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The flax genome reveals orbitide diversity
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Abstract 

Background:  Ribosomally-synthesized cyclic peptides are widely found in plants and exhibit useful bioactivities 
for humans. The identification of cyclic peptide sequences and their precursor proteins is facilitated by the growing 
number of sequenced genomes. While previous research largely focused on the chemical diversity of these pep-
tides across various species, there is little attention to a broader range of potential peptides that are not chemically 
identified.

Results:  A pioneering study was initiated to explore the genetic diversity of linusorbs, a group of cyclic peptides 
uniquely occurring in cultivated flax (Linum usitatissimum). Phylogenetic analysis clustered the 5 known linusorb 
precursor proteins into two clades and one singleton. Preliminary tBLASTn search of the published flax genome 
using the whole protein sequence as query could only retrieve its homologues within the same clade. This limitation 
was overcome using a profile-based mining strategy. After genome reannotation, a hidden Markov Model (HMM)-
based approach identified 58 repeats homologous to the linusorb-embedded repeats in 8 novel proteins, implying 
that they share common ancestry with the linusorb-embedded repeats. Subsequently, we developed a customized 
profile composed of a random linusorb-like domain (LLD) flanked by 5 conserved sites and used it for string search of 
the proteome, which extracted 281 LLD-containing repeats (LLDRs) in 25 proteins. Comparative analysis of different 
repeat categories suggested that the 5 conserved flanking sites among the non-homologous repeats have under-
gone convergent evolution driven by functional selection.

Conclusions:  The profile-based mining approach is suitable for analyzing repetitive sequences. The 25 LLDR proteins 
identified herein represent the potential diversity of cyclic peptides within the flax genome and lay a foundation for 
further studies on the functions and evolution of these protein tandem repeats.
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Background
Plant secondary metabolites play important roles in plant 
development, mediating communication with other 
organisms, responding to biotic stresses, and acclimating 
to the abiotic environment [1]. While primary metabo-
lites are similar in most plant cells, plant secondary 
metabolites are enormously diverse, varying across and 
within species. Conventional classification of secondary 

metabolites is generally based on chemical structure, 
with alkaloids, phenolics, terpenoids, and non-ribosomal 
peptides (NRPs) being the major groups. These well-
known compounds are synthesized from primary metab-
olites through specialized metabolic pathways. Advances 
in genome sequencing technologies over the past decade 
have revealed that many structurally unique peptides 
are synthesized from ribosomally produced precursor 
peptides that undergo post-translational modification 
(RiPPs), rather than by the action of non-ribosomal pep-
tide synthetases (NRPS) [2]. Like other currently known 
secondary metabolites, RiPPs exhibit species specific-
ity and are thus recognized as a new group of secondary 
metabolites.
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One typical form of RiPPs are cyclic peptides, which are 
derived from linear precursor proteins which are cyclized 
by specialized proteases (Fig.  1). Well characterized 
classes of cyclic peptides thus far identified include head-
to-tail (i.e. N-to-C) linked peptides and branched cyclic 
peptides. Based on the number of disulfide bonds, head-
to-tail linked cyclic peptides are categorized into cyclo-
tides (3 disulfide bonds), PawS-derived peptides (PDPs, 1 
disulfide bond) and orbitides (no disulfide bond). Many 
cyclic peptides have been discovered from plant species 
traditionally used in health and medicinal applications, 
such as Oldenlandia affinis (Violaceae) and Lycium bar‑
barum (Solanaceae). A wide range of biological activities 
have been reported in cyclic peptides, including enzyme 
(trypsin) inhibition, immunosuppression, anti-inflam-
mation, antibacterial activity and antiviral effects [4–10]. 
It is postulated that plants produce cyclic peptides as a 
defense agent against herbivores, insects and pathogens 
[11–13].

Since the isolation of the first cyclic peptide, cyclolin-
opeptide A, from the sediment of flaxseed oil in 1959 
[14], more than 400 cyclic peptides had been discov-
ered in higher plants across 120 species and 26 families 
[15]. The discovery of novel cyclic peptides is guided by 
knowledge of the peptides in related plant species and 
families. Cyclotides were originally found in the vio-
let family (Violaceae). In 2008, Gruber et  al. developed 
a screening procedure based on the hydrophobicity, 
molecular weight and cysteine content of violet cyclo-
tides to analyze > 200 Rubiaceae species (the coffee fam-
ily) and > 140 species in related families [16]. This led to 
the discovery of cyclotides in 22 Rubiaceae species. In 

addition to tracing peptides with similar physicochemi-
cal properties, sequence similarity is also a useful trait for 
novel peptide exploration. For example, a gene-guided 
approach was applied to mining the genomes of multi-
ple plant species for orthologues of the precursor protein 
of lyciumin, a branched cyclic peptide primarily isolated 
from the root of Chinese wolfberry (Lycium barbarum) 
[17]. Selecting protein candidates harboring the BURP 
domain found in the lyciumin precursor protein assisted 
in the detection and verification of predicted lyciumin 
peptides in 10 plant species from 4 families.

Comparative genomics analyses identified potential 
orthologues of individual precursor proteins, although it 
has been shown that precursor proteins embedded with 
cyclic peptides of the same structural class (cyclotides) 
can have different (i.e. non-homologous) biosynthetic 
origins [18]. These findings indicate untapped diversity in 
precursor proteins or structural motifs corresponding to 
specific biosynthetic and post-translational modification 
pathways. Furthermore, while previous research focused 
on the chemical diversity of ribosomally-derived cyclic 
peptides, there remains limited information regarding 
their genetic characteristics.

Another potential limitation lies in the chemical verifi-
cation of predicted peptides. Hellinger et al. (2015) con-
ducted a tBLASTn search in the transcriptome of Viola 
tricolor using a set of published cyclotide sequences as 
queries, which revealed 108 transcripts with homology to 
the cyclotide sequences [19]. Of these, 11 peptides were 
unequivocally verified by both mass spectroscopic signal 
deconvolution and MS/MS sequencing. Similar results 
were obtained in the transcriptome mining of 6 Viola 

Fig. 1  General biosynthetic pathway of orbitides, abstracted from [3]. The precursor protein mainly comprises a signal sequence (SIG, yellow), a 
leader peptide (LEA, orange), the core peptide region (CPR, purple) and the recognition sequence (REC, blue). Each CPR is flanked by the N-terminal 
region (NTR, grey) and C-terminal region (CTR, green). The precursor protein undergoes post-translational modification that cyclizes the CPR into 
the mature cyclized product. In this case, the CPR is a linusorb B1 (LO-B1) domain in which the N-terminal methionine (M) and C-terminal isoleucine 
(I) are linked to form the structural formula as displayed
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species [20]. The question thus remains whether unveri-
fied peptide sequences contain genetic information rel-
evant to the evolution of verified peptides. Identification 
of peptides relies heavily on empirical knowledge regard-
ing the physicochemical properties of known peptides, 
and thus presents many technical challenges. While the 
past decade has seen a significant growth in the number 
of cyclic peptides discovered in a variety of species, cur-
rent mining practices largely focus on and are limited to 
the identified peptides.

In this study, we developed proteome mining methods 
to explore the genetic diversity of orbitides in flax (Linum 
usitatissimum L., 2n = 2x = 30). Flax is one of the most 
ancient crops widely grown as a source of fiber, oil, and 
health products. More than 20 orbitides have been iso-
lated from flaxseed and are collectively named linusorbs 
[21]. Previous homology searches of both an EST library 
[22] and reference genome [23, 24] using partial sequence 
information from mass spectra as queries led to the iden-
tification of linusorb precursor proteins [25–27]. The 
reported linusorbs are structural variants derived from 
domains embedded in 5 precursor proteins (Fig. 1), while 
the relationships among these linusorb domains and 
among their precursor proteins remain unclear. Here, 
we first analyzed these relationships, and designed min-
ing strategies to identify sequences at different similarity 
levels. The wide cultivation of flax as a crop makes it an 
ideal subject for the study of cyclic peptide diversity, and 
thus the goal of this study is to elucidate genetic diversity 
independent of what can be chemically verified. Finally, 
we discuss how these diverse but related sequences 
evolve within a plant genome.

