30, 31]; however, the mechanism of SDK1 gene 
involvement in muscle development has not been clearly 
defined. The PTTG1IP gene encodes a single-pass type 
I integral membrane protein, which binds to pituitary 
tumor-transforming 1 protein (PTTG1). A recent report 
regarding transcriptome analyses of genes revealed that 
the PTTG1IP gene is involved in muscle development 
and was also found to be alternatively spliced among the 
muscle tissues in chickens [32]. Therefore, it is reasonable 
to regard PTTG1IP as a candidate gene for muscle devel-
opment in pigs, and it might also be a candidate gene for 
meat content.

Furthermore, the wssGWAS for LMA, LMD and 
LMP traits detected 19 genomic windows. Six genes 
identified in common regions between the wssGWAS 
and CNVR analyses were highlighted as promising 
candidates according to their function. For LMA, we 
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highlighted the DOK7 gene, located on SSC8 (1.87 – 
3.85  Mb) and the ARAP1 gene, located on SSC9 (7.16 
– 7.64  Mb). The DOK7 gene encodes a protein that is 
essential for neuromuscular synaptogenesis and func-
tions in aneural activation of muscle-specific receptor 
kinase, which is required for postsynaptic differentia-
tion. The literature does not identify any link between 
LMA and the DOK7 gene, as it has rarely been investi-
gated in muscle in pigs or other domestic animals. The 
ARAP1 gene plays a role in encoding ARF-GAP, Rho-
GAP, ankyrin repeat and pleckstrin homology domain-
containing protein 1 [33]. Further studies are needed 
to clarify the role of these genes in LMA. For LMP, we 
highlighted the ELMO2 and SLC13A3 genes, located on 
SSC17 (48.23 – 48.71 Mb). The protein encoded by the 
ELMO2 gene interacts with the dedicator of cytokinesis 
1 protein. The ELMO2 gene plays a role in the phago-
cytosis of apoptotic cells and in cell migration and has 
been implicated in the regulation of Rac1 and Akt acti-
vation [34]. The SLC13A3 gene encodes a high-affinity 
protein that plays an important role in the processing of 
citrate by the kidneys. A previous study has shown that 
the ELMO2 and SLC13A3 genes may also play a role in 
type 2 diabetes. Although these genes have not been 
reported to be directly related to lean meat content, 
genes with pleiotropic effects on complex traits may be 
responsible in this case [35]. For instance, the combined 
effect of a gene duplication (CNV) and a splice muta-
tion in the KIT gene causes dominant white coat color 
in pigs [36]. However, it has been reported that these 
mutations have pleiotropic effects on hematopoiesis 
[36]. Loin muscle area, LMD and LMP are typical poly-
genic quantitative traits, and many candidate genes 
have been highlighted in the pig genome. In this study, 
we proposed several genes as promising candidates for 
these traits, and these findings will further advance our 
understanding of the genetic mechanisms of complex 
traits in pigs.

Conclusion
This study investigated the CNVs of pigs and provided a 
high supplement density for the high-resolution map of 
copy number variation in the porcine genome by using 
NGS-based and SNP array data. Our results showed an 
overall validation rate of 68.5% for the CNV detection 
accuracy of chip data in comparison with that using NGS 
data. The functions of genes containing unique CNVRs 
are related to the carcass traits of pigs. From this, we have 
identified some candidate genes. Such a utilization of 
composite genetic strategy for complex traits in pigs pro-
vides valuable insights into elucidating the genetic archi-
tecture that may be influenced and regulated by multiple 
forms of variations.

Methods
Ethics statement
The animals and experimental methods used in this study 
are following the guidelines of the Ministry of Agri-
culture of China. The ethics committee of South China 
Agriculture University (SCAU) (Guangzhou, China) 
approved this study (Approval number SCAU#0017). All 
methods are reported in accordance with ARRIVE guide-
lines (https://​arriv​eguid​elines.​org).

Animals, phenotypes and pedigree information
The experimental animals used in this study consisted of 
3941 American Duroc pigs (2440 males and 1501 females) 
that were born from 2013 to 2017 and were raised on two 
farms of Wen’s Foodstuffs Group Co., Ltd. (Guangdong, 
China). Among the 3941 pigs, 3770 were genotyped and 
phenotyped, and 171 pigs were phenotyped but non-
genotyped. All pigs sustained uniform feeding conditions 
and received fine fodder during the fattening period from 
30 to 100 kg live weight, as previously described [4]. The 
pigs were measured for carcass traits with the following 
methods: LMA, LMD and LMP were collected from the 
10th-rib to 11th-rib when the pigs weighted 100 ± 5 kg by 
an Aloka 500 V SSD B ultrasound (Corometrics Medical 
Systems, USA). This machine employs a diagnostic ultra-
sound system and transducers to acquire high-resolution 
images. The LMD and LMA were obtained as described 
by the Canadian Centre for Swine Improvement (http://​
www.​ccsi.​ca/​Repor​ts/​Repor​ts_​2007/​Update_​of_​weight_​
adjus​tment_​facto​rs_​for_​fat_​and_​lean_​depth.​pdf ) and 
our previous paper [4]. The LMP were calculated using 
the formula as following described [12]:

