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GWAS and bulked segregant analysis reveal 
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Abstract 

Background:  Peanut (Arachis hypogaea L.) is a grain legume crop that originated from South America and is now 
grown around the world. Peanut growth habit affects the variety’s adaptability, planting patterns, mechanized har-
vesting, disease resistance, and yield. The objective of this study was to map the quantitative trait locus (QTL) associ-
ated with peanut growth habit-related traits by combining the genome-wide association analysis (GWAS) and bulked 
segregant analysis sequencing (BSA-seq) methods.

Results:  GWAS was performed with 17,223 single nucleotide polymorphisms (SNPs) in 103 accessions of the U.S. 
mini core collection genotyped using an Affymetrix version 2.0 SNP array. With a total of 12,342 high-quality poly-
morphic SNPs, the 90 suggestive and significant SNPs associated with lateral branch angle (LBA), main stem height 
(MSH), lateral branch height (LBL), extent radius (ER), and the index of plant type (IOPT) were identified. These SNPs 
were distributed among 15 chromosomes. A total of 597 associated candidate genes may have important roles in 
biological processes, hormone signaling, growth, and development. BSA-seq coupled with specific length amplified 
fragment sequencing (SLAF-seq) method was used to find the association with LBA, an important trait of the peanut 
growth habit. A 4.08 Mb genomic region on B05 was associated with LBA. Based on the linkage disequilibrium (LD) 
decay distance, we narrowed down and confirmed the region within the 160 kb region (144,193,467–144,513,467) on 
B05. Four candidate genes in this region were involved in plant growth. The expression levels of Araip.E64SW detected 
by qRT-PCR showed significant difference between ‘Jihua 5’ and ‘M130’.

Conclusions:  In this study, the SNP (AX-147,251,085 and AX-144,353,467) associated with LBA by GWAS was over-
lapped with the results in BSA-seq through combined analysis of GWAS and BSA-seq. Based on LD decay distance, 
the genome range related to LBA on B05 was shortened to 144,193,467–144,513,467. Three candidate genes related 
to F-box family proteins (Araip.E64SW, Araip.YG1LK, and Araip.JJ6RA) and one candidate gene related to PPP family 
proteins (Araip.YU281) may be involved in plant growth and development in this genome region. The expression 
analysis revealed that Araip.E64SW was involved in peanut growth habits. These candidate genes will provide molecu-
lar targets in marker-assisted selection for peanut growth habits.
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Background
Peanut (Arachis hypogaea L.) is a grain legume crop that 
originated from South America and is grown around the 
world [1]. Peanut seed is rich in oil and is a great source 
of protein, vitamins, and minerals, and it is added to 
many foods as a functional ingredient [2]. Peanut has 
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been grown for more than 3,500  years in tropical, sub-
tropical, and warm temperate regions throughout the 
world [3]. Because of the multiple agroclimatic zones, the 
characteristics of growth habits, seed, and pod are signif-
icant differences. Based on morphology and growth hab-
its, the species Arachis hypogaea L. is classified into two 
subspecies, A. hypogaea ssp. hypogaea and A. hypogaea 
ssp. fastigiata. The subspecies hypogaea is further divided 
into the botanical varieties known as var. hypogaea and 
var. hirsuta, while fastigiata is further classified into four 
botanical varieties named var. fastigiata, var. vulgaris, 
var. aequatoriana, and var. peruviana [4]. Among these 
classifications, the plant type of subspecies hypogaea is 
either prostrate (runner) or erect (bunch), and the plant 
type of subspecies fastigiata is entirely erect [5]. Growth 
habit, also called plant architecture or plant type, is an 
important morphological trait affecting crop yield and 
tillage method. The prostrate or big branch angle plant 
type presents loose canopy architectures, which are suit-
able for sparse planting. In contrast, a plant type with an 
erect or small branch angle can exhibit compact canopy 
architectures, which are suitable for high-density plant-
ing. Accordingly, plant architecture has been a major 
breeding target for crop improvement. Determination of 
genetic mechanisms controlling plant type will facilitate 
architecture improvement in peanut.

Some domestication-related genes of plant architec-
ture, especially the branch angle between the lateral 
branch and the main stem, have been cloned in crops. 
In rice, Li et  al. showed that the LAZY1 gene controls 
the angle of rice tillers, so the loss of function in LAZY1 
will cause the tiller angle to increase [6]. Jin et al. discov-
ered that the PROG1 gene controls the tiller angle and 
number of tillers, which makes it an important domesti-
cation-related gene that can be used to change rice archi-
tecture from prostrate to erect [7]. Wu et al. reported that 
a 110-kb deletion linked to the PROG1 gene on the short 
arm of chromosome 7 promotes the vital transition from 
the prostrate growth habit of wild rice to the erect growth 
habit of Asian cultivated rice [8]. Yu et al. (2007) demon-
strated that the difference between the TAC1 and tac1 
gene sequences presents a prostrate and an erect plant 
architecture, which has a mutation (AGGA → GGGA) 
in the 3’-splicing site of the fourth 1.5-kb intron in the 
3’-untranslated region [9]. Subