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Simultaneous testing of rule- 
and model-based approaches for runs 
of homozygosity detection opens up a window 
into genomic footprints of selection in pigs
Jan Berghöfer1,2, Nadia Khaveh1,3, Stefan Mundlos4,5,6 and Julia Metzger1,3* 

Abstract 

Background: Past selection events left footprints in the genome of domestic animals, which can be traced back 
by stretches of homozygous genotypes, designated as runs of homozygosity (ROHs). The analysis of common ROH 
regions within groups or populations displaying potential signatures of selection requires high-quality SNP data 
as well as carefully adjusted ROH-defining parameters. In this study, we used a simultaneous testing of rule- and 
model-based approaches to perform strategic ROH calling in genomic data from different pig populations to detect 
genomic regions under selection for specific phenotypes.

Results: Our ROH analysis using a rule-based approach offered by PLINK, as well as a model-based approach run 
by RZooRoH demonstrated a high efficiency of both methods. It underlined the importance of providing a high-
quality SNP set as input as well as adjusting parameters based on dataset and population for ROH calling. Particularly, 
ROHs ≤ 20 kb were called in a high frequency by both tools, but to some extent covered different gene sets in sub-
sequent analysis of ROH regions common for investigated pig groups. Phenotype associated ROH analysis resulted in 
regions under potential selection characterizing heritage pig breeds, known to harbour a long-established breeding 
history. In particular, the selection focus on fitness-related traits was underlined by various ROHs harbouring disease 
resistance or tolerance-associated genes. Moreover, we identified potential selection signatures associated with ear 
morphology, which confirmed known candidate genes as well as uncovered a missense mutation in the ABCA6 gene 
potentially supporting ear cartilage formation.

Conclusions: The results of this study highlight the strengths and unique features of rule- and model-based 
approaches as well as demonstrate their potential for ROH analysis in animal populations. We provide a workflow 
for ROH detection, evaluating the major steps from filtering for high-quality SNP sets to intersecting ROH regions. 
Formula-based estimations defining ROHs for rule-based method show its limits, particularly for efficient detection of 
smaller ROHs. Moreover, we emphasize the role of ROH detection for the identification of potential footprints of selec-
tion in pigs, displaying their breed-specific characteristics or favourable phenotypes.
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Background
For centuries, traits under selection have been stud-
ied based on their phenotypic expression. Nowa-
days, the advent of molecular genetics and sequencing 
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technologies allows examining the genomic background 
of any selected trait [1]. Studying runs of homozygosity 
(ROHs) has become the state-of-the-art method to detect 
signatures of selection and estimate inbreeding in domes-
tic animal populations [2, 3]. ROHs are tracts of consecu-
tive, homozygous genotypes, which are composed of two 
identical haplotypes inherited from a common ancestor 
[4, 5]. Longer ROHs likely result from recent inbreed-
ing, whereas shorter ROHs indicate past inbreeding 
events, i.e., distant consanguinity or population founder 
effects [6, 7]. ROHs are non-randomly distributed across 
the genome and accumulate in highly inbred genomic 
regions known as ROH regions (ROHRs) [8, 9]. ROHRs 
represent shared regions of consecutive homozygous 
genotypes within or across populations and thus likely 
represent signatures of selection pressure leaving behind 
a local reduction in haplotype diversity, stretches of 
homozygous loci as well as reduced recombination rates 
[8–11]. The analysis of ROHRs particularly confers the 
advantage of identifying genomic regions under poten-
tial selection for favourable or unfavourable traits and 
involved genes [7, 8, 12].

Common approaches call ROHs based on single nucle-
otide polymorphisms (SNPs) detected by using SNP 
microarrays or whole genome sequencing (WGS) data 
[2, 13]. Microarrays have been used frequently for inves-
tigating homozygosity, although having limitations with 
regard to the detection of rare variants or the accurate 
identification of ROHs shorter than 1  Mb [4, 13]. With 
the continuously dropping costs for sequencing and 
availability of comprehensive genome assemblies, WGS 
has become the most advanced variant calling technol-
ogy [2, 14]. As every accessible base can be called, WGS 
allows the detection of a comparatively high number of 
SNPs and particularly facilitates accurate detection of 
shorter ROHs [13]. Several factors constrain the quality 
of the ROH calling process, e.g., copy number variants 
(CNVs) or coverage gaps may introduce biases in the 
ROH analysis [15]. ROHs are more prevalent in genomic 
regions with a low recombination rate and high linkage 
disequilibrium (LD), particularly on the X chromosome 
or near centromeres [8, 16]. Subsequently, discrimination 
of homozygous segments into those caused by selection 
or induced by LD effects becomes increasingly difficult 
the smaller the segments are [17]. Furthermore, small 
inversions that prevent recombination or population 
demographic processes, e.g., bottlenecks or genetic drift, 
can also result in the formation of ROHs [4].

The detection of ROHs can be done using either a 
rule-based approach, screening for contiguous runs of 
homozygous genotypes in defined windows [18], or a 
model-based approach running a hidden Markov model 
(HMM) [19]. To avoid biases in further downstream 

analysis, ROH detection requires a closer look into the 
planned study-sample set and genotyping method to 
run the most suitable approach and apply the best fit-
ting parameters [18, 20]. In particular, for the sliding-
window approach applied by PLINK, the most commonly 
used rule-based tool to analyse inbreeding and genomic 
regions under selection in livestock [2, 21], a systematic 
customizing of ROH calling parameters is essential [13, 
22]. Divers options and diverging configurations offered 
by PLINK for ROH prediction were supposed to make 
it difficult to compare the results of different studies 
[23, 24]. To address this issue, different suggestions have 
been made on how to apply ROH analysis parameters 
in domestic animal populations using the rule-based 
approach offered by PLINK [6, 7, 22, 25]. In contrast, 
model-based approaches rely on likelihood-ratio tests 
accounting for marker allele frequencies and genotyp-
ing errors in predefined window sizes [20]. Genomes are 
modelled as a mosaic of HBD and non-HBD segments 
and assigned to a single class as applied by BCFtools/RoH 
[26] or, to better fit individual genetic data and thus for 
a more accurate estimation, allocated to multiple HBD 
classes as applied by RZooRoH [19, 20, 27]. These tools 
have been particularly used for estimations of inbreeding 
levels in livestock so far [27].

Recent studies in pigs identified selection signatures 
and candidate genes related to economically important 
traits such as growth, reproduction, and meat quality 
[14, 28–31] or adaptability, disease resistance and immu-
nity [14, 29, 30] in Chinese and Western breeds. ROHRs 
have been used to analyse selection signatures and genes 
linked to the phenotypic characteristics of Diannan 
small-ear pigs [32], Laiwu pigs [17], Mangalitza pigs [33], 
micro pigs [34], Piétrain pigs [35], Sicilian pigs [36], Xidu 
black pig [37] and different European autochthonous and 
commercial pigs [8, 9, 34, 35, 38–40]. Previous studies 
in pigs were focussed mainly on longer ROHs and opti-
mized the ROH calling parameters accordingly. However, 
it was proposed that without further adjustment of the 
parameters, ROH calling algorithms might miss shorter 
ROHs in less inbred animals and thus confound the fur-
ther downstream analysis [6, 13].

In this study, we provide a simultaneous testing of rule- 
and model-based approaches as well as a downstream 
systematic parameter testing for the accurate analysis 
and detection of ROHs in pigs using high confidence 
SNPs predicted from WGS data. We highlight the impact 
of ROH detection methods, individual parameters, their 
dependencies from each other, and the consequences of 
shifting individual or multiple factors. Hereby, we suggest 
a workflow for the detection of ROHRs and emphasize 
the limitations of ROH detection methods, particularly 
with regard to the detection of different size classes 
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of ROHs. The aim of this study is to provide a strate-
gic ROHRs detection in order to identify signatures of 
potential selection for breed-characteristics and favour-
able genotype–phenotype effects in pigs.

Results
Whole genome sequencing
A step-by-step workflow was developed for processing 
WGS-fastq files up to final ROHR analysis (Fig. 1).

First of all, mapping of whole-genome sequencing data 
from 14 pigs from different populations, and six different 
crossbreds was performed with stringent quality param-
eters. This resulted in a coverage of 15.67X-46.32X, an 
error rate of 0.64% to 1.49% (mismatches/bases mapped) 
and an average mapping quality score of 34.9–36.7. 
Variant calling along with all 20 different pigs revealed 
37,566,351 SNPs and 8,564,529 insertions or deletions 
(INDELs).

Identification of high‑quality SNPs
For the identification of a high-quality SNP set, variant 
quality parameters were tested for their efficiency based 
on the underlying dataset. Thus, the number of called 
SNPs for a minimum and maximum read depth (minDP/
maxDP) with a fixed minimum quality threshold (minQ) 
of 30 were evaluated in a first step. Higher values of 
minDP resulted in a significantly lower number of SNPs 
(Fig. 2a);

For example, minDP 2 resulted 32,933,744 SNPs, 
whereas minDP 16 provided 6,020,022 SNPs (Additional 
file  1: Table  S1). Accordingly, we observed the highest 
number of SNPs (33,184,918) when minDP 2 and maxDP 
95 were applied. Upscaling minDP up to 6 only slightly 
decreased the number of SNPs and resulted in the same 
size range as minDP 2. In general, we found that scal-
ing up maxDP increased the total number of SNPs. This 
increase was particularly important up to maxDP 40 

Fig. 1 Workflow of ROH detection pipeline. Fastq files were used as input, variants were called, quality controlled and underwent ROH detection 
with the rule-based ROH detection approach implemented in PLINK and the model-based ROH detection approach run by RZooRoH. Finally, ROHRs 
were identified and investigated for potential genes of interest using functional enrichment analysis. A ROHRs-merging step was run as optional for 
particular applications
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(especially for minDP > 10) and moderate up to maxDP 
95.

In a next step, the parameter min-meanDP was tested 
using a large SNP set obtained from minDP 6, maxDP 
95, minQ 30 implementation. We observed a decrease in 
the total number of SNPs independent of the additionally 
applied parameter max-missing-count (Fig.  2b). A min-
meanDP of 10–14 resulted in an only slightly reduced 
number of SNPs, but values above 16 showed a signifi-
cant reduction of filtered SNPs. We obtained the highest 
number of SNPs for a min-meanDP 10 (32,613,313 SNPs 
based on max-missing-count 18) and the lowest number 
of SNPs for a min-meanDP 30. However, compared to 
the highest number of SNPs filtered with min-meanDP 
10, we obtained an even higher number of SNPs filtering 
only based on minDP and maxDP using the same param-
eter settings (32,900,536 SNPs based on max-missing-
count 18). Thus, the min-meanDP showed its dependence 
on the average read depth per SNP, which was > 14X in 
the majority of the investigated samples. Accordingly, a 
significant proportion of SNPs considered as high-qual-
ity SNPs in this dataset was removed by filtering when 
min-meanDP > 10 was applied. Next, max-missing-count 
was set as an additional parameter: The number of SNPs 
increased by 0.2% to 17.9% when max-missing-count 
10 to 18 was applied relative to the results with max-
missing-count 8, dependent on the tested combinations 

of min-meanDP (Additional file  2: Table  S2). For min-
meanDP 10, a max-missing-count from eight to 18 
increased the number of filtered SNPs by 2.4% from 
31,820,357 to 32,613,313 SNPs. However, the increase in 
the number of SNPs reached saturation at max-missing-
count 15, which implied 75% of missing genotypes at 
maximum allowed in all 20 individuals. Based on these 
results, we identified minDP 6, maxDP 95, without min-
meanDP restrictions, and max-missing-count 15 as opti-
mal filtering conditions for our dataset.

Configuration tests for rule‑based approach
Based on the filtered set of high-quality SNPs, we defined 
custom parameter settings for ROH detection using 
PLINK according to suggested formula and iterated indi-
vidual parameters. In total, this custom set resulted in the 
detection of a higher number of ROHs for different scan-
ning window sizes compared to PLINKs’ default settings. 
For both custom and default parameters, the number of 
detected ROHs decreased with an increasing scanning 
window size (homozyg-window-snp, Fig. 3).

From homozyg-window-snp 20 to 150, the number of 
ROHs dropped by 13% (relative to the number of ROH 
homozyg-window-snp 20) using the custom param-
eters and by 32% using default parameters (Additional 
file  3: Table  S3). In addition, the average length of the 
detected ROHs decreased with a higher number of SNPs 

Fig. 2 Evaluation of SNP filtering parameters. a The number of SNPs after filtering with the minimum read depth (minDP, rainbow colors), the 
maximum read depth (maxDP) and a minimum quality threshold (minQ) of 30 are displayed. An increase of the number of filtered SNPs can be 
observed with an increasing maxDP and a decrease with a higher minDP. b The number of SNPs resulting from strategic testing of minimum mean 
read depth (min-meanDP) and maximum number of allowed missing genotypes (max-missing-count) testing. An increase of the number of filtered 
SNPs is displayed relative to an increasing number of allowed missing genotypes (max-missing-count) and a lower minimum mean read depth 
(min-meanDP)
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per scanning window. When custom parameters were 
applied, the average ROH length decreased from 37  kb 
(homozyg-window-snp 20) to 33  kb (homozyg-window-
snp 150). With default settings, we found in total fewer 
ROHs that had a significantly higher average ROH 
length. The average ROH length decreased significantly 
with an increasing window size from 744 kb for homozyg-
window-snp 20 to 498  kb for homozyg-window-snp 150. 
In general, the dependent parameter homozyg-window-
threshold decreased with an increasing scanning window 
size as defined in the custom settings. However, a lower 

threshold resulted in a decreased average ROH length 
even with a larger scanning window size, as observed for 
a homozyg-window-snp 120 and a threshold of 0.03.

Next, homozyg-snp was considered: The total number 
of ROHs decreased with an increasing minimum SNP 
count from 429,101 ROHs (homozyg-snp 20) to 227,138 
ROHs (homozyg-snp 150) for homozyg-gap 50 using our 
custom parameters (Fig. 4a).

The same trend was observed for default parameter 
settings. However, with default parameters we found a 
significantly higher number of ROHs for homozyg-snp 

Fig. 3 Configuration test for PLINK’s ROH detection parameters defining the scanning window. The number of detected ROHs for different 
scanning window sizes (homozyg-window-snp) and scanning window-thresholds (homozyg-window-threshold) are displayed. A higher number 
of ROHs was detected when a lower homozyg-window-snp value was applied. In general, the number of ROHs was markedly higher in custom 
parameter settings (red) compared to default parameter settings (blue)
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20–80 compared to the more stringent custom param-
eters. For example, we detected 753,540 ROHs for 
homozyg-snp 20 (homozyg-gap 50) using default settings. 
However, with increasing ROH length the number of 
ROHs converged with the ones found based on custom 
parameters. Furthermore, for both custom and default 
parameters the average ROH length increased with a 
larger homozyg-snp. When custom parameters were 
applied, the average ROH length increased from 24.37 kb 
for homozyg-snp 20 to 37.44  kb for homozyg-snp 150 
(homozyg-gap 50, Additional file  4: Table  S4). Accord-
ingly, with the default parameters, the average ROH 
length increased from 18.21  kb for homozyg-snp 20 to 
40.67 kb for homozyg-snp 150 (homozyg-gap 50). In addi-
tion to the minimum SNP count, we evaluated the role of 
homozyg-gap. With an increasing homozyg-gap from 50 
to 1,000, we observed minimal deviations in length and 
number of detected ROHs. From homozyg-gap 250 to 
1000, the number of ROHs remained constant, however, 
only for homozyg-gap 50 to 250 the number of ROHs 
changed by less than 0.01%.

In contrast, homozyg-density made a significant impact 
on the number of ROHs. Based on custom parameters, 
the number of ROHs increased significantly from the 
minimum density of 0.04 kb/SNP, reached a maximum of 
detected ROHs at 0.08 kb/SNP and dropped down when 

higher homozyg-density values were applied (Fig. 4b). We 
observed a similar trend for default settings that imple-
mented a much smaller scanning window size (default: 
50 SNPs vs. custom: 120 SNPs). Here, the number of 
ROHs increased from a minimum at 0.04 kb/SNP up to 
a maximum at 0.12 kb/SNP even higher than the maxi-
mum number of ROHs detected with custom param-
eters. With homozyg-density > 0.12  kb/SNP, the number 
of ROHs dropped significantly but still remained higher 
than the number of ROHs detected with custom param-
eters. Notably, in this test setting we detected much 
more ROHs using the default parameters (homozyg-win-
dow-snp 50, homozyg-window-threshold 0.05: 294,801 
ROHs) compared to the results with custom parameters 
(homozyg-window-snp 120, homozyg-window-thresh-
old 0.04: 275,230 ROHs). In contrast, the average ROH 
length increased with higher homozyg-density values for 
both custom and default parameter settings from < 20 kb/
SNP with homozyg-density 0.04 to an average length 
of > 60  kb/SNP with homozyg-density 0.2 (homozyg-gap 
50, Additional file  5: table  S5). Based on these results, 
we identified two custom PLINK parameter sets sub-
sequently called “PLINK_A” (homozyg-snp 20; specifi-
cally designed to include shorter ROHs) and “PLINK_B” 
(homozyg-snp 120; based on calculated values for this 
investigated dataset) optimized for the detection of 

Fig. 4 Test of PLINK’s ROH detection parameters defining a ROH segment. a The number of detected ROHs for different minimum SNP counts 
(homozyg-snp) and maximum gap sizes between two SNPs (homozyg-gap, on top of each plot) is displayed. A higher number of ROHs with a 
lower ROH length is detected by using the less stringent default parameter settings (blue). b Test settings for ROH detection based on SNP density. 
The number of detected ROHs for a maximum inverse density (homozyg-density) and the maximum gap size between two ROHs (homozyg-gap, 
on top of each plot) are given. The highest number of ROHs was identified for homozyg-density of 0.08 kb/SNP based on custom parameter 
settings (red) and homozyg-density of 0,12 kb/SNP for default parameter settings (blue)
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ROHs in our dataset and ran further tests on homozyg-
window-het and homozyg-window-missing. The maxi-
mum number of ROHs and the smallest average ROH 
length were detected provided that no heterozygous 
SNPs were allowed within a window (homozyg-window-
het 0, Fig. 5).

Compared to this maximum, the total number of 
ROHs decreased when allowing one heterozygous SNP 
per window, whereas the average ROH length increased 
(homozyg-window-het 1). For PLINK_B, the number of 
ROHs detected for each parameter setting was closer 

to each another compared to PLINK_A (Additional 
file  5: Table  S5). Nevertheless, for each tested value 
of PLINK_B, the average ROH length differed much 
stronger than for PLINK_A. However, with an increas-
ing homozyg-window-missing and homozyg-window-het, 
the differences in the total number of ROHs became 
more pronounced. For both PLINK_A and PLINK_B, we 
observed the maximum of detected ROHs when allowing 
three missing calls per window (homozyg-window-miss-
ing 3). As the number of tolerated missing calls increased, 
the total number of ROHs decreased slightly, but the 

Fig. 5 Evaluation of the consequences resulting from the number of heterozygous and missing SNPs in PLINK. The number of ROHs and average 
ROH length (in kb) dependent of the maximum number of heterozygous SNPs (homozyg-window-het) and missing SNPs allowed per window 
(homozyg-window-missing, on top of each plot) for parameter sets PLINK_A (homozyg-SNP 20, green) and PLINK_B (homozyg-SNP 120, orange) is 
displayed
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average ROH length remained unchanged. Subsequently, 
based on the obtained results, we finally defined two now 
optimized PLINK_A and PLINK_B for efficient ROH 
detection in our investigated dataset of 20 pigs (Table 1).