where BF is the backfat thickness and LMD is the loin 
muscle depth. Pedigree information was newly added 
in this study. The pedigree dataset contained genealogi-
cal information for all pigs and the completed pedigree 
of these individuals can be traced back to 4 generations, 
with 5679 pigs in the full pedigree. In this study, we 
reported the new information of the results of NGS data 
and GWAS with CNV compared with previous papers [4, 
14], and the details of explanation were described below.

SNP genotyping and Re‑sequencing
Among the 3941 phenotyped Duroc pigs, 3770 animals 
(131 pigs belonged to the first generation of the genea-
logical structure were both genotyped and phenotyped) 
were genotyped using a GeneSeek Porcine SNP50 Bead 
chip, which contained 50,703 SNPs. The genotype data-
set was converted from Sus scrofa genome 10.2 to build 
Sus scrofa genome 11.1. Quality control procedures were 

LMP(%) = 61.21920− 0.77665 ∗ BF + 0.15239 ∗ LMD

https://arriveguidelines.org
http://www.ccsi.ca/Reports/Reports_2007/Update_of_weight_adjustment_factors_for_fat_and_lean_depth.pdf
http://www.ccsi.ca/Reports/Reports_2007/Update_of_weight_adjustment_factors_for_fat_and_lean_depth.pdf
http://www.ccsi.ca/Reports/Reports_2007/Update_of_weight_adjustment_factors_for_fat_and_lean_depth.pdf
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performed using PLINK v1.07 software [37] with the 
following criteria: individual call rate > 95%, SNP call 
rate > 99%, minor allele frequency > 1% and P > 10–6 for 
the Hardy–Weinberg equilibrium test. Pigs that met the 
criteria above remained in the study. SNPs located on the 
sex chromosomes and unmapped chromosomes were 
removed.

To further elucidation of the CNVs in Duroc pigs, we 
performed a detailed characterization of CNVs by inves-
tigating the whole genome sequencing data. In brief, 
a total of 21 samples were randomly selected from the 
mentioned above 131 pigs of this population and were 
sequenced on an Illumina HiSeq2000 platform at Novo-
gene (Bejing, China) with 150  bp paired-end reads and 
an average depth of ~ 10 × . Raw Illumina reads were pro-
cessed to remove adapter and low-quality sequences. The 
paired-end reads were aligned to pig reference genome 
(Sus sacrofa 11.1) by BWA (version 0.7.15) [38] with 
default parameters. SAMTools Tools (version 1.3.1) [39] 
and Picard Tools v.2.7.1 (http://​broad​insti​tute.​github.​
io/​picard/) were used for data sorting and duplicates 
marked, respectively.

CNV and CNVR detection in 50 K SNP array
PennCNV software [40] was used to identify CNVs by 
incorporating log R Ratio (LRR) and B allele frequency 
(BAF), which were automatically computed by Genom-
eStudio software v2.0 from the signal intensity files of 
the SNP data. The population frequency of the B allele 
(PFB) file was constructed from the signal files using the 
compile_pbf.pl routine provided in the PennCNV soft-
ware. A wave adjustment procedure for genomic waves 
was also conducted using the -gcmodel option in Pen-
nCNV to eliminate the impact of genomic waves on the 
CNV calling procedure. Raw CNVs that met the crite-
ria of samples with LRR < 0.3, BAF drift < 0.01, GC wave 
factor of LRR < 0.05, consecutive SNPs ≥ 3, and CNV 
length ≥ 10 kb were retained for subsequent CNVR defi-
nition. Thus, we used bedtools software v2.26.0 [41] to 
merge CNVs with at least 1 bp overlap in all samples to 
define the CNVR. The CNVRuler software v1.3.3.2 [42] 
was used to define three types of CNVR: loss, gain and 
mixed (gains and losses occurring in the same region) as 
described in our previous study [14]. We used in-house 
script to genotype CNVRs in this Duroc pig population 
into “ + / + ”, “ ± ”, “-/-”, and CNVRs with the frequencies 
large than 0.5% were remained to conduct CNVR-based 
association analysis for LMA, LMD and LMP.