Results
The linusorb precursor proteins form 2 distinct clades 
and a singleton
The relationships among the linusorb domains and 
among the linusorb precursor proteins were investigated 
based on similarities revealed by multiple sequence align-
ments (Fig. 2). There are 3 significant clades in the phy-
logenetic tree of the 11 linusorb domains computed by 
Neighbor-Joining (NJ) method (Fig. 3a). The first 2 clades 
cluster all 3 linusorb domains in G14-170 N, suggest-
ing linusorb domains within the same protein are more 
closely related than across proteins. The third clade con-
tains LO-B1 and its glycine-appended analogue LO-E1 
in G11-516P. We previously reported that each linusorb 
domain in G11-516P have 2 analogues detected, one with 
and one without the glycine at the N-terminus [27]. Such 
high similarity accounts for the fact that the 2 linusorb 
analogues are clustered as one clade. Likewise, other linu-
sorb analogues in G11-516P (LO-B2&E2, LO-B3&E3) are 
close to each other albeit not forming significant clades.

The 5 linusorb precursor proteins form 2 significant 
clades and a singleton (Fig. 3b). The upper clade contains 
G11-516P and G14-170 N, while the lower clade contains 
G3-449N and G4-136N. The singleton, G11-514P, is dis-
tinctly isolated from both clades. As proteins within a 
clade are potential homologues, note that the homolo-
gous pair G3-449N and G4-136N share the same linusorb 
domain, LO-D1. Considering the short lengths of linu-
sorb domains and the variable lengths of linusorb precur-
sor proteins (Table 1), phylogenetic trees were also built 
with the Maximum Likelihood (ML) method in addition 
to the NJ method to verify the relationship (Fig. S1). For 
the known linusorb domains, both NJ and ML trees share 
similar topology and significant clades (Fig. S1a). For the 
5 linusorb precursor proteins, the ML tree has its topol-
ogy consistent with the NJ tree but the clade containing 
G14-170 N and G11-516P is less significant (Fig. S1b).

No other significant homologues were found besides the 5 
precursor proteins
We first followed the conventional gene-guided mining 
approach using tBLASTn to search the genome for other 
homologous sequences of the 5 linusorb precursor pro-
teins. The search outputs with alignments between the 
query and subject are provided as Data S1. No additional 
homologues were identified other than the original 5 
proteins. The potential homology is consistent with that 
illustrated by the phylogenetic tree in Fig. 3a. The single-
ton G11-514P does not have any significant hit besides 
itself, but interestingly the second closest hit turns out to 
be G14-170 N, which is consistent with the ML tree where 
G11-516P, G14-170 N and G11-514P are not significantly 
isolated from one another (Fig. S1b). We compared the 
protein alignment constructing the tree (Fig. 2b) with the 
local alignment output from BLAST, and detected differ-
ences between both alignments. Among the 6 local align-
ment ranges between G11-514P and G14-170 N identified 
by BLAST, the first range matches the signal peptide 
region of both proteins and the other 5 ranges align the 
single linusorb-embedded region of G11-514P with the 
5 linusorb-embedded regions in G14-170 N, respectively. 
Among the latter 5 alignment ranges, the one with the 
region containing LO-A1 (MLMPFFWI) scores the high-
est (34.0 bits). However, in the global alignment of linu-
sorb precursor proteins (Fig. 2b), LO-C1 of G11-514P is 
aligned to LO-A2 (MLLPFFWI) rather than LO-A1, leav-
ing a big gap at the position of LO-A1. Such alignment 
discrepancy is due to the different nature of alignment 
algorithms, where one is multiple sequence alignment of 
the whole proteins and the other is pairwise alignment of 
local sequence fragments within the protein. This further 
suggests that the accuracy of whole protein alignment is 
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susceptible to large variation in protein length and the 
number of linusorb domains (Table 1).

Linusorb domains are embedded in repeat structures 
and flanked by conserved residues
Given that 4 of the 5 precursor proteins contain multi-
ple linusorb domains, we hypothesized that these linu-
sorb domains are in repeat structures. Analysis of protein 
sequences by RADAR detected multiple repeats in 4 
proteins (Data S2). Alignment of the identified repeats 

and G11-514P which contains a single linusorb domain 
reveals a conserved pattern in the sequences flanking 
the core linusorb domains (Fig. 4). Each linusorb domain 
is embedded in a repeat unit and flanked by conserved 
residues. The most conserved residues are D at the − 2 
position and G at the + 2 position, as highlighted in bold. 
Some repeats of G3-449N and G4-136N have no orbitides 
identified chemically and thus are marked by “?” in Fig. 4. 
Nonetheless, with such repetitive pattern it is reasonable 
to specify the sequence aligned with the known linusorb 

Fig. 2  Multiple sequence alignments of (a) 11 linusorb domains and (b) 5 linusorb precursor proteins. Different regions are shaded in different 
colors in accordance with the coloring scheme of Fig. 1
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domains in these repeats as linusorb-like domain (LLD), 
e.g., GMAPMWVTV in G3-449N. Importantly, the 
flanking sites between linusorb domains and LLDs dif-
fer at position + 3, with K and S in the former and latter 
respectively. The linusorb precursor protein G11-514P is 

the only exception where K is substituted by a stop codon 
at the + 3 position.

Apart from these 3 absolutely conserved sites in 
the repeats of known linusorb domains, sites imme-
diately flanking the linusorb domains are conserved 
at lower levels: the − 1 position is equally shared by D, 

Fig. 3  Phylogenetic trees of (a) 11 linusorb (LO) domains and (b) 5 linusorb precursor proteins. Neighbor-Joining method was used to cluster the 
sequences aligned by MUSCLE. Numbers in blue above the nodes represent the bootstrap values of 1000 replications. Only nodes with bootstrap 
values ≥60 are considered significant and have their bootstrap values displayed. Numbers in black below the nodes represent the branch lengths, 
i.e. genetic distance between two nodes



Page 6 of 19Song et al. BMC Genomics          (2022) 23:534 

A and G; the + 1 position is dominated by F, with I and 
V as minor amino acids (Fig.  4). Note that the − 1 G is 
part of the linusorb domains in LOs E1 – E3 as the 
G-appended analogues of LOs B1 – B3. Here the cleav-
age site is between the − 2 D and − 1 G instead of C-ter-
minal to the − 1 G as seen in most linusorb cases. This 
rare exception is likely the result of alternative cleavage 
by the protease or another type of protease with a differ-
ent cleavage specificity. Nevertheless, both LOs B1 – B3 
and their G-appended analogues LOs E1 – E3 share the 

same repeats, and thus this conserved pattern remains 
unchanged in the alignment regardless of the alternative 
cleavage scheme.

Genome re‑annotation retained repeat‑containing 
proteins for database mining
One limitation of tBLASTn lies in the uncharacter-
ized subject sequence retrieved from the directly-trans-
lated genome. The tBLASTn tool directly translates 
the genome in 6 frames and reports any locally-aligned 
sequences. It remains unknown as to whether the match-
ing subject is in the coding or non-coding region. To 
focus mining onto only coding sequences, it is necessary 
to annotate the genome and use the predicted proteome 
as the database for mining. The previously annotated flax 
reference genome [23] contains 43,484 predicted genes, 
among which none of the 5 linusorb precursor proteins 
were identified, probably due to repeat masking before 
annotation. Our annotation scheme without repeat 
masking using BRAKER2 predicted a total of 57,156 
genes which contained 4 of the 5 linusorb precursor 

Table 1  Lengths and numbers of linusorb domains in the 5 
linusorb precursor proteins

Precursor protein Total 
length (aa)

# of linusorb 
domains

Average 
linusorb 
domain length

G11-516P 204 3 8.7 ± 0.6

G11-514P 76 1 9 ± 0

G14-170 N 219 5 8 ± 0

G3-449N 223 1 9 ± 0

G4-136N 129 2 9 ± 0

Fig. 4  Multiple sequence alignment of repeats identified in the 4 precursor proteins and an extended region of G11-514P containing the single 
linusorb domain with some flanking residues. Repeats are numbered on the left of the alignment and the name of linusorb domain in each 
repeat is shown on the right, while repeats containing undetected linusorb-like domains (LLDs) are marked by “?”. Linusorb domain sequences are 
italicized in the alignment, except LOs E1 – E3, the 3 glycine-containing analogues of LOs B1 – B3, which are underlined. Consensus sites flanking 
the linusorb(−like) domains are highlighted in bold. The scale on the top marks the starting position (0) of the linusorb domain, and the flanking 
sites are numbered as minus towards the N-terminus and as plus towards the C-terminus. Colors of amino acids employed the hydropathicity color 
scheme in which hydrophobic amino acids (YVMCLFIW) are colored black, hydrophilic (RKDENQ) are blue and neutral (SGHTAP) are green
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proteins. Only G11-514P, the single-linusorb precursor 
protein with a length of 77 aa, was not identified.

Unique from the other 4 repeat-containing counter-
parts, G11-514P implies a larger number of protein can-
didates embedded with a single linusorb or linusorb-like 
domain encoded in the genome. They are unrecognized 
by BRAKER2 probably due to short length or unusual 
structure. To maximize the coverage of putative pro-
teins, we mined the virtual ORF library generated by the 
EMBOSS tool getorf as it can capture every possible start 
codon without relying on a specified gene model. Expect-
edly, the virtual ORF library contains G11-514P, with 
the same ORF sequence terminated after LO-C1 and 
two flanking residues FG at the C-terminus. The other 4 
repeat-containing linusorb precursor proteins have iden-
tical sequences except G14-170 N lacking the first exon 
translate, as getorf does not interpret splice-sites.

Profile‑based search for LLDs
The presence of repeats and their variable number in 
the linusorb precursor proteins might pose a challenge 
for whole protein alignment, and dissecting multiple 
repeat regions into individual repeat units might solve 
this problem. Aligning repeats across different proteins 
enables the identification of both conserved and variable 
regions within the repeats. Potential homology can occur 
not only at the whole protein level but also at the repeat 
level, and thus it would be useful to identify homologous 
sequences of the linusorb-embedded repeats in the pro-
teome. Thus, our mining strategy was transformed from 
sequence-based to profile-based. The following sections 
report the results of two mining strategies: (1) an iterative 
search for homologous sequences of linusorb-embedded 
repeats using algorithm-derived profiles, and (2) a string 
search for sequences matching profiles composed of con-
served flanking sites. Both strategies are based on dif-
ferent assumptions and provide unique perspectives for 
exploring linusorb-like sequence diversity.

Iterative searches with algorithm‑derived profiles
Iterative searches can efficiently identify sequences with 
varying homology. Such searches begin with the gen-
eration of profiles from the set of linusorb-embedded 
repeats which are then used as queries to search the 
proteome for similar sequences. Significant matches are 
combined to update the profile which is then used in 
the next round of search. The search is iterated until no 
more new sequences are found within the significance 
threshold. Two models were used to describe profiles. 
The Position Specific Score Matrix (PSSM) is based on 
the frequencies of each residue in a specific position of a 
multiple sequence alignment and is used as query in the 
Position Specific Iterative BLAST (PSI-BLAST) search. 

The second is a probabilistic “profile hidden Markov 
model” (profile HMM) trained from a multiple alignment 
and used as query to search a sequence database using 
the HMMERsuite. The mining results of both iterative 
search methods are as follows:

PSI‑BLAST search with PSSM  The PSSM used for PSI-
BLAST was built from the multiple sequence alignment 
of 12 linusorb-embedded repeats (marked with the linu-
sorb name at the end of the repeat in Fig. 4). Using the 
PSSM as a query, the first round of PSI-BLAST retrieved 
4 linusorb precursor proteins as the top 4 matches (Data 
S3). The first two matches are G11-516P (proteome ID: 
g24919) and G14-170 N (g7437) with E-values of 3e− 10 
and 1e− 4, respectively. The third and fourth matches are 
G3-449N (g53356) and G4-136N (g33422) with E-val-
ues of 0.006 and 0.007, respectively. The reason for this 
order of matches is that the first sequence in the multiple 
alignment (G11-516P1 in Fig. 4) used to build the PSSM 
was adopted as the “master” sequence by PSI-BLAST 
and then used as the representative query sequence for 
the alignment with all subject sequences in the output 
matches. It is worth reminding that the query for PSI-
BLAST search is PSSM rather than the individual repeat 
G11-516P1. Nevertheless, the ranking order of matches 
along with the large gap of E-values between the second 
and third matches indicates that the repeats between 
proteins from the same clade (G11-516P and G14-170 N, 
G3-449N and G4-136N; Fig. 3b) are more closely related 
than between those from different clades (e.g. G14-170 N 
and G3-449N; Fig. 3b). The same pattern of matches was 
reproduced when repeats of proteins from the other 
clade, e.g. G3-449N1, were placed as the first sequence 
in the training alignment set for PSSM (data not shown). 
This suggests that the relationship among the repeats is 
consistent with their precursor proteins, in that repeats 
of proteins from different clades are more distantly 
related as indicated by their higher E-values (Fig. 3b).

The remaining matches after the top 4, starting with an 
E-value of 0.48, are unknown proteins (Data S3). Despite 
the lack of significance in most circumstances, all these 
alignments are anchored by several conserved sites with 
high PSSM values: the D at − 2 position in the starting 
alignment, F and G at + 1 and + 2 positions, respectively. 
The search converged after the second round which 
retrieved two significant matches, namely G11-516P and 
G14-170 N, as well as two insignificant matches that were 
not found in the previous round. The two insignificant 
matches also contain conserved flanking sites, especially 
consecutively at the C-terminus (FGK), highlighting the 
weight of these sites in the PSSM computed from the 
candidates of the first round.
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HMMER search with profile HMM  HMMER is known 
for its sensitivity in detecting even more remote homo-
logues than PSI-BLAST because its algorithms employ 
probability models that take into account the transi-
tions of states (match, insertion, deletion) within one site 
and across adjacent sites in the alignment, while PSSM 
assumes all sites are independent of one another [28]. 
A profile HMM built by hmmbuild on the alignment 
of 12 linusorb-embedded repeats (Fig.  4) was used as a 
query for the search of proteome by hmmsearch. Protein 
matches above the default inclusion threshold were con-
sidered significant. An iterative search was performed 
manually by querying the proteome with an updated 
profile HMM built from the alignment of all matches 
from previous rounds until no more new matches were 
found. Three rounds of hmmsearch retrieved 8 new pro-
teins in addition to the original linusorb precursor pro-
teins (Data S4). Of the 8 proteins, only 2 were retrieved 
by PSI-BLAST, and these 2 matches in PSI-BLAST lack 
significance due to high E-values (> 0.01). This reflects 
that PSI-BLAST and HMMER employ different pattern 
recognition algorithms and schemes for scoring sequence 
alignments.