ROH detection and distribution among individual pigs
In the 20 different pig breeds/populations, we found for 
each pig different numbers of ROHs ranging from 29,743 
ROHs in the Iberian pig to 108,549 ROHs in the York-
shire pig (PLINK_A), from 525 ROHs in the Yorkshire pig 
to 22,079 ROHs in the Wuzhishan Minipig (PLINK_B) 
and from 17,800 in the Duroc pig up to 55,669 ROHs in 
the Meishan pig (RZooRoH).

To learn more about the characteristics of detected 
ROH within the individual pigs, the length distribution of 
ROHs was examined by assigning all ROHs to five length 
categories “0–20  kb”, “20–50  kb”, “50–250  kb”,“250–
500  kb” and “ > 500  kb” (Additional file  6: Table  S6) 
Assuming an average generation time of 2  years for all 
pigs [41, 42], the estimated ages of these ROH length 
categories roughly correspond to > 5000, 5000–2000, 
2000–400, 400–200, 200–100, and > 100  years, respec-
tively. In total, PLINK_A provided the highest sum of all 
ROH of all samples of 1,001,426 compared to 266,884 
ROHs (PLINK_B) and 563,312 ROHs (RZooRoH). These 
ROHs from PLINK_A (average size 14.78 kb) were much 
shorter than those detected using RZooRoH (44.37  kb) 
and PLINK_B (34.45  kb). This was particularly vis-
ible considering the distribution among the determined 
length categories. For both PLINK parameter sets and 
RZooRoH, the highest number of ROHs was detected 
within the first three length categories “0–20  kb”, “20–
50 kb” and “250–500 kb”.

Comparison of ROH calling approaches
First of all, the comparison of PLINK parameter sets A 
and B revealed the majority of ROHs with 0–20 kb length 
called by PLINK_A to be unique to this dataset and thus 
not overlapping with ROHs detected using PLINK_B 
(Fig. 6).

This difference was particularly prominent for the 
Yorkshire pig, Yucatan miniature pig, and Goettingen 
Minipig. Considering PLINK_B, only a small propor-
tion of ROHs with a size of 0–250  kb was unique to 
the detected ROHs of this parameter set, whereas the 
majority of ROHs overlapped with those detected using 
PLINK_A. In the other size classes “250–500  kb”, and 
“ > 500 kb”, far less ROHs were found and but more ROHs 
were detected using PLINK_A. Based on PLINK_A, 
almost all ROHs > 250 kb overlapped with ROH detected 
using PLINK_B. Moreover, for PLINK_B, the propor-
tion of non-overlapping ROHs was far higher for ROHs 
250–500  kb. Percentage of overlap per animal ranged 
from 1.31% for Yorkshire pigs to 44.06% for Kune Kune 
in PLINK_A and from 87.59% for Yucatan Minipig to 
96.43% in Mini-Lewe in PLINK_B (Additional file  7: 
Table  S7). In total, 87.59–96.43% of the ROHs detected 
using PLINK_B could also be detected using PLINK_A. 
Interestingly, we found the lowest number of ROHs per 
individual in PLINK_B for the Yorkshire pig with 525 
ROHs, all with a size of 0–50 kb and of which 92% over-
lap with ROHs in PLINK_A. In contrast, in PLINK_A, we 
found the highest number of ROHs and thus the highest 
homozygosity per individual for the Yorkshire pig with 
108,549 ROHs in the size range 0–250 kb, of which only 
0.4% overlap with ROHs detected with PLINK_B.

Furthermore, ROHs detected with PLINK parameter 
sets a and b were compared each with the results from 
RZooRoH ROH calling (Fig. 7).

A major overlap of ROHs obtained from RZooRoH 
was found in the size category of 0–20  kb with the 
ROHs from PLINK_A, whereas only a small propor-
tion overlapped in this category with ROHs detected 
using PLINK_B. Within the range of > 20  kb unique 
ROHs neither called by using PLINK_A or PLINK_B 
in the output file from RZooRoH were particularly fre-
quent. In total, the mean overlap of ROHs detected by 
RZooRoH with ROHs detected by PLINK was quite 
frequent (65.6%, PLINK_A), or low (24.7%, PLINK_B). 
Comparing RZooRoH ROH calling data with those 
identified using PLINK_A and PLINK_B across all 
size categories, the proportion of overlaps per ani-
mal ranged from 0.87% (Yorkshire) to 49.00% (Mini-
pig × Mangalitza, PLINK_A) and 0.51% (Yorkshire) to 
27.49% (Landrace × Yorkshire × Pietrain, PLINK_B). 
The other way around, comparing ROH calling results 
from PLINK’s analysis with those detected using 

Table 1 Overview of parameter settings for SNP filtering and 
ROH detection with PLINK Custom PLINK parameter settings 
PLINK_A and PLINK_B adjusted to our investigated dataset for 
efficient subsequent ROH calling are displayed

Tool Parameters PLINK_A PLINK_B

Vcftools minDP 6 6

maxDP 95 95

max-missing-count 15 15

PLINK homozyg-snp 20 120

homozyg-kb 1.6 9.93

homozyg-density 0.08 0.08

homozyg-gap 1000 1000

homozyg-window-snp 20 120

homozyg-window-threshold 0.25 0.04

homozyg-window-missing 5 5

homozyg-window-het 1 1
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RZooRoH revealed a mean overlap across all ani-
mals of 58.1% (PLINK_A) and 99.9% (PLINK_B). With 
regard to the individual pigs, PLINK ROH calling data 
revealed an intersection with ROHs detected by RZo-
oRoH from 50.13% (Minipig × Mangalitza) to 95.17% 
(Wuzhishan minipig, PLINK_A) as well as from 98.62% 
(Minipig × Mangalitza) to 99.95% (Wuzhishan mini-
pig, PLINK_B). Thus, RZooRoH identified the major-
ity of ROHs detected by PLINK and above that, called 
further unique ROHs not identified by the rule-based 
approaches. The higher number of additional ROHs 

was particularly frequent in the larger ROH-size cat-
egories, which resulted in a more balanced distribution 
of called ROHs with regard to ROH length across all 
chromosomes and individuals (Fig. 8).

In contrast, particularly the dataset of ROHs iden-
tified using PLINK_B displayed more frequently 
wide areas in the genome not covered by ROHs. 
However, all three datasets of called ROHs either 
based on RZooRoH or PLINK showed a negative 
correlation between ROH length and the mean 
recombination rate resulting in a higher frequency 

Fig. 6 Size distribution and overlap of ROHs detected using PLINK_A and PLINK_B. For each parameter set (PLINK_A, PLINK_B), the number of 
ROHs per size category are displayed for each investigated breed (x-axis: ASxMA: Angeln Saddleback × Mangalitza, BP: Bentheim Black Pied, DU: 
Duroc, GMN: Goettingen Minipig, GO: Gloucester Old Spot, HR: Husum Red Pied, HRxAS: Husum Red Pied × Angeln Saddleback, IB: Iberian, KK: 
Kune, LR × YS × PI: Landrace × Yorkshire × Pietrain, MA: Mangalitza, MH: Meishan, ML: Mini-Lewe, MN: Minipig, MN × MG: Minipig × Mangalitza, PI: 
Pietrain, TP: Turopolje, WMN: Wuzhishan minipig, YMN: Yucatan miniature pig, YS: Yorkshire). All ROHs were assigned to size categories of “0–20 kb”, 
20–50 kb”,”50–250 kb”,”250–500 kb”,”500–1000 kb”,” > 1000 kb” (indicated on top) and the proportion of ROHs overlapping with the other tool or 
parameter set was highlighted in orange and designated as “yes”

Fig. 7 Size distribution and overlap of ROHs detected using RZooRoH and PLINK. For each tool and parameter set (PLINK_A, PLINK_B), the number 
of ROHs per size category are displayed for each investigated breed (x-axis: AS × MA: Angeln Saddleback × Mangalitza, BP: Bentheim Black Pied, DU: 
Duroc, GMN: Goettingen Minipig, GO: Gloucester Old Spot, HR: Husum Red Pied, HR × AS: Husum Red Pied × Angeln Saddleback, IB: Iberian, KK: 
Kune, LR × YS × PI: Landrace × Yorkshire × Pietrain, MA: Mangalitza, MH: Meishan, ML: Mini-Lewe, MN: Minipig, MN × MG: Minipig × Mangalitza, PI: 
Pietrain, TP: Turopolje, WMN: Wuzhishan minipig, YMN: Yucatan miniature pig, YS: Yorkshire). All ROHs were assigned to size categories of “0–20 kb”, 
“20–50 kb”, “50–250 kb”, “250–500 kb”, “500–1000 kb”, “ > 1000 kb” (indicated on top) and the proportion of ROHs overlapping with the other tool or 
parameter set was highlighted in orange and designated as “yes”

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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of longer ROHs in regions with a tendency of low 
recombination rates (Fig. 9).