CNV and CNVR detection in NGS data
To generate a maximally sensitive set of copy number vari-
ants (CNVs) in the Duroc samples, we carried out CNV 
calling for each sample using two read depth (RD)-based 

tools, namely, CNVnator (version 0.4.1) [43], Control-
FREEC (version 11.6) [44], and two discordant read pair 
(RP)-based and split read (SR)-based tools, namely, DELLY 
(version 0.8.7) [45] and Smoove (version 0.2.6) [46]. For 
CNVnator, the suggested ratio of the mean reading depth 
signal to its standard deviation was ~ 4 to 5. Thus, we cal-
culated statistics for a wide ranges of bin sizes (100 to 1000 
bps, with 100  bp increments) for 21 samples (Additional 
file  10: Table  S10) using the -eval option in the CNVna-
tor, and the final bin size was then selected for each sample 
within 400 ~ 800 bps. Additionally, to select the calls with 
the highest confidence, calls with a q0 ≥ 0.5 were removed, 
q0 refers to the fraction of reads with a mapping quality of 
zero in the called CNV. For Control-FREEC, a breakpoint 
threshold was set to 0.6 to increase sensitivity and obtain 
more predicted CNVs, a coefficient of variation of 0.1 was 
used in the analysis (the suggested threshold was 0.05 to 0.1 
[47]). For the detection of CNV (deletions or duplications) 
using the RP and SR based methods, DELLY and Lumpy-
based [48] tool Smoove were used with default parameters. 
For Smoove, Duphold (version 0.2.3) [46] annotations were 
added for each call. Here, deletions with DHFFC < 0.7 and 
duplications with DHBFC > 1.3 were retained to further 
reduce redundancy and obtain high confidence CNVs, 
DHFFC refers to the fold-change for the variant depth 
relative to flanking regions and DHBFC describes the fold-
change for the variant depth relative to bins in the genome 
with similar GC-content. Deletions and duplications iden-
tified by the four CNV callers were merged with ‘mergeS-
Vcallers’ (https://​github.​com/​zeeev/​merge​SVcal​lers), as 
described in previous study [17].

Validation of CNVRs detected in 50 K SNP array
Among the 21 re-sequenced pigs, 20 samples were also 
genotyped by 50  K SNP array and one sample was not. 
Thus, this one sample was not used in the validation 
step. In order to determine an overall validation rate for 
the CNV detection accuracy of chip data, we extracted 
the CNVs detected in PennCNV for the same 20 re-
sequenced (the average sequence coverage per sample 
was 12.1 ×) and compared them with the results of four 
whole genome sequencing (WGS)-based callers, success-
ful validation was determined by at least one call in the 
WGS-based callers overlaps with the CNVs detected in 
PennCNVs (at least 1 bp overlap between them). Besides, 
six CNVRs identified in 50 K SNP array were randomly 
selected to conduct real-time quantitative polymerase 
chain reaction (qPCR) to validate the detection accuracy 
by PennCNV and the qPCR reaction was performed as 
described in our previous paper [14]. The qPCR primers 
and probes sequence information for specific regions of 
CNVRs within the genes were listed in Additional file 11: 
Table S11. GCG​ gene was selected as the reference locus 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/zeeev/mergeSVcallers
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because of its highly conserved among pigs and exists as 
a single copy in the reference genome.

CNVR‑based association analysis
A linear mixed model model was employed to conduct 
a CNVR-based association analysis for LMA, LMD and 
LMP using GEMMA software [49]. Genomic relationship 
matrix (GRM) based on SNP dataset was generated using 
GEMMA software. The statistical linear mixed model for 
GWAS is described as follows:

where y is an n × 1 vector of phenotypes; W is a 
matrix of covariate (i.e., farms, sex and age and a col-
umn of 1 s); α is a vector of corresponding coefficients 
that includes the intercept; X is the vector of CNVR 
marker genotypes; β represents the corresponding 
effect of the CNVR; u refers to an n × 1 vector of ran-
dom effects, with u ~ MVNn(0, λ τ−1  K), and ε is the 
vector of random residuals, with ε ~ MVNn(0, τ−1In). 
τ−1 is the variance of the residual errors; K is GRM and 
λ represents the ratio between the two variance com-
ponents; and I is the identity matrix, and n refers to the 
number of pigs. Bonferroni correction was applied to 
determine the genome-wide significance thresholds, 
which were defined as 0.05/N, where N is the number 
of filtered CNVRs for the American Duroc pigs.