Within the 8 protein matches there are 58 motifs sig-
nificantly matching the profile HMM, as the E-values 
are lower than both per-sequence and per-domain inclu-
sion thresholds (Data S4). HMMER considers a match 
to be “true” by first looking for the independent E-value 
(per-sequence threshold) of 0.01 or less, and if the 

independent E-value is between 0.01 and 1, then check-
ing for the conditional E-value (per-domain threshold) of 
0.01 or less [29]. As determined by RADAR, all these 8 
proteins contain multiple (> 2) repeats.

All 58 motifs retrieved by hmmsearch are members of 
the identified repeats, and thus are potential homologues 
of the 12 linusorb-embedded repeats in Fig. 4. Since the 
number of matches is large, sequence logos were created 
from the 12 linusorb-embedded repeats (Fig. 5a) and the 
58 LLD-containing repeats (LLDRs) (Fig. 5b). The logos 
are anchored by a few larger icons representing the most 
conserved residues. Both groups of motifs share two 
absolutely conserved residues: D at − 2 site (the 10th res-
idue on both scales) and G at + 2 site (the 22nd residue 
in Fig. 5a and the 23rd residue in Fig. 5b). The linusorb-
embedded repeats have another absolutely conserved 
K at + 3 site (23rd residue in Fig. 5a), while the + 3 site 
in the LLDRs are shared by K and Q. The F at + 1 site 
is dominant in linusorb-embedded repeats but absolutely 
conserved in LLDRs. These interesting contrasts sug-
gest that F at + 1 site is more prevalent in these linusorb-
related motifs (both linusorb and linusorb-like) while I 
and V as minor occurrences may be the result of DNA 
mutations in the first position of the codon (UU[UC] = F, 
AU[UCA] = I, GU[UCAG] = V). Likewise, point muta-
tions may account for the introduction of Q (GA[AG]) 
from the dominant K (AA[AG]), as these amino acids are 
coded by highly similar codons. Another difference lies in 
the − 1 site, where the LLDRs are equally shared by D, G 

Fig. 5  Sequence logos of (a) 12 linusorb-embedded repeats of the 5 known linusorb precursor proteins; (b) 58 potential homologues from 8 LLDR 
proteins retrieved by HMM search (Data S4); (c) 223 non-homologous repeats in 25 LLDR proteins extracted by pattern-matching string search
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and A, but the LLDRs are dominated by A. The LLDs in 
the repeats (residues 12–21 in Fig. 5b) are highly diverse 
and share few residues with the linusorb domains (resi-
dues 12–20 in Fig. 5a). This is consistent with the hyper-
variability generally found in the known linusorbs and 
other cyclic peptides within a species [30–32].

Proteome mining based on profile‑matching string search 
for LLDs
As revealed in the above two algorithm-based searches, 
potential homologues of the linusorb-embedded repeats 
are characterized of (1) repetitiveness, (2) variable LLDs 
and (3) conserved flanking residues. The conservation 
of flanking sites has been reported to play a vital role in 
the recognition by modification enzymes during the bio-
synthesis of cyclic peptides in other species [30, 33–38]. 
The above two algorithms, both PSI-BLAST and HMM, 
are designed to find potential homologues of the entire 
repeat. This means that while a few highly conserved 
flanking sites have the most weight on the profile, other 
non-random sites in the repeat, such as the linusorb 
domain and some less conserved flanking sites at both 
termini, also account for the profile. Since the known 
linusorb domains are hypervariable, it would be useful to 
randomize the LLD in the profile.

We thus developed a mining method focused on flank-
ing site conservation by generating 26 profiles to char-
acterize an LLDR (Table S1). These 26 profiles cover 
all combinations of residues at the 5 most conserved 
flanking sites discussed above. As illustrated in Fig.  6, 
conservation of the 5 flanking signature sites exhib-
ited variability: 3 absolutely conserved residues, namely 
D (− 2), G (+ 2) and K (+ 3), and 2 less conserved sites 

contiguous to the linusorb domain: [DAG] (− 1) and 
[FVI] (+ 1). The region corresponding to the linusorb 
domain was left random to maximize its sequence varia-
bility. Nevertheless, considering the 8 identified linusorbs 
contain 8 or 9 residues (average length = 8.5), the length 
of possible linusorb domains was set at a range from 4 to 
13 residues (average length ± 4) as a reasonable length of 
published orbitides [31, 39–41].

A Python script was written and executed to search 
both the predicted proteome and the virtual ORF library 
for strings matching regular expressions correspond-
ing to the 26 profiles. Search results are summarized in 
Table S1. The 26 profiles are characterized by their infor-
mation contents that quantify the uncertainty of each 
site in the profile. Regression analysis was performed to 
model the scattered data series and correlate the profile 
to the database. As the information content of the pro-
file increases, the proportion of hits (proteins or ORFs) 
containing string matches decreases linearly (R2 = 0.83) 
in the proteome and exponentially (R2 = 0.70) in the ORF 
library (Fig. 7a). Both databases exhibit different patterns 
of trends due to the drastic difference in database size 
and different numbers of hits in each profile. When the 
information content exceeds 9, the proportions of hits 
decrease significantly in both data series. There are 6 pro-
files with information contents higher than 9 and at least 
4 of the 5 sites specified. We thus consider that these 6 
profiles reasonably characterize putative LLDs and will 
further investigate the mining results from these 6 pro-
files. The total number of hits that contain strings match-
ing these 6 profiles in the ORF library is around twice that 
in the proteome (Table S1). This suggests there should be 
a considerable number of proteins like G11-514P uniden-
tified by the gene-calling algorithm. It is worth noting the 

Fig. 6  Profiles designed for the search of possible LLDs. Different conserved sites were specified: Profile 1 has all 5 sites specified; Profiles 2–6 
alternate one random site for each
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virtual ORF library can only provide an estimate of such 
proteins potentially encoded in the genome; it is not reli-
able at the sequence level per se.

We also look at the ratio of matching strings to the hits 
in relation to the information content of profile (Fig. 7b). 
Both databases exhibit a downward trend best mod-
elled by power functions towards the increase of profile 
information content, although the R2 values are lower 

than 70%, meaning that the data series are highly dis-
persed and thus modestly fitting the regression model. 
Interestingly, while the proteome has an average ratio 
of 4.06 ± 3.85, ratios in the ORF library remain constant 
across all profiles, with a mean of 1.21 and standard 
deviation of 0.18 (Table S1). In other words, every ORF 
hit contains about 1 string match. This may be explained 
by the fact that the virtual ORFs are simply fragments 

Fig. 7  a Correlation between profile information content and the proportion of protein hits containing strings matching the profile in the 
predicted proteome and virtual ORF library. b Correlation between profile information content and the ratio of matching strings to protein or ORF 
hits. Regression model of each data series is shown in the legend and the R2 value is marked next to the regression line
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starting with a start codon and terminated when encoun-
tering a stop codon, without detecting the introns and 
joining the exons. Nonetheless, both the proteome and 
the ORF library have their ratios gradually merge in the 
6 profiles with information contents being higher than 9. 
We interpret this as a sign of consensus sequences in the 
hits of these 6 profiles. These hits appear to contain few 
introns, i.e., the protein is encoded by a single exon. The 
lack of intron is commonly found in the 5 linusorb pre-
cursor proteins, with only 1 protein (G14-170 N) contain-
ing an intron.