Common ROHRs in heritage breeds
ROHRs detection of six pigs designated as heritage big 
breeds (Kune Kune, Duroc, Gloucester Old Spot, Ibe-
rian, Meishan, Yorkshire) revealed in total 22,396 shared 
ROHRs (PLINK_A) harbouring 3,583 genes, 15 ROHRs 
harbouring 10 genes (PLINK_B) and 15,924 ROHRs har-
bouring 4,341genes (RZooRoH, Table 2, Additional file 8: 
Table S8). In total, 1,861 of 3,583 genes detected in ROHRs 
using PLINK_A as well as all 10 genes identified in ROHRs 
using PLINK_B were also identified in ROHRs detected 
by RZooRoH. Merging of the ROHRs-datasets obtained 
by PLINK (PLINK_A, 2.09% genome coverage) and RZo-
oRoH (5.70% genome coverage) to test for the total number 
of calls, resulted in 28,654 ROHRs, covering 6.72% of the 
genome.

ROHRs obtained using PLINK_A revealed signifi-
cantly enriched terms for biological processes such as 
regulation of platelet activation (GO:0,010,543), homo-
philic cell adhesion via plasma membrane adhesion mol-
ecules (GO:0,007,156) and sensory perception of sound 
(GO:0,007,605, Additional file  9: Table  S9). For ROHRs 
from PLINK_B, no enrichment hits were found for pig 
genes in Panther database, wherase ROHRs detected 
using RZooRoH resulted in significantly enriched terms 
for biological processes such as locomotory behavior 
(GO:0,007,626), axon guidance (GO:0,007,411) and neuron 
projection guidance (GO:0,097,485). Moreover, gene set 
enrichment for 2,668 human orthologue genes out of 3,583 
pig genes (PLINK_A), 8 human orthologous of 10 pig genes 
(PLINK_B) and 3,328 human orthologous of 4,341 pig 
genes (RZooRoH) revealed several significantly enriched 
terms (Fig. 10).

Furthermore, for PLINK_A, 1,398 of the 3,583 genes 
intersected with gene sets associated with the terms 
“anxiety or stress” in NCBI database (Additional file  10: 
Table  S10). Further 816 genes intersected with the NCBI 
terms “immun* or “inflam*”, 17 genes with the “disease 
resistance” and 12 genes with “meat quality”. Moreo-
ver, three out of 10 genes overlapping with the ROHRs 
detected with PLINK_B, were found in “anxiety or stress”-
related gene set. Considering ROHRs obtained from RZo-
oRoH, 1,641 of 4,341 genes within ROHRs were found to 
overlap with gene sets associated with the terms “anxiety or 

stress”, 1,069 genes overlap with the NCBI terms “immun*” 
or “inflam*”, 20 genes with “disease resistance” and 20 genes 
with “meat quality”.

Selection signatures for favourable genotype–phenotype 
effects
To identify potential signatures under selection for dis-
ease resistance as a trait of importance in pig breeding, we 
investigated common ROHRs in pig breeds (Angeln Sad-
dleback × Mangalica, Minipig, Mini-Lewe, Goettingen 
Minipig, Meishan, Wuzhishan minipig) exclusively har-
bouring the disease resistance-associated genotype T/T 
(GBP5: g.127301202G > T) identified in GBP5 [43]. We 
aimed at testing the hypothesis [44], that this associated 
variant might play a role in disease resistance across breeds.

In total, 13,427 ROHRs harbouring 2,417 genes 
(PLINK_A), 279 ROHRs harbouring 78 genes (PLINK_B) 
and 11,774 ROHRs harbouring 2,969 genes (RZooRoH) 
were detected (Table  2, Additional file  11: Table  S11). In 
total, 1,236 of 2,417 genes intersected between the two 
ROHRs datasets obtained from PLINK_A and RZooRoH, 
all 78 genes overlapped between PLINK_B and RZooRoH, 
and 73 genes were identified both in ROHRs detected 
using PLINK_A and PLINK_B. However, for none of the 
ROHRs detected by rule- or by model-based approaches 
we could confirm an overlap with the region of the disease 
resistance-associated genotype itself (SCC4:127,301,202). 
In addition, further investigation of the total number of 
calls by merging the ROHRs-datasets obtained by PLINK 
(PLINK_A, 1.37% genome coverage) and RZooRoH (2.59% 
genome coverage), resulted in 20,128 ROHRs, covering 
3.28% of the genome.

Nevertheless, genes within detected ROHRs (PLINK_A) 
resulted in significantly enriched terms for biological 
processes such as vesicle-mediated transport in synapse 
(GO:0,099,003), synaptic vesicle cycle (GO:0,099,504) 
and regulation of GTPase activity (GO:0,043,087) (Addi-
tional file 9: Table S9). Furthermore, we found several sig-
nificantly enriched terms in gene set enrichment analysis 
for 1,791 human orthologue genes out of 2,417 pig genes 
(Fig. 11).

For PLINK_B, we did not find any significantly enrich-
ment hits using the Panther data. However, 59 human 
orthologous of 78 pig genes revealed genes significantly 
enriched in negative regulation of T cell differentiation 
in thymus (GO:0,033,085), regulation of immature T cell 

(See figure on next page.)
Fig. 8 Chromosomal and size-distribution of ROHs detected using PLINK and RZooRoH. Each row contains ROH segments obtained from a 
single individual (if applicable) put on top of the ROH segments of another individual. These rows are grouped for all 20 individuals based on their 
position chromosomes 1 (bottom of each panel) to 18 (top of each panel). ROHs are displayed in 5 length categories: 0–20 kb, 20–50 kb, 50–250 kb, 
250–500 kb and above 500 kb
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Fig. 8 (See legend on previous page.)
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proliferation in thymus (GO:0,033,084), and increased sus-
ceptibility to autoimmune diabetes. Furthermore, ROHRs 
obtained from RZooRoH revealed significantly enriched 
terms for biological processes such as cell-substrate adhe-
sion (GO:0,031,589), cell–cell junction organization 

(GO:0,045,216) and regulation of transporter activity 
(GO:0,032,409). In addition, several significantly enriched 
termin for 2,232 human orthologue genes were identified.

Furthermore, intersections of two gene sets from the 
NCBI database with genes in ROHRs revealed 507 out 

Fig. 9 Relationship between distribution of ROHs lengths and recombination rates for PLINK and RZooRoH. For each tool and parameter 
set (indicated by colour: PLINK_A (orange) and PLINK_B (green), RZooRoH (purple)), the ROH density is displayed as a function of the mean 
recombination rate (y-Axis) per size category (top)

Table 2 Number of ROH regions for each investigated potential selection event. For each phenotype, tool and parameter set, the 
number of ROHRs, the number of SNPs of all ROHRs and number of overlapping genes from the genome annotation are indicated. In 
addition, the total length of all ROHRs (in bp) and the coverage of the autosomal genome (in %) are provided

Phenotype Tool + Parameter set Number of ROHRs Number of SNPs Intersecting 
genes

ROHR length [bp] Genome 
coverage
[%]

Heritage breed PLINK_A 22,396 974,847 3,583 47,244,400 2.09

Heritage breed PLINK_B 15 1,235 10 71,087 0.00

Heritage breed RZooRoH 15,924 1,760,741 4,341 129,231,106 5.70

Lop ears PLINK_A 31,913 2,759,191 4,831 136,669,724 6.03

Lop ears PLINK_B 2,007 299,821 582 15,562,455 0.69

Lop ears RZooRoH 14,824 2,482,022 4,299 165,751,847 7.32

Prick ears PLINK_A 9,839 328,033 1,684 15,768,865 0.70

Prick ears PLINK_B 0 0 0 0 0.00

Prick ears RZooRoH 5,812 604,787 1,630 41,990,018 1.85

Disease resistance PLINK_A 13,427 621,064 2,417 31,092,255 1.37

Disease resistance PLINK_B 279 43,728 78 2,261,875 0.10

Disease resistance RZooRoH 11,774 883,853 2,969 58,704,190 2.59
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of 2,417 genes (PLINK_A) overlapping with the genes 
associated to the terms “immun*” or inflam*” and ten 
genes related to the term “disease resistance” (Additional 
file 10: Table S10). Moreover, 16 of 78 genes (PLINK_B) 
as well as 620 of 2,969 genes (RZooRoH) in ROHRs 
intersected with genes assigned to the terms “immun*” 
or “inflam*”, as well as further 14 genes (RZooRoH) with 
“disease resistance”.

In addition to that, we investigated regions under 
potential selection for the ear types considered as an 
important breed defining feature. To identify homozygo-
sity regions associated with lop ears as well as prick ears, 
filtering for ROHRs was performed using both PLINK 
parameter sets a and set b and RZooRoH. For prick ears, 
PLINK_A resulted in 9,839 shared ROHRs harbour-
ing 1,684 genes and RZooRoH resulted in 5,812 shared 
ROHRs harbouring 1,630 genes, of which 658 genes were 
intersecting between the two results (Table  2). Using 
PLINK_B, no shared ROHRs were detected for the prick 
ear phenotype.

For all individuals with lop ears, PLINK_A resulted in 
31,913 shared ROHRs harbouring 4,831 genes, PLINK_B 
in 2,007 ROHRs harbouring 582 genes, and RZooRoH 
in 14,824 ROHRs harbouring 4,299 genes. In total, 2,181 

of these genes overlapped between the datasets detected 
using PLINK_A and RZooRoH, whereas 540 genes inter-
sected between PLINK_A and PLINK_B.

Furthermore, merging of the total number of ROHR-
calls for prick ear detected by PLINK (PLINK_A, 0.7% 
genome coverage) and RZooRoH (1.85% genome cover-
age), resulted in a total of 12,102 ROHRs, covering 2.25% 
of the genome. For lop ears, 36,688 ROHRs covering 
10.42% of the genome were identified based on ROHRs-
datasets obtained from PLINK (PLINK_A, 6.03% genome 
coverage) as well as RZooRoH (7.32% genome coverage).