Weighted single‑step genome‑wide association study
The ssGBLUP framework proposed by Wang et  al. [6] 
has been used to perform wssGWASs. A wssGWAS 
makes full use of the genealogical information and phe-
notypes of genotyped and non-genotyped animals in 
one step. Variance component estimation of each trait 
was estimated using the AI-REML module in BLUPF90 
software prior to conducting the wssGWAS. BLUPF90 
family software [50] was used to conduct the wss-
GWAS using a mixed model for single-trait analysis as 
described:

where Y  is the vector of phenotypic values; b is the 
vector of fixed effects, including birth year (5 levels), 
sex (2 levels), and farms (2 levels); a is the vector of 
additive genetic effects; W is the incidence matrix of 
fixed effects for relating phenotypes; Z refers to the 
incidence matrix of random effects, and e is the vector 
of residuals. a and e were assumed to be

y = Wα + Xβ+ u+ ε

Y = W b+ Za+ e

a ∼ N 0,Hσ 2
a , e ∼ N (0, Iσ 2

e )

where σ 2
a  and σ 2

e  are additive genetic variance and 
residual variance, respectively. H is a blend of matri-
ces that combined the pedigree and the genomic rela-
tionship matrix and I denotes the identity matrix. The 
inverse of matrix H is as follows:

where A−1
22  is the inverse matrix of the numerator 

relationship matrix for genotyped animals and A−1 is 
the inverse of the relationship matrix based on pedi-
gree. G−1 is the inverse matrix of the genomic rela-
tionship matrix. The matrix G was constructed as 
previously described [51]:

where M is an incidence matrix of the SNP geno-
type (aa = 0, Aa = 1 and AA = 2), D refers to a diagonal 
matrix of weights for SNP variance, m is the number of 
SNPs and pi is the minor allele frequency of the ith SNP.

The variance components estimated by AI-REML 
were used in the BLUPF90 module to predict GEBVs. 
The postGSf90 module was used to perform the wss-
GWAS. Marker effects and weights for constructing G 
are calculated in an iterative way as described by Wang 
et al., [6, 52]. Denote t as an iteration number and i as 
the ith SNP. The algorithm proceeds as follows:

1.	 Initialization, set t = 1, D(t) = I , G(t) = �MD(t)M
′ 

and � =
1∑m

i=12pi(1−pi)
;

2.	 Estimation of GEBV for all animals using ssGBLUP 
approach;

3.	 Computation of SNP effects as û(t) = �D(t)M
′

G−1
(t) âg , 

where û(t) is a vector of SNP effects estimation and âg 
is the GEBV of animals that were genotyped;

4.	 Calculation of SNP weights for the next iteration by 
di(t=1) = û2i(t)2pi(1− pi) , where i is the ith SNP.

5.	 Normalization the SNP weights to keep the total 
genetic variance constant as D(t+1) =

tr(D(t))

tr(D(t+1))
D(t+1);

6.	 G(t+1) =
MD(t+1)M

′

∑m
i=12pi(1−pi)

;

7.	 Setting t = t + 1 and loop to step 2.

The procedure was run for three iterations as used 
in Wang et  al., [6], which reached a high accuracy of 
GEBVs. SNP effects obtained from the third iteration 
were used for calculating proportions of genetic vari-
ances explained by 0.5  Mb windows according to the 
linkage disequilibrium decay of this population [53]. 
The percentage of additive genetic variance explained 
by each window were calculated via

H−1
= A

−1
+

[
0 0

0 G
−1

− A
−1
22

]

G =
MDM

′

∑m
i=12pi(1− pi)
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where ai was the genetic value of the i-th region con-
sisting of x = 0.5 Mb, σ2a was the total genetic variance 
and zj was a vector genotype of the jth SNP for all ani-
mals; gj is SNP effect of the jth SNP within the ith win-
dow. In this study, windows that explained > 1% of the 
additive genetic variance were highlighted as significant 
genomic regions associated with the analyzed traits.

Identification of candidate genes and functional 
enrichment analysis
Based on the length of the genome covered by sig-
nificant CNVRs and 0.5  Mb windows (windows 
that explained > 1% of the additive genetic variance) 
associated with LMA, LMD and LMP, the genes 
within these regions were searched on the Ensembl 
genome database version 99 of the Sus scrofa genome 
(Sscrofa11.1, http://​jan20​20.​archi​ve.​ensem​bl.​org) using 
the “biomaRt” package in R. The Kyoto Encyclope-
dia of Genes and Genomes (KEGG) and Gene Ontol-
ogy (GO) enrichment analyses were conducted using 
KOBAS 3.0 [54]. Fisher’s exact test was used to assess 
the significance of the enriched terms with the criterion 
of P < 0.05 to explore the genes involved in pathways 
and biological processes. Furthermore, the GeneCards 
(http://​www.​genec​ards.​org/) and NCBI (https://​www.​
ncbi.​nlm.​nih.​gov/) databases were used to query gene 
functions and determine promising candidates.
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