Repeat structure is another feature in most of the linu-
sorb precursor proteins and can be applied to filter the 
primary candidate pool. If a protein contains only one 
profile-matching string in its sequence, most likely it 
is a random match and unrelated to the linusorb pre-
cursor proteins. Therefore, a Python script was writ-
ten to extract protein hits with multiple repeats (≥3) of 
the matching strings. The extracted proteins containing 
no fewer than 3 matches were parsed by repeat finder 
RADAR to determine if the matching strings exhibit 
repeat patterns. As a result, in addition to sequences that 
matched the 4 known repeat-containing linusorb precur-
sor proteins, 25 new proteins were detected to contain a 
total of 281 profile-matching repeats and thus were iden-
tified as LLDR proteins. For easier tracking the locations 
of LLDR encoding genes in the genome, the 25 LLDR 
proteins were denoted the format “Lu (chromosome 
number)-(accession number of predicted gene)”, e.g. 
Lu1–17,106. Names of the 4 linusorb precursor proteins 
remain unchanged for consistency with published litera-
ture. Among them only 10 were identified by the previ-
ous genome annotation (Table  2). These differences are 
not surprising given the complexity of confirming repeti-
tive genomic structures using DNA sequencing, assem-
bly and annotation methods, and warrant further study 
using both biochemical and Sanger sequencing methods.

Figure 8 is a Venn diagram depicting the 25 LLDR pro-
teins together with 4 linusorb precursor proteins cat-
egorized by their profile types (information content > 9, 
Fig.  7). Note that these proteins are identified based on 
profile matching and motif repetition. There are 17 pro-
teins matching Profile 1 in which all 5 flanking sites are 
conserved with linusorb-embedded repeats. Except Pro-
file  1, the remaining 5 profiles differ from one another 
by one site. Nevertheless, it is beyond our expectation 
that 11 proteins are commonly shared by all 6 profiles, 
accounting for 50–79% (63% on average) of the collec-
tion in each profile. Profiles  2–6 overlap 76–94% (87% 
on average) of the 11 proteins matching Profile  1. Such 
major overlaps suggest that the 5 conserved flanking sites 
are either shared by common ancestry or under func-
tional selection, for example, essential for recognition by 

modification enzymes involved in the processing of the 
precursor protein which could lead to convergence with 
respect to selection for particular polymorphisms.

The 5 flanking signature sites play a dominant role 
in potential homology
The 8 proteins retrieved by HMMER (Data S4) are 
among the 25 LLDR proteins (Fig.  8), which indicates 
that repeats in these 8 proteins are not only potentially 
homologous to linusorb-embedded repeats but are also 
highly conserved in most of the 5 flanking signatures. 
Among the 8 proteins, 6 match Profile 1 with all 5 flank-
ing signatures conserved. The other 2 proteins, Lu10–
34,966 which matches Profile  3 only and Lu9–15,288 
which matches Profiles 5 and 6, have 4 conserved flank-
ing signatures. Nevertheless, these 2 proteins contain 
26 and 16 repeats, respectively, most of which have the 
5 flanking signatures conserved and thus are poten-
tial homologues of the linusorb-embedded repeats. The 

Table 2  LLDR proteins found or not found in annotation v1.0

a The v1.0 annotation is accessed via Linum usitatissimum genome v1.0 on 
Phytozome (ID: 200) at https://​phyto​zome-​next.​jgi.​doe.​gov/​info/​Lusit​atiss​
imum_​v1_0

LLDR protein Matched accession 
in annotation v1.0a

Lu1–17,016 Lus10029186

Lu1–18,055 Lus10005187

Lu1–18,070 no

Lu2–51,734 Lus10014515

Lu3–56,299 no

Lu5–45,630 no

Lu5–46,938 no

Lu5–47,766 Lus10028304

Lu6–41,637 Lus10015218

Lu8–2811 no

Lu8–3343 Lus10002240

Lu8–3470 Lus10007009

Lu9–15,288 no

Lu10–34,966 Lus10031895

Lu10–38,024 no

Lu10–38,063 no

Lu11–24,918 no

Lu11–26,217 no

Lu11–28,070 no

Lu12–9873 no

Lu12–11,698 Lus10031461

Lu12–11,761 no

Lu13–23,576 Lus10032171

Lu14–4819 no

Lu14–5765 no

https://phytozome-next.jgi.doe.gov/info/Lusitatissimum_v1_0
https://phytozome-next.jgi.doe.gov/info/Lusitatissimum_v1_0
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remaining few are the ones matching 4 flanking signa-
tures and thus do not meet the criterion for significant 
sequence homology.

As exemplified above, not all repeats in the 8 pro-
teins retrieved by HMMER are potential homologues 
of the linusorb-embedded repeats, and some do not 
meet the E-value threshold. We thus classified the 
281 profile-matching repeats into two categories: 58 
potential homologues and 223 non-homologues of the 
linusorb-embedded repeats. Comparing these two cat-
egories reveals which sites contribute to the significance 
of potential homology by the algorithm in HMMER. The 
sequence logos of 58 potential homologues in Fig. 5b and 
223 non-homologues in Fig.  5c are similar, with some 
common features including two dominant residues D 
(10th and 12th positions in Fig.  5b and c, respectively) 
and F (23rd and 27th positions in Fig. 5b and c, respec-
tively). However, the absolutely conserved G (24th posi-
tion in Fig.  5b) in the potential homologues are equally 
dominant with A in the non-homologues (28th position 
in Fig. 5c).

Although in non-homologues the 5 signature flank-
ing sites are dominated by the same residues as homo-
logues and linusorb-embedded motifs (Fig.  5a), note 

that combinations of residues matter. In particular, the 
homology may not be significant if one site is conserved 
but other sites vary. This is supported by the percent-
ages of repeats matching Profile  1 in the total number 
of repeats in the protein matches from different profiles, 
because only in Profile 1 are all 5 flanking signatures con-
served while the other 5 profiles vary in one site. Filtering 
the 281 repeats with Profile 1 criteria reveals 94 repeats 
matching Profile  1, among which there are 38 signifi-
cant homologues (Fig. 9). On one hand, the fact that the 
profile-matching set overlaps 65.5% of the 58 potential 
homologues suggests that even though all the 5 flanking 
signature sites are conserved, other sites contribute sig-
nificantly to the detected homology. On the other hand, 
the remaining 20 potential homologues do not match 
Profile  1 but all match other 5 profiles, indicating that 
significant homology requires conservation in at least 4 
of the 5 flanking signature sites.

The above comparison supports the dominant role of 
the 5 signature flanking sites in the significance of homol-
ogy. Meanwhile, as indicated above, other sites in the 
repeat also contribute. Proline consistently dominates 
both the linusorb domains (15th position in Fig. 5a) and 
the LLDs (19th position in Fig.  5b), but such dominant 

Fig. 8  Venn diagram displaying 25 LLDR proteins and 4 linusorb precursor proteins identified to contain repetitive motifs matching 6 different 
profiles. The number of proteins in each field is indicated. Overlapping fields represent proteins shared by more than one profile. The diagram was 
created by the online tool InteractiVenn
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P is missing in the non-homologues (Fig. 5c). It is there-
fore reasonable to associate this P with the homology of 
linusorb-embedded repeats. There should be more other 
sites with considerable weights in the profile HMM but 
less visibly evident in the sequence logo.