Enrichment analysis for lop ear-associated ROHRs 
based on PLINK_A, resulted in significantly enriched 
terms for biological processes including cell-substrate 
adhesion (GO:0,031,589), positive regulation of GTPase 
activity (GO:0,043,547), and regulation of GTPase activ-
ity (GO:0,043,087, Additional file  9: Table  S9). Further-
more, gene set enrichment for 3,365 human orthologue 
genes out of 4,831 pig genes revealed several significantly 
enriched terms (Fig. 12).

Similar enrichment of genes could be found for lop-ear 
associated ROHRs called using PLINK_B, as well as for 
424 human orthologous out of 582 pig genes in enrichR 
analysis. For RZooRoH we found significantly enriched 

Fig. 10 Functional enrichment analysis for genes overlapping with heritage-breed-associated ROHRs identified with PLINK and RZooRoH. 
Illustration of 10 highest enriched GO terms for enrichR databases “GO_Molecular_Function_2021”, “GO_Biological_Process_2021, “Human 
Phenotype Ontology”, “KEGG_2021_Human” and “MGI_Mammalian_Phenotype_Level_4_2021” sorted by p-value (x-axis), for all genes overlapping 
with ROHRs detected with either PLINK_A (a, 20 SNPs), PLINK_B (b, 120 SNPs) or RZooRoH (c), and shared by all individuals of heritage pig breeds
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terms for biological processes such as locomotory behav-
ior (GO:0,007,626), regulation of neuron projection 
development (GO:0,010,975) and modulation of chemi-
cal synaptic transmission (GO:0,050,804) as well as sig-
nificantly enriched terms in gene set enrichment analysis 
for 3,067 human orthologue genes.

For the prick ear phenotype, common ROHRs could 
only be detected using PLINK_A and RZooRoH. For 
both methods, we found ROHRs harbouring significantly 
enriched pig genes and an enrichment of 1,303 human 
orthologous (1,684 pig genes, PLINK_A, Fig. 13) as well 
as 1,240 human orthologous (1,630 pig genes, RZooRoH).

For ROHRs detected by PLINK_A, we found lamellipo-
dium organization (GO:0,097,581), lamellipodium assem-
bly (GO:0,030,032) and homophilic cell adhesion via 
plasma membrane adhesion molecules (GO:0,007,156) to 
be signifcantly enriched among the biological processes 
(Additional file  10: Table  S10). ROHRs obtained from 
RZooRoH were signifcantly enriched among the biologi-
cal processes playing a role in regulation of cation trans-
membrane transport (GO:1,904,062), regulation of ion 

transmembrane transport (GO:0,034,765) and regulation 
of transmembrane transport (GO:0,034,762).

In addition, we found 3,076 of 4,831 genes (63%, 
PLINK_A), 404 of 582 genes (68%, PLINK_B) and 2,740 
of 4,299 genes (64%, RZooRoH) identified in lop ear-
associated ROHRs intersecting with NCBI seach term 
“ear”. For PLINK_A only one gene, namely mitogen-
activated protein kinase 3 (MAPK3), and for RZooRoH 
two genes MAPK3 and eyes absent homolog 1 (EYA1) 
were identified in the overlap with the term list “outer 
ear” (Additional file  11: Table  S11). For prick ear, 1,240 
of 1,684 genes (74%, PLINK_A) and 1,152 of 1,630 genes 
(71%, RZooRoH) were found in the NCBI “ear” term list. 
No intersection could be found for term list “outer ear” 
neither for prick ear gene lists obtained with any tool nor 
for lop ear gene lists obtained from PLINK_B.

Moreover, we did not find any overlap of ROHRs 
with the pig ear-size associated QTL on chromosome 
5 (SSC5) at 29.74–29.88 Mb containing MSRB3 among 
other genes and no overlap with another QTL on chro-
mosome 7 (SSC7) at 31.22–31.29  Mb containing the 

Fig. 11 Functional enrichment analysis for genes overlapping with disease-resistance-associated ROHRs identified with PLINK and RZooRoH. 
Illustration of 10 highest enriched GO terms for enrichR databases “GO_Molecular_Function_2021”, “GO_Biological_Process_2021”, “KEGG_2021_
Human” and “MGI_Mammalian_Phenotype_Level_4_2021” sorted by p-value (x-axis), for all genes overlapping with ROHRs detected with either 
PLINK_A (a, 20 SNPs), PLINK_B (b, 120 SNPs) or RZooRoH (c), and shared by all individuals with T/T genotype (GBP5: g.127301202G > T) associated 
with disease resistance
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PPARD gene. However, in close proximity to SSC5 
QTL we found five ROHRs in the dataset obtained 
by PLINK_A of which one contained the glucosamine 
(N-acetyl)-6-sulfatase (GNS) gene and one ROHRs in 
this area in the dataset from RZooRoH analysis (Addi-
tional file 12: Table S12). In three previously published 
highly differentiated regions on chromosome 5 and 7 
[45] linked to ear morphology, we identified multiple 
overlaps with ROHRs detected by both tools. These 
overlapping ROHRs contain 35 candidate genes associ-
ated with ear morphology. Of these 35 candidate genes, 
seven are implicated in ear cartilage development, 
including GNS, homer scaffold protein 2 (HOMER2), 
KH RNA binding domain containing, signal transduc-
tion associated 2 (KHDRBS2), ras-related protein rab-
23 (RAB23), ras association domain family member 3 
(RASSF3), TANK binding kinase 1 (TBK1) and WASP 
homolog associated with actin, golgi membranes and 
microtubules (WHAMM).

Furthermore, filtering of all variants located within 
ROHRs obtained with PLINK for genotypes associ-
ated with ear type revealed one variant in intron 5 (intron 

variant, ENSSSCT00000031470.3/ENSSSCT00000018785.4, 
c.463 + 82G > C) and exon 6 (missense variant, ENS-
SSCT00000081093.1, c.542G > C) on chromosome 12 at 
11,229,528  bp of ATP binding cassette subfamily A member 6 
(ABCA6) gene with a moderate effect (SIFT score: tolerated, 0.12). 
Both were homozygous wild type (0/0) for all lop-eared individuals 
and overlapped with a ROHR shared by all lop-eared individuals 
(Husum Red Pied, Turopolje, Mangalitza, Bentheim Black Pied, 
Duroc, Gloucester Old Spot, Iberian) plus homozygous mutant 
(1/1) for prick-eared pigs. However, the variant in the ABCA6 
gene was also found as homozygous mutant in the lop-eared 
Meishan pig (1/1) and heterozygous for the prick-eared Yorkshire 
pig (0/1). The same variant as well as further missense variants 
(ENSSSCG00000048926: ENSSSCT00000066589.1, c.326G > A, 
ENSSSCT00000066589.1, c.80G > A; ENSSSCG00000046730: 
ENSSSCT00000084435.1, c.3366 T > G; ENSSSCG00000031845: 
ENSSSCT00000036965.1, c.106A > G, ENSSSCT00000081497.1, 
c.-1569-52033A > G, ENSSSCT00000036965.1, c.592G > A, 
ENSSSCT00000036965.1, c.592G > C) and intron vari-
ants ENSSSCG00000044445: ENSSSC T00000081497.1, c.-
1569-51547G > A, ENSSSCT00000081497.1, c.-1569-51547G > C) 
were also identified using RZooRoH for lop ears.

Fig. 12 Functional enrichment analysis for genes overlapping with lop-ear-associated ROHRs identified with PLINK and RZooRoH. Illustration of 10 
most significantly enriched GO terms for enrichR databases “GO_Molecular_Function_2021”, “GO_Biological_Process_2021”,”KEGG_2021_Human” 
and “MGI_Mammalian_Phenotype_Level_4_2021” sorted by p-value (x-axis), for all genes overlapping with ROHRs detected with either PLINK_A (a, 
20 SNPs), PLINK_B (b, 120 SNPs) or RZooRoH (c), and shared by all individuals with lop ears
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Discussion
In present study, we demonstrated a strategic ROH 
detection by using different approaches as well as sys-
tematic parameter testing in order to identify signatures 
of potential selection in the genome. Various research 
studies based on ROH analyses in domestic animals have 
been performed so far, but a lack of standardized crite-
ria for quality control of underlying datasets, specific 
recommendations for WGS data and definition of ROHs 
has been observed [2, 24]. This issue was addressed by 
researchers, evaluating the performance of different 
autozygosity detection algorithms as well as elaborating 
necessary requirements for ROH calling in SNP array 
data in livestock and pets [22, 23]. In our study, we cre-
ated a workflow specifically for WGS data, which require 
very specific configurations for robust homozygosity call-
ing [10], in an exemplary dataset from pig samples of var-
ious populations/breeds.

For quality control, iterations of coverage and miss-
ing call parameters for raw SNP data revealed a high 
dependency of the sequenced samples with the genome 
read coverage. We found a maximum read depth of about 
two-times the average coverage of the sample with the 
highest coverage in the dataset to be an appropriate set-
ting for variable genome sequencing data, similarly as 
previously suggested for SNP array data [23]. The high 

variation we observed in the number of SNPs when dif-
ferent minDP and maxDP were applied, possibly explains 
previous findings of a very high sensitivity of ROH detec-
tion to parameters or thresholds used for sequencing and 
pruning of SNPs [14]. Thus, adjusting the parameters 
dependent on genome coverage, number of samples and 
missing SNPs represents a feasible approach to follow 
current recommendation, which proposes to produce 
a more uniform SNP coverage to run a more independ-
ent ROH calling from variation in SNP density [23]. This 
filtering step was suggested for both methods, rule- and 
model-based, to be run prior to ROH detection using a 
tool such as PLINK [19, 21]. Producing a defined input 
file of high-quality SNPs provides a huge advantage for 
ROH studies as it enables comparable analyses across dif-
ferent methods.