Potential correlation between the leader peptide region 
and the core peptide region
The leader peptide located N-terminal to the core pep-
tide region is an important part for recognition by the 
post-translational modification enzymes and export of 
the modified precursor protein [2]. It contains a signal 
sequence at the N-terminus that directs the precursor 
protein to a specific cellular compartment for post-trans-
lational modifications. Therefore, the leader peptides of 
the 5 known linusorb precursor proteins may share some 
conserved patterns in their sequences that are useful for 
proteome mining to identify proteins with similar leader 
sequences. A profile HMM was built from the alignment 
of leader peptides of the 5 linusorb precursor proteins 
and used as a query to search the predicted proteome 
(Data S5). The first round retrieved 1 significant match 
beyond the original leader peptides. This hit, Lu2–51,734 
(proteome accession: g51734), was among the 25 LLDR 
proteins identified above. The N-terminal region of 
Lu2–51,734 matches the input profile HMM, with many 
residues aligned consecutively as marked by the aster-
isks and scores higher than 5 in the match alignment. 
This supports that the N-terminal region of Lu2–51,734 
is homologous to the leader peptides of the linusorb pre-
cursor proteins and may also act as a leader peptide. The 
second round of HMM search using the updated profile 
HMM built from the alignment of the N-terminal region 
of Lu2–51,734 and the original leader peptides retrieved 

no additional matches and thus terminated the HMM 
search.

There are 4 hits with larger E-values, among which 
Lu1–18,055 (g18055) and Lu3–56,299 (g56299) are 
members of the 25 LLDR proteins. The other 2 hits, 
g39692 and g11605, were analysed by RADAR for the 
presence of any repeats. Only g39692 contains repeats, 
and importantly, the 2 repeats match our customized 
profile: DGAVILVNIFGK and DATMWGGVDSFGK 
(conserved flanking signatures underlined). This pro-
tein was neglected in the profile-based proteome mining 
because it contains fewer than 3 repeats. Nonetheless, 
the fact that proteome mining based on leader peptide 
homology found potential homologues of repeats in the 
core peptide region suggests strong correlation between 
the leader peptide and the core peptide region in these 
LLDR proteins. Conservation of both the leader peptide 
and flanking signatures further suggests that these LLDR 
proteins may undergo similar post-translational modifi-
cation to the linusorb precursor proteins.

Discussion
Goal of mining: genetic diversity or chemical diversity?
Since the advent of next-generation sequencing, omics 
database mining has been driving new approaches to the 
discovery of natural products, especially RiPPs because 
of their direct link between the gene sequences and 
the peptide products. However, the diversity of RiPPs 
poses a challenge for mining to predict RiPPs-encod-
ing sequences. Previous mining practices have largely 
focused on identifying potential homologues of cyclic 
peptide precursor proteins in closely related species. 
Numerous peptides have been identified by MS analysis, 
but a larger majority of mining candidates have not been 
validated through chemical identification of products. 
Little attention has been paid to candidates identified by 
omics with no corresponding product or the relationship 
between these sequences and the detected ones. Most 
mining candidates have been retrieved by employing 
search tools like BLAST based on their high similarity 
with a known protein sequence, and thus contain genetic 
information related to the biosynthetic mechanisms and 
evolution of cyclic peptides. Here we employed bioin-
formatics tools to explore the genetic diversity of linu-
sorbs, the flaxseed orbitides. Each search tool identified 
patterns from different regions of the linusorb precur-
sor proteins, which resulted in the detection of novel 
linusorb-like sequences. The collection of linusorb-like 
sequences provides a diverse pool for subsequent studies 
on the evolutionary relationship to the known linusorb 
sequences and expands the candidate pool of potential 
linusorbs that can be synthesized in engineered organ-
isms for practical applications.

Fig. 9  Venn diagram displaying different categories of repeat motifs. 
Total numbers of repeat motifs under different categories are shown 
in the legends, and numbers in the diagram represent the numbers 
of repeat motifs inside each isolated area
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Theoretically, genetic diversity and chemical diversity 
of RiPPs are related to each other in that every RiPP a 
plant produces is encoded by a gene sequence; however, 
the link between the gene and the peptide has proven 
to be weak. Several factors, both biological and techni-
cal, limit the diversity of peptides that can be identified 
chemically. From the biological perspective, peptide 
biosynthesis involves expression of a protein as a pre-
cursor for post-translational modification by proteolytic 
enzymes. The production of peptides depends on regula-
tion of the precursor protein expression (i.e., how much, 
when and where), the activity of modification enzymes 
and many other factors associated with downstream 
metabolic pathways. Consequently, only those minimally 
modified peptides resemble the primary sequences the 
most and are readily detectable, representing a subset of 
all possible peptide sequences, as the discovery of pep-
tides and their variants largely relies on prior knowledge 
of their physicochemical properties.

To achieve unambiguous identification, analytical pro-
cesses which involve extraction of crude peptides, sepa-
ration by liquid chromatography (LC) and determination 
by mass spectrometry (MS) need to be customized for 
a specific class of peptides based on their molecular 
weight, polarity, linkage moiety and other structural 
information, most of which is obtained from empirical 
studies of known peptides. This is a bottleneck for identi-
fying novel peptides with unknown modifications which 
might require special treatment for successful analysis. 
Undetected peptides might share the same precursor 
proteins or their homologues with the detected peptides, 
underlying useful clues about cyclic peptide evolution. 
Elucidating biological mechanisms solely from those 
chemically validated peptides may result in ascertain-
ment bias. Therefore, while chemical diversity based on 
product validation provides solid evidence, the conserved 
patterns from the known peptide sequences are more 
important for exploring a greater diversity of genetically 
relevant sequences to reveal a bigger picture at the omics 
level.

Profile‑based mining is suitable for exploring the genetic 
diversity of orbitide‑related sequences
The currently identified > 20 linusorb structural vari-
ants are derived from 11 linusorb domains in 5 precur-
sor proteins [3]. The distribution of linusorb domains is 
highly variable, in that some domains have multiple cop-
ies in the precursor protein and some domains are found 
in two precursor proteins. Such promiscuity and diver-
sity necessitate investigations of relationships among the 
known linusorb domains as well as their precursor pro-
teins. Linusorb domains within the same precursor pro-
teins are more closely related than to those from other 

precursor proteins. The 5 linusorb precursor proteins are 
clustered into two clades and a singleton (Fig. 3b), which 
indicates that they might have originated from 3 differ-
ent ancestors. This accounts for the BLAST outputs that 
using the whole precursor protein as query could only 
identify potential homologues within the same clade 
but not members from the other clade. The relationship 
among the 5 linusorb precursor proteins accentuates 
the fact that using the whole precursor protein as query 
restricts the mining to peptide variants from the poten-
tial protein homologues rather than from more distantly 
related proteins. Many reported mining practices largely 
employed this approach for the discovery of novel pep-
tides. For instance, Fisher et al. (2020) used PamAD, the 
precursor protein of known annomuricatins A and D, as 
a query for tBLASTn searches, which led to the discovery 
of five potential annomuricatin precursor proteins with 
high similarity [32]. All 9 annomuricatin domains in the 
5 protein candidates were chemically confirmed to exist 
as orbitides with variable sequences. Alignment of the 5 
annomuricatin precursor proteins showed multiple con-
served sites flanking the annomuricatin domains, dem-
onstrating their potential homology. While searching for 
potential homologues of known annomuricatin precursor 
proteins secures high validity of the predicted annomuri-
catins, the novel precursor proteins are highly similar in 
sequence, length and even the number of annomuricatin 
domains. This may exclude the possibility of finding more 
divergent annomuricatin or annomuricatin-like precur-
sor proteins.

The limitation of sequence similarity searches for local 
sequence alignment with the whole precursor protein 
query calls for a more specific mining strategy. Repeat 
detection and analysis of the core peptide region with 
respect to multiple orbitide-embedded repeats provides 
an informative approach for resolving the relationships of 
the 5 linusorb precursor proteins. Alignment of repeats 
revealed the hypervariability of linusorb domains flanked 
by several highly conserved sites. Such a uniform pat-
tern of linusorb-embedded repeat units across different 
precursor proteins has fostered a profile-based mining 
strategy. We compared 3 search methods that employ 
different algorithms of profile recognition to perform 
proteome mining for profile-matching sequences. While 
different methods retrieved different matches, all linu-
sorb precursor proteins present in the predicted pro-
teome were recovered by all 3 methods, highlighting 
the power of a profile-based mining strategy to identify 
distantly related proteins. Among the 2 algorithm-based 
search methods, HMMER extracted 8 new proteins 
in which 58 repeats significantly matched the profile 
HMM built from linusorb-embedded repeats, while PSI-
BLAST found only 2 of the 8 proteins as matches with 
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large E-values. The recovered sequences contrasted due 
to differences in profile construction and match scoring 
between both tools. Although non-significant matches 
do not meet the significance threshold, many of them 
contain sites matching the conserved sites in the input 
alignment. Additionally, using aligned repeats as query 
achieved higher E-values compared to using the whole 
protein as query due to the much shorter length than 
protein. A previous study on the repeat-containing kine-
tochore protein scaffold KNL1 revealed that classical 
homology searches using BLAST failed to detect suffi-
cient homology for KNL1 genes, and demonstrated the 
power of iterative homology search using HMMER that 
found 110 diverged homologues in a variety of eukary-
otic species [42]. The KNL1 protein homologues contain 
variable numbers of repeats, each of which is composed 
of a conserved MELT-like motif flanked by variable 
sequences. This repeat structure is not consistent with 
our linusorb-embedded repeats where the linusorb 
domain is variable and flanked by conserved residues. In 
essence, they share the same characteristic that a mixture 
of conserved and variable sites is unevenly distributed 
within a varying number of repeats among homologues.

Both PSI-BLAST and HMMER build profiles from 
the alignment of linusorb-embedded repeats, mean-
ing that any conserved sites in the linusorb domain will 
contribute to the profile. To maximize the variability of 
the linusorb domain, we developed customized profiles 
using the 5 most conserved sites flanking the linusorb 
domain represented by 4–13 random residues and wrote 
Python scripts to search the proteome for strings match-
ing the profile. Screening the primary matches for those 
containing multiple repeats identified 25 LLDR proteins 
with 281 profile-matching repeats. The 8 proteins with 58 
potential homologues of the linusorb-embedded repeats 
are a subset of the total collection. This profile-based 
string search method is one step further from HMMER 
by extracting a wider range of repeats that are distantly 
related to the linusorb-embedded repeats. The randomi-
zation of the linusorb domain region expands the collec-
tion of orbitides flax can potentially produce, from which 
we can gain more insights into the genetic relationship 
among these sequences.

Some of the published mining practices also appear 
to be profile-based, especially for cyclotides, for which 
the structures have been well studied. Park et. al. (2017) 
employed two search tools, BLAST and PROSITE, to 
search the transcriptomes of various Viola species using 
known cyclotide sequences as queries [20]. Matches were 
aligned and manually screened for sequences with 6 con-
served cysteines aligned to the known cyclotides. Com-
pared to our string search method using a pre-defined 

profile, this mining approach utilized the profile in the 
opposite way. The searches were based on the similar-
ity to known cyclotide sequences, rather than to a pro-
file built from the alignment of multiple sequences. 
Although the “profile”, i.e., 6 conserved cysteines aligned 
to the known positions, was applied to screen the ini-
tial matches, the screening was done from the poten-
tial homologues of known cyclotides extracted by both 
search tools. As their goal was to explore cyclotide evolu-
tion in the Viola genus, this mining process could extract 
sequences like the known cyclotides in other Viola spe-
cies, enabling the reconstruction of the evolutionary 
relationships of orthologues among different species at 
the cyclotide level. However, this approach cannot iden-
tify cyclotide-like domains with low similarity to known 
cyclotides but anchored by the 6 conserved cysteines. 
This contradicts their assumption that the sequence is a 
cyclotide precursor if the sequence contains the 6 con-
served cysteines aligned with previously known cyclo-
tides. Therefore, it is imperative to identify a specific goal 
and design a cohesive mining scheme towards the goal.

Repetitive elements should be treated with caution 
in the study of repeat‑containing proteins
One of the structural features shared by many cyclic pep-
tide precursor proteins is the repeats that constitute the 
core peptide region. These repeats have high sequence 
similarity and thus are identified as low-complexity 
sequences like those non-coding repeats. As it is a rou-
tine treatment to mask the repetitive elements in many 
genome assembly practices [43], a considerable num-
ber of repeat-containing genes are filtered out, as is the 
case for all the linusorb precursor proteins. The flax 
genome sequencing project identified 73.8 Mb repeti-
tive sequences using both homology-based methods and 
de novo identification methods, accounting for 24.4% of 
a total of 302 Mb WGS contigs [23]. These repeats were 
masked by RepeatMasker before the genome was anno-
tated. As a result, the proteome generated from the 
repeat-masked genome assembly was devoid of linusorb 
precursor proteins we previously identified. This poses a 
barrier not only for novel orbitide discovery but also for 
exploring orbitide-related proteins diversity. Therefore, 
to achieve a more accurate identification of the LLDR 
proteins, we retained the repetitive sequences in the 
genome assembly and predicted genes from the genome 
by integrating RNA-Seq reads aligned to the genome as 
experimental evidence of flax-specific gene models. The 
predicted proteome contains all the 4 known linusorb 
precursor proteins with repetitive structure in the core 
peptide region, and thus serves as a high-quality database 
for mining.
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Another treatment specific for repeats is to dissect 
them into individual repeat units and align them across 
different precursor proteins, due to their varying copy 
number and length from protein to protein. However, 
few studies have performed this treatment before their 
mining experiments. The potential relationships among 
the repeats could not be resolved until they were iden-
tified by the repeat finder RADAR and properly aligned. 
In terms of mining, using the entire protein as query 
failed to differentiate the hypervariable linusorb domain 
from the conserved flanking sites. The short length and 
discrete conserved sites interspersed by variable lengths 
of hypervariable domains hinder BLAST from accu-
rately finding homologues with different numbers of 
repeat units [42, 44]. Therefore, it is necessary to sepa-
rate each repeat and align them at the conserved flank-
ing sites for higher accuracy. Our profile-based mining 
methods extracted hypervariable repeats including those 
potentially homologous and those distantly related to the 
known linusorb-embedded repeats, demonstrating the 
genetic diversity of linusorb-related sequences at differ-
ent levels.

Conserved flanking sites: common ancestry or convergent 
evolution?
Our profile-based mining approach identified 25 LLDR 
proteins that contain 281 LLD repeats. These repeats 
share a structural profile with the linusorb-embedded 
repeats where a variable domain is flanked by 5 con-
served sites. From an evolutionary perspective, it would 
be interesting to know whether these conserved sites 
originate from shared ancestry or are resulted from con-
vergent evolution (i.e., representing a functional con-
straint). The HMM search result has shed light on this 
question. Among the 281 LLD repeats, 58 exhibit sig-
nificant sequence homology to the linusorb-embedded 
repeats, implying that they share common ancestry. 
However, the 8 LLDR proteins containing these 58 LLD 
repeats are unrelated to the 5 linusorb precursor pro-
teins, as tBLASTn found no additional matches in the 
genome with similarity comparable to the linusorb pre-
cursor proteins to themselves (Data S1). While the 58 
LLD repeats were determined to be significant homo-
logues in the HMM search, it is unclear how they became 
linked to the 8 LLDR proteins, and the lack of homol-
ogy between the 5 linusorb precursor proteins and the 
8 LLDR proteins potentially points to selection for par-
ticular polymorphisms under functional constraint (e.g., 
splicing recognition).