Thus, the quality-controlled SNP set went into ROH 
calling using the sliding window approach of PLINK, as 
well as the HMM approach offered by RZooRoH. Evalu-
ation of PLINK’s default ROH-defining values clearly 
confirmed the suggestion that they are not suitable for 
all SNP datasets, particularly not for those derived from 
WGS data, and must necessarily be tuned to the char-
acteristics of the underlying data to receive meaning-
ful comparable results [13, 22]. Especially the size of the 
genome covered with SNPs and the total number of SNPs 

Fig. 13 Functional enrichment analysis for genes overlapping with prick-ear-associated ROHRs identified with PLINK and RZooRoH. Illustration of 
10 most significant enriched GO terms for enrichR databases “GO_Molecular_Function_2021”, “GO_Biological_Process_2021”, “KEGG_2021_Human” 
and “MGI_Mammalian_Phenotype_Level_4_2021” sorted by p-value (x-axis), for all genes overlapping with ROHRs detected with PLINK_A (a, 20 
SNPs) or RZooRoH (b), and shared by all individuals with prick ears. For PLINK_B (120 SNPs), no ROHRs shared by all individuals with prick ears were 
detected
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were shown to be key parameters to define ROH. In addi-
tion, dependencies of applied ROH detection param-
eters played an essential role: Our iterations of PLINK’s 
scanning window parameters verified huge differences 
in numbers and sizes of ROH, particularly depend-
ent on SNP density, the minimum length in kb, and the 
hit rate of all scanning windows containing a SNP. This 
underlined the usefulness of recently suggested formula 
modelling these dependencies to result in the best fitting 
PLINK parameter sets [7, 22, 25].

Furthermore, as previously requested by a ROH-
parameter study in SNP array data [22], we investigated 
the role of homozyg-gap, defining the maximum interval 
between two homozygous SNPs, in WGS data. Similarly, 
as reported for the low to medium density SNP sets [22], 
we found only minimal deviations in length and number 
of ROH when adjusting gap settings and thus suggest 
the default of 1000  kb as an appropriate value for high 
density SNP sets. Just as well, our data confirmed the 
assumption that in PLINK heterozygous calls per window 
should be tolerated to a certain extent, particularly if (a) 
high density SNP sets are used and (b) domestic animal 
populations are investigated, which can be expected to 
have much higher levels of autozygosity in comparison to 
human genomes [6, 22]. In some cases, this might result 
in a merge of two homozygous segments [22], but repre-
sents a reasonable trade-off to allow more accurate long 
ROH detection plus an increased sensitivity for shorter 
ROH calls as well.

In particular, the accurate detection of shorter ROHs 
was shown to be challenging, which requires a high 
number of reliable SNPs as well as more stringent ROH 
calling parameters adapted to the high SNP density [2, 
13, 14]. Our findings revealed that shorter ROHs can 
only be detected using PLINK with significantly lower 
homozyg-snp and homozyg-window-snp values, in com-
parison to the computed settings formula-based as 
discussed above. Thus, we found scaling down the cal-
culated value by 80–85% and adjusting the dependent 
parameters (PLINK_A), accordingly, increased the hit 
rate for shorter ROHs significantly. These adjustments 
appear to be necessary when using PLINK to cover the 
high number of smaller ROHs, which were found to be 
present in high frequency in domestic animals [7, 10, 
14]. Larger ROHs were also detected reliably using these 
settings (PLINK_A) as well as the formula-based set-
tings (PLINK_B). However, we suspect the results from 
PLINK_B tend to a higher number of false negative calls.

In contrast to the above-mentioned parameter tests 
necessary to apply suitable settings for a rule-based ROH 
calling, model-based approaches such as RZooRoH offer 
an ad hoc procedure to define optimal window sizes and 

thus do not require prior definition of ROH parameters 
[19, 46]. Subsequently, we could confirm the model-based 
approach offered by RZooRoH to be a user-friendly pro-
cedure [19] with only few parameter adjustments neces-
sary. Nevertheless, the assignment of HBD segments into 
different classes has to be regarded with care and was 
suggested to be run based on a selection of pre-defined 
HBD classes [19]. Based on this estimation, we limited in 
our experiment the number of classes by defining a maxi-
mum rate  RK of 10,000 analogous to the time of domes-
tication of the pig [47], because otherwise we would 
have called extremely small HBD segments resulting in a 
potential increase of false positive ROH detection rates. 
Subsequently, our results confirmed previous suggestion 
that PLINK is more stringent with regard to ROH size 
than a model-based approach as a minimal ROH length 
has to be defined prior to the run [22]. However, as long 
as the weaknesses of the different methods were taken 
into account and the parameters adjusted accordingly, the 
differences between the approaches PLINK_A and RZo-
oRoH were small (overlap > 50% from both sides), simi-
lar as it was previously suggested [27], particularly with 
regard to ROHs ≤ 20  kb. However, with respect to the 
total number of detected ROHs, the results from RZo-
oRoH showed a more balanced size distribution of called 
ROHs across all chromosomes and individuals. We can 
only suggest that this comparatively high total number 
of ROHs detected by RZooRoH might be either a result 
of a better fitting model producing lower false negative 
rates compared to rule-based methods [19, 26] or might 
display a number of false positive ROH calls. However, 
independent from the used method or parameter set, we 
were able to confirm the suggestion that longer and prob-
ably younger ROHs tend to occur in low-recombination 
regions [46].

Furthermore, as expected, the number and size of 
ROHs varied widely among pigs with a history of greater 
inbreeding events in recent times, like Yorkshire pigs 
[28] in contrast to less selected populations or hybrids. 
These findings support the assumption that ROHs are 
important determinants of recent and more ancient 
population bottlenecks and inbreeding events [8]. It was 
postulated that longer ROHs are more likely to be neu-
tral and degraded by recombination, whereas small ROH 
are retained and more often shared among individuals 
[6, 8]. According to our estimations, the detected ROHs 
in the small ROH length categories might go back in his-
tory for more than 2000  years, taking into account the 
possible deviations of the assessed time span affected by 
differences in generation intervals across pig breeds [41]. 
This is intriguing, as ROHs are proposed to highlight 
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selection footprints in the genome, potentially har-
bouring genes or non-coding functional elements and 
mutations associated with economically important phe-
notypic traits [8, 48].

Thus, we demonstrated the applicability of ROHs anal-
yses to track down regions under potential selection and 
thereby narrow down potential candidate genes in our 
pig dataset. Compared to PLINK_B, the number of com-
mon ROHRs in the investigated phenotype groups was 
higher when PLINK_A or RZooRoH was applied, allow-
ing detection of smaller ROHs.

This was particularly noticeable in the group of herit-
age pig breeds, designated as rare breeds offering unique 
genes imparting valuable traits such as disease resistance 
or effective forage utilization [49], but with less resilience 
to external stressors as observed in high production pigs 
[50]. The selection focus on fitness-related traits in herit-
age pig breeds was underlined by various genes in poten-
tial signatures of selection that might be involved either 
in supporting disease resistance and/or disease toler-
ance, the adaptive ability in preserving homeostasis with-
out affecting the pathogen per se [51]. We propose that 
the latter probably is the most prominent characteristic 
under selection in heritage pig breeds. This assumption 
was supported by screening the disease resistance-asso-
ciated T/T genotype (rs340943904) in GBP5, which was 
postulated to affect the response against PRRS infection 
[43] and was only present in one of the studied heritage 
pig breeds (Meishan) but in five other investigated pop-
ulations, mainly minipigs. This might be a result from 
selection for an improved disease resistance of miniature 
pigs used as a model organism for biomedical research 
[52]. Notably, we could not identify an overlap with a 
ROHR in all pigs harbouring the favourable T-allele but 
instead detected different ROHs possibly accounting for 
the effective inflammasome-assembly in these pigs. This 
finding substantiates the accuracy of our ROHR analysis, 
as the low frequency of the favorable allele, as reported in 
a segregation-study in 20 European local breeds [44], was 
raising the expectation that indeed no selection signature 
at this specific locus is present.

As a result, our findings are consistent with the idea 
that main selection criteria for pigs, often related to per-
formance, health and morphological traits [44], lead to 
footprints in the genome that can be identified as long 
stretches of homozygous genotypes. In particular, the 
morphologic traits are prioritized by breeders as spe-
cial characteristics and are therefore breed defining [44]. 
Exemplary as such specific trait under selection, we 
examined ear shape in pigs. Our data were not only able 
to support previously identified signatures of diversifying 
selection associated with ear morphology [45], but also 
provided new candidate genes potentially playing a role 

for ear shape in pigs. MAPK3 was discovered as a par-
ticularly interesting candidate gene for outer ear develop-
ment of lop eared pigs, known to play an essential role in 
the MAPK/ERK cascade, which mediates various biologi-
cal processes such as cell growth, adhesion, survival and 
differentiation by regulating transcription, translation 
and rearrangements of the cytoskeleton [53]. Further-
more, MAPK was shown to be an important protagonist 
in chondrocyte differentiation and cartilage tissue forma-
tion processes [54, 55]. It was found to be involved in a 
signalling cascade initiated by KIT (also located in lop-
ear associated ROHR) and therefore might support the 
formation of ear cartilage tissue as well. Furthermore, 
Eya1 was identified using RZooRoH as another inter-
esting candidate for outer ear development in lop eared 
pigs. Eya1 plays a role in murine ear development [56] 
and is associated with Branchio-Oto-Renal (BOR) syn-
drome in humans, an autosomal dominant early develop-
mental defect characterised by varying combinations of 
branchial, outer, middle and inner ear, and renal anoma-
lies [57].