The remaining 223 LLD repeats do not meet the signifi-
cance threshold and thus are categorized as non-homo-
logues. Only the 5 signature sites are conserved in these 

non-homologues, flanking variable domains that are 
unrelated to the linusorb-embedded repeats. This addi-
tionally suggests that conservation of the 5 flanking sig-
nature sites in these 223 LLD repeats has resulted from 
convergent evolution for functional polymorphisms, e.g., 
playing a role in the recognition by proteolytic enzymes 
to cleave the linusorb precursor protein. In 25 LLDR 
proteins with no linusorbs identified, these sites may be 
also recognized by the same family of protease, but the 
particular protease homologue may function differently 
from catalyzing linusorb synthesis. Proteases have been 
shown to exhibit various functions in almost all aspects 
of plant life, including development, homeostasis, stress 
response and defense [45]. For example, the subtilisin-
like proteases (subtilases) are serine proteases that act 
on multiple substrates to regulate plant-pathogen inter-
action and immune response [46]. It is therefore reason-
able to infer that the conserved flanking sites in the 223 
LLD repeats are functionally selected along with the pro-
tease activity. More functional evidence of these proteins 
is required to clearly unravel the adaptive convergence 
process.

Conclusions
For natural products, genetic diversity underlies chemi-
cal diversity. Besides genetic factors, biosynthesis of 
natural products in plants is regulated by environmen-
tal conditions. Chemistry-directed research on natural 
products only reflects the surface of this profound net-
work. Therefore, the present work explored the genetic 
diversity of linusorbs in flax by bridging the gap between 
the sequenced genome and our previously isolated linu-
sorbs. We showed that conventional homology search 
by BLAST using the whole protein sequence as query is 
limited to finding potential protein homologues. Switch-
ing the mining strategy from protein-based to profile-
based has helped overcome the challenge of repeat 
number variation. Querying the proteome with profiles 
built from the alignment of linusorb-embedded repeats 
could retrieve all linusorb precursor proteins by both 
PSI-BLAST and HMMER, and HMMER worked better at 
searching for more distant homologues of the linusorb-
embedded repeats. The profile was further simplified to 
5 conserved sites flanking the randomized linusorb-like 
sequences. Repeats matching this customized profile 
represent the most diverse collection of linusorb-like 
sequences genetically related to the known linusorbs. 
How these sequences are related to one another will be 
the next question to answer, and determining their rela-
tionships will be the key to unraveling the evolutionary 
mechanism underlying their diversity.
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Methods
Sequence alignment and phylogenetic analysis
Sequence analyses were conducted using 11 linusorb 
domains and 5 known linusorb precursor proteins to 
investigate their relationships [3]. Multiple sequence 
alignments were generated by MUSCLE 3.8.31  [47, 48] 
using the following command:

$ muscle -in 5-precursors.fasta 
-fastaout 5-precursors_B62g10e1-
clusternj-dist1kmer20_3.aln -cluster 
neighborjoining -distance1 kmer20_3 
-matrix BLOSUM62 -gapopen -10 
-gapextend -1 -verbose -log 5-pre-
cursors_B62g10e1-clusternj-dist1k-
mer20_3.log

From the alignment a neighbor-joining (NJ) tree was 
constructed with 1000 bootstrap replications using 
MEGA7 [49]. Midpoint rooting was applied to the NJ tree.

BLAST search for potential protein homologues
The 5 known linusorb precursor proteins were used 
as queries to search the genome assembly of L. usi‑
tatissimum cv. CDC Bethune (GenBank accession: 
GCA_000224295.2) with tBLASTn. The substitution 
matrix was BLOSUM62. The word size was set to 2 and 
the expect value (E-value) threshold was 10 by default. 
Low-complexity filtration was disabled to ensure the 
whole protein sequence was queried.

Repeat‑retaining genome re‑annotation
The genome annotation conducted by Wang et  al. [23] 
removed repetitive elements from the genome assembly 
using RepeatMasker. Thus, the resulting proteome lacks 
the 5 known linusorb precursor proteins as positive con-
trols, which suggests that this proteome is not a suitable 
reference for predicting linusorb precursor protein ana-
logues. We thus re-annotated the genome assembly of 
Wang et al. [23] without masking repeats as follows.

The eukaryotic genome annotation pipeline, BRAKER2 
[50], was utilized to annotate the unmasked genome 
assembly. First, RNA-Seq reads produced by [51] were 
downloaded from NCBI and aligned to the CDC Bethune 
genome by HISAT2 [52]. Using hints from the align-
ments, the self-training algorithm GeneMark-ET [53] 
identified gene models by directing a semi-unsupervised 
training. The gene prediction program AUGUSTUS [54] 
also generated gene models from the alignments and cor-
roborated its gene models through training by the gene 
models from GeneMark-ET. Finally, with the support of 
combined gene models, AUGUSTUS predicted genes 
and alternative transcripts from the genome. BRAKER2 

output the predicted gene calls and corresponding 
proteome.

Homology search using PSI‑BLAST
An iterative search was performed with the tool PSI-
BLAST to mine the proteome generated from genome 
reannotation for potential homologues of the linusorb-
embedded repeats. First, a position specific scoring 
matrix (PSSM) was generated from the multiple align-
ment of linusorb-embedded repeats in the original 5 
precursor proteins. Then a PSI-BLAST search was con-
ducted to identify sequences matching the PSSM input. 
Matches with E-values below 0.01 were accepted and 
combined with the original alignment for the next round 
of search until no new matches were identified.

Homology search based on hidden Markov model (HMM)
Proteins containing repeat sequences that are poten-
tial homologues of the linusorb-embedded repeats 
were identified based on the profile HMM match. 
First, a profile HMM was built from the align-
ment of original linusorb-embedded repeats using 
the hmmbuild tool with default parameters in the 
HMMER suite [29]. Next, hmmsearch was conducted 
to search the BRAKER2-predicted proteome with 
the input profile HMM. Statistically significant pro-
tein matches were taken above the default inclusion 
threshold (10.0, HMMER User’s Guide, Version 3.2.1). 
Hits marked with “!” were determined as significant by 
HMMER, and the subject segments of these hits were 
considered as “true” homologues. These homologous 
subject segments were then extracted from the output 
file and aligned to the original alignment using hmma‑
lign based on the input profile. The combined align-
ment was used to build a new profile HMM for the 
next round of search. Such searching process was iter-
ated until no additional proteins were identified that 
met the inclusion threshold.

Proteome mining for strings matching customized profiles
Based on conserved sites in the alignment of linusorb-
embedded repeats, sequence profiles were created 
in the form of regular expressions that can be inter-
preted by Python, whereby a script was developed to 
automate proteome mining. Accessions containing 
sequence strings that matched the specified regu-
lar expression were extracted to a primary candidate 
pool. The primary candidate protein pool was refined 
using a Python script to enumerate candidate pro-
tein matches and screen for those with multiple (≥ 
3) matches. The refined candidate pool was then fil-
tered by detecting matching strings that exhibit repeat 
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pattern using RADAR [55]. Finally, proteins harbor-
ing multiple repeats were classified as proteins with 
Linusorb-Like-Domains-containing-Repeats (LLDR 
proteins). Prior to mining, the Python scripts were val-
idated for the ability to recover positive controls, i.e., 
the known precursor proteins from which the profiles 
were developed.

Visualization of repeats
WebLogo3 was employed to create sequence logos 
from the multiple sequence alignments of the fol-
lowing 3 datasets [56]: (a) the linusorb-embedded 
repeats identified by RADAR; (b) significant homo-
logues of the linusorb-embedded repeats retrieved 
from PSI-BLAST and HMM search; and (c) repeats 
matching the customized profile retrieved from the 
string search excluding the “true” homologues in (b). 
Sequences of each dataset were aligned by MUSCLE 
and each alignment was submitted to WebLogo3 for 
logo construction.
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