In addition, to that, ROH analyses using PLINK/RZo-
oRoH revealed a potential candidate missense mutation 
in the ABCA6 gene within a ROHR homozygous mutant 
exclusively (except for Meishan pig) in prick eared pigs. 
ABCA6 might be involved in ear development, although 
the function of this ABC transporter is not clear yet [58]. 
Furthermore, the role of the mutant allele in Meishan 
pigs probably needs further exploration in the future. 
Meishan develop extraordinarily large and floppy ears, 
which might be genetically determined by a different 
mutation, similar as it was reported for the characteris-
tic ear phenotype in Chinese Erhualian pigs [59]. These 
results show that different interesting candidate genes 
could be detected in ROHRs, which were either based 
on ROHs identified using PLINK, RZooRoH or both. 
This leads to the assumption that, although RZooRoH 
is apparently detecting a higher number of ROHs, some 
ROHRs might be missed by this approach. For this rea-
son, we suggest for those studies, which are primarily 
searching for genomic regions under selection for spe-
cific phenotypes and/or causative variants and provide 
a genotype-filtering in a second step to reduce the num-
ber of false positive calls, running a simultaneous ROH 
detection using a rule- and a model-based approach 
and performing our suggested optional merging step for 
ROHRs might be the best way to avoid missing genes of 
interest.

Conclusions
In our study, we present a workflow for ROH detection using 
both a rule- and a model-based approach. We underlined the 
important role of high-quality SNP datasets as prerequisite 
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for ROH calling in WGS data. The results from our exem-
plary pig dataset of various populations/breeds demon-
strated the limits of parameter estimations exclusively based 
on formula to define ROHs, particularly with regard to the 
rule-based detection targeting shorter ROHs. Subsequent 
comparison of ROH calling approaches demonstrated the 
high efficiency of both rule- and a model-based method 
for ROH detection if properly applied and underlined their 
importance with regard to the identification of candidate 
genes. We were able to identify potential footprints of selec-
tion events taking place to some extent far back in the past 
defining pig breeds or populations and reflecting their char-
acteristics and favoured phenotypes. These data suggest that 
ROH detection, if based on a systematic dataset-adjusted 
approach, is an efficient way to open up a window into the 
genome finding traces of selection.

Methods
Samples and whole genome sequencing
In total, 16 samples from different pig breeds/populations 
and four crossbreeds were used for this analysis based on 
WGS data (Additional file 13: Table S13). Data files of 10 
pig samples were derived from the NCBI Sequence Read 
Archive (SRA). Genomic DNA of further 10 animals 
were isolated from either EDTA-blood, hair roots, skin 
or muscle tissue using an in-house chloroform extraction 
protocol [60]. In total, 200 ng DNA of each sample was 
sonicated with a Covaris S2 system (Covaris, Woburn, 
Massachusetts, USA) using the following settings: 10% 
duty cycle, intensity 5, 40 s. Library preparation was per-
formed using the KAPA HyperPrep Kit according to the 
manufacturer’s guidelines (Hoffmann-La Roche, Basel, 
Switzerland). Adapters from the NEXTFlex UDI set B 
(PerkinElmer, Waltham, Massachusetts, USA) were used 
for multiplexing, followed by a 0.6X-0.8X double-sided 
bead size selection and four cycles of PCR. The quality 
of the libraries was estimated on an Agilent 2100 Bio-
analyzer using the Agilent High Sensitivity DNA Kit 
(Agilent Technologies, Santa Clara, California, USA). 
Subsequently, the libraries were sequenced paired end 
for 150 bp on an Illumina NovaSeq 6000 (Illumina, San 
Diego, California, USA). All animal experiments were 
conducted according to the national and international 
guidelines and approved by animal ethics committee of 
the Lower Saxony state veterinary office Landesamt für 
Verbraucherschutz und Lebensmittelsicherheit, Olden-
burg, Germany (registered at 33.9–42,502-05-17A217).

Whole‑genome sequence analysis
All fastq-files were quality controlled using FastQC, 
version 0.11.8 [61] and underwent indexing with 

Picard tools [62]. Adapter trimming and low complex-
ity filters were applied using the FASTQ pre-processor 
fastp, version 0.20.0 [63], with the following settings: 
detect_adapter_for_pe, -low_complexity_filter, -com-
plexity_threshold 1, -cut_front -cut_front_window_size 
1 -cut_front_mean_quality 20 -cut_tail -cut_tail_win-
dow_size 1 -cut_tail_mean_quality 20 -qualified_quality_
phred 15 -unqualified_percent_limit 70 -n_base_limit 50 
-average_qual 0 -disable_length_filtering -disable_trim_
poly_g. Finally, all files were mapped to the reference 
genome Sscrofa11.1 (accessed from ENSEMBL, release 
101) using the Burrows-Wheeler Alignment tool (BWA), 
version 0.7.17-r1188 [64]. Variants were called using 
GATK tools, version 4.1.9.0, [62] Base Recalibrator, Hap-
lotype Caller, Base Quality Score Recalibrator and Cal-
culate Genotype Posteriors and underwent variant effect 
prediction using SNPEff, version 4.3t, build 2017–11-24 
[65].

Evaluation of SNP filtering conditions
After variant calling, all variants on chromosomes MT, X, 
Y, and all scaffolds were excluded using vcftools, version 
0.1.15 [66]. In addition, all INDELs and sites with less or 
more than two alleles, a minor allele count less than one 
and a base quality score of less than 30 were removed 
(–min-alleles 2 –max-alleles 2 –remove-indels –mac 1 
–minQ 30). Then, four different filtering parameters of 
vcftools were tested in two different test settings in order 
to estimate the quality and number of SNPs as outcome 
(see Table 3). In the first test setting, SNPs were filtered 
for different minimum (minDP) and maximum read 
depths (maxDP). For the visual inspection, the number of 
SNPs was plotted for each tested parameter combination. 
The setting with the best outcome (minDP 6, maxDP 
95) from the first test setting was then used to produce a 
variant set for the second test setting. In the second test 
setting, SNPs were further filtered for different maximum 
numbers of allowed missing genotypes (max-missing-
count) and minimum mean read depths (min-meanDP) 
over all individuals. Based on the second test setting, the 
high-quality variant set obtained from analysis with max-
missing-count 15 was used for all subsequent ROH anal-
yses. SNPs were not pruned for linkage equilibrium or 
minor allele frequency prior to ROH detection, according 
to previous recommendation [22].

Rule‑based approach
The rule-based ROH detection tool PLINK, version 
1.90b6.21 [67], was used to call ROHs using a sliding-
window approach. As this method requires an optimi-
zation for every dataset, eight different ROH detection 
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parameters were tested in four different test settings 
(Table 4). For this purpose, custom parameters were cal-
culated according to previously suggested formula. Then, 
ROH detection was performed for these calculated val-
ues as well as for values in a higher or lower range within 
defined intervals, to test for most effective ROH calling 
settings. All results were compared to their default value 
according to PLINK.

In the first test setting, the impact of two parameters 
affecting the characteristics of the scanning window 
used for ROH detection was evaluated. We assessed the 
scanning window size (homozyg-window-snp, default: 
50) and scanning window threshold (homozyg-window-
threshold, default: 0.05). All other parameters either 
were set to default (default test set) or were set based 
on our calculations (custom test set). The parameter 
homozyg-window-snp was calculated considering three 
factors; 5% false positive ROHs, a total of 32,664,930 
SNPs and a mean percentage of 15.6% heterozygous sites 
in our data set based on a previously suggested modified 
formula [7, 25]:

homozyg − window − snp =

loge(
�

ns∗ni
)

loge(1 − het)
=

loge(
0.05

32664930
)

loge(1 − 0.156)
= 119.677 ≈ 120

with  ns the number of SNPs per individual,  ni the num-
ber of individuals, α the percentage of false positive ROH 
and het the mean heterozygosity across all SNPs. The 
scanning window threshold was calculated dependent on 
the scanning window size based on previously suggested 
formula [22]:

with  Nout the desired number of final outer SNPs on 
either side of the homozygous segment that should not 
be included in the final ROH, L the scanning window size 
and ‘, 3’ indicating flooring with three decimals.

In the next step, the effect of four different param-
eters defining the characteristics of a potential ROH 
segment was evaluated. Namely, the minimum num-
ber of SNPs per ROH (homozyg-snp, default: 100), the 
minimal length of a ROH in kb (homozyg-kb, default: 
1000), the minimal inverse density of SNPs per kb a 
ROH must have (homozyg-density, default: 50) and 
the maximal gap between two SNPs in a ROH seg-
ment in kb (homozyg-gap, default: 1000). In our cus-
tom test setting, defined ranges of custom values for 
homozyg-snp, homozyg-kb and homozyg-gap were 
tested. All other parameters were set either to custom 

homozyg − window − threshold = floor

(

Nout + 1

L
, 3

)

= floor
(

4 + 1

119.667
, 3

)

= 0.04

Table 3 Overview of parameters evaluated for filtering SNPs. Vcftools test settings and subsequent ranges of investigated 
specifications are displayed

Test setting Parameter Tested range Description

1 minDP 2–16 (interval 2) minimum read depth—allow only SNPs with given minimum read depth

1 max DP 30–100 (interval 5) maximum read depth—allow only SNPs with given maximum read depth

2 max-missing-count 8–18 (interval 2) maximum number of allowed missing genotypes—exclude SNPs with more than defined 
number of missing genotypes over all individuals

2 min-mean-DP 10–30 (interval 2) minimum mean read depths—allow only SNPs with at least the given mean read depth values 
over all individuals

Table 4 Overview of parameters evaluated for the detection of ROHs using PLINK

Test setting Parameter Tested range Description

1 homozyg-window-snp 20—150 (interval 10) scanning window size—number of SNPs a scanning window contains

1 homozyg-window-threshold based on homozyg-window-snp scanning window threshold—proportion of overlapping windows that 
must be homozygous to define a given SNP as part of a homozygous 
segment

2 + 3 homozyg-snp 20—150 (interval 10) min. number of SNPs per ROH—minimal number of SNPs per ROH

2 + 3 homozyg-kb based on homozyg-snp min. ROH length [kb]—minimal desired length of a ROH in kb

2 + 3 homozyg-density 0.04–0.2 (interval 0.04) min. inverse density [kb/SNP]—on average a ROH must have at least 1 
SNP per the defined number of kb

2 + 3 homozyg-gap 50, 100, 250, 500, 1000 max internal gap [kb]—max interval below that two SNPs are considered 
adjacent. If two SNPs within a segment are too far apart, the segment is 
split

4 homozyg-window-het 0,1,2,3 max. number of heterozygous SNPs per window

4 homozyg-window-missing 3,5,7 max. number of missing SNPs per window
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(calculations based on formula) or default values, 
including homozyg-kb. In the third test setting, defined 
ranges of custom values for homozyg-density, homozyg-
kb and homozyg-gap were evaluated. Similar to the sec-
ond test setting, all other parameters were set to either 
custom or default values, including homozyg-snp. The 
minimum number of SNPs per ROH, homozyg-snp, 
was calculated based on the formula described above 
for the scanning window size (homozyg-window-snp) 
[2, 25]. Furthermore, the minimal inverse density, 
homozyg-density, was calculated by dividing the total 
genome size covered by SNPs (2,265,774.640  kb) by 
the total of 32,664,930 SNPs covering the genome. 
Hence, the minimal length of a ROH, homozyg-kb, was 
calculated as product of homozyg-density multiplied by 
homozyg-snp.

Based on the first three tests, two custom parameter 
sets, one set considered to be the most effective for detec-
tion of shorter ROHs comprising at least 20 homozygous 
SNPs in a window (PLINK_A), and one set determined 
according to the calculated values comprising a mini-
mum of 120 homozygous SNPs in a window (PLINK_B) 
were defined. For both parameter sets, the impact of the 
maximal number of heterozygous (homozyg-window-het, 
default: 1) and missing SNPs allowed per scanning win-
dow (homozyg-window-missing, default: 5) were evalu-
ated in a further test setting. For both PLINK_A and 
PLINK_B, homozyg-window-het was tested for 0–3 SNPs 
and homozyg-window-missing for 3, 5 and 7 SNPs admit-
ted per window. After considering the default settings for 
both window parameters to be most effective, the opti-
mized settings “PLINK_A and PLINK_B” were applied 
for final ROH calling and the obtained results were used 
further analyses.

Model‑based approach
In addition to the rule-based method, a model-based 
approach using an HMM was applied by the tool RZo-
oRoH, version 0.3.1 [19, 27]. In a first step, a KR model 
without any predefined states was implemented to esti-
mate the optimal  RK rates for each ROH class over all 
individuals. A dependency of  RK rates with the length of 
ROH segments can be observed: the expected length of 
HBD segments is equal to 1/RK in Morgan.  RK is the rate 
of the class k corresponding to ancestors present approx-
imately 0.5 ×  RK generations ago [68]. Thus, the rates  RK 
for the mixKR model were calculated as the median of all 
rates  RK estimated for each individual in the respective 
ROH class by the KR model. Assuming an average gen-
eration interval (GI) of two for pigs [41, 42] and a domes-
tication history of 10,000  years [47], a maximum rate 
 RK of 10,000 was set. Finally, based on these parameter 

estimations, a mixKR model with 8 classes and  RK rates 
equal to 20, 29, 72, 239, 740, 838, 4,242 and 10,000, as 
well as a genotyping error rate of 0.25% as suggested by 
Ferenčaković et al. [6] was run for all 20 pigs. To assign 
each SNP position to the positions of HBD or non-HBD, 
the Viterbi algorithm was run as default [69].

Size distribution of ROHs
ROHs called using the two PLINK parameter sets a and 
b as well as RZooRoH were investigated for reciprocal 
intersection of detected ROHs using the function inter-
sect in bedtools, version 2.29.2 [70], allocated into size 
categories of “0–20  kb”, “20–50  kb”, “50–250  kb”, “250–
500 kb” and “ > 500 kb” and plotted using the R package 
ggplot2 [71]. Given the approximate correlation between 
ROH length and the recombination distance from the 
common ancestor over time [23], the approximate age 
of the underlying inbreeding event was calculated for 
all lengths (L) in Mb assuming that 1 cM corresponds to 
1 Mb and an average GI of two [41, 42] according to the 
following formula [72]:

To examine the distribution of ROH lengths across all 
individuals for all tools, we calculated the average recom-
bination rate for all ROHs based on sex-averaged map 
of the landscape of pig recombination rate in 1-Mb win-
dows obtained from Johnson et al. [73] and examined the 
distribution of ROHs across different size categories as a 
function of recombination rate.

Identification of ROH regions and functional enrichment 
analysis
ROHR calling was performed based on the identified 
ROHs obtained from PLINK_A and PLINK_B as well 
as RZooRoH, using a custom script in R, v. 4.1. For this 
purpose, all SNPs located within ROHs were obtained 
for each sample individually, merged across individu-
als, and searched for overlaps within assigned groups 
(phenotype of interest), which were then designated 
as ROHRs. Finally, our ROH detection approach was 
verified by investigating the obtained data for specific 
research questions on particular selection events. First 
of all, we identified ROHRs for each sequenced pig 
obtained from different breeds/populations as well as for 
a cluster of pigs common as purebred pigs with a long-
established breeding history and endangered status, so 
called heritage pig breeds (see also Additional file  13: 
Table  S13). Then, to address favourable genotype–phe-
notype effects, common ROHRs were identified for a 
group of pigs with a higher disease resistance probability 
based on their T/T genotype (guanylate binding protein 

Age =
100

2L
×GI
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5 (GBP5): g.127301202G > T; rs340943904) located on 
SCA4:127,301,202 [43, 44]. This genotype is associated 
with inflammasome-assembly during immune response 
and improved response to porcine respiratory and repro-
ductive syndrome virus infection [43]. Furthermore, 
common ROHRs were examined for different ear types, 
a group of lop and a group of prick eared pigs. For this 
analysis, only pigs with clear phenotypes were used: 
for lop ears 7 individuals and for prick ears 8 individu-
als. Data from the Chinese Meishan pig known for its 
extremely large and floppy ears in the lop ear group were 
not considered, as this was confirmed to be an exclusive 
ear phenotype in this particular breed [59]. In addition, 
ROHRs obtained by PLINK (PLINK_A) and RZooRoH 
datasets were merged using bedtools merge function. 
More precisely, bed-files were concatenated, sorted by 
chromosome and position and merged using bedtools. 
By this approach, we investigated an optional merging 
step of the most efficient two approaches offering a total 
of ROHR calls obtained either from one of the tools or 
both in one file aiming at increasing the hit rate for those 
research questions targeting specific variants of interest, 
provided further genotype-based filtering is done in sub-
sequent step.

Genes intersecting with the detected ROHRs were 
identified using bedtools with the current gene set 
from ENSEMBL release 104. Human orthologous genes 
were identified using g:Profiler, version e104_eg51_
p15_3922dba [74]. Functional enrichment analysis was 
performed using PANTHER version 16.0 [75] with the 
databases “GO_Molecular_Function_2021” and “GO_
Biological_Process_2021” [76, 77] for Sus scrofa gene 
set. In addition, we used enrichR, version 3.0 [78, 79] 
based on human orthologue genes using the databases 
“GO_Molecular_Function_2021”, “GO_Biological_Pro-
cess_2021” [76, 77], “KEGG_2021_Human” [80–82] and 
“MGI_Mammalian_Phenotype_Level_4_2021” [83]. 
Human orthologues of genes associated with heritage 
breed ROHRs were interesected with four NCBI gene sets 
obtained by the search terms “anxiety or stress”, “disease 
resistance”, “meat quality” and “immun*” or “inflam*”. For 
the disease resistance, functional enrichment results were 
scanned for terms linked to this phenotype (“B cell”,”T cel
l”,”immun”,”inflam”,”interferon”,”macrophage”, “phagocy-
tosis”) and human orthologous were interesected with 
two NCBI gene sets containing genes associated with the 
search terms “disease resistance” or the terms “immun*” 
or “inflam*”. In addition, gene sets related to the terms 
“outer ear” (comprising 15 genes) and “ear” (comprising 
55,291 genes) were downloaded from the NCBI RefSeq 
database and intersected with the human orthologous of 
genes overlapping with the ROHRs associated to lop or 

prick ears. In addition, ROHRs were checked for overlap 
with a quantitative trait locus (QTL) on chromosome 5 
at 29.74–29.88 Mb harbouring the methionine dulfoxide 
reductase B3 (MSRB3) gene associated with ear size and 
morphology in pigs [84–86] as well as another QTL on 
chromosome 7 at 31.22–31.29  Mb harbouring the per-
oxisome proliferator activated receptor delta (PPARD) 
gene linked to external ear morphology and fat deposi-
tion in pigs [59, 84, 87, 88]. Each QTL plus 600  kb up- 
and downstream of this region was examined for possible 
intersections with ROHRs detected for each phenotype. 
Moreover, all ROHRs were checked for potential over-
laps with three previously published highly differentiated 
regions on chromosome 5 and 7 under strong diversify-
ing selection between breeds with lop and prick ears [45].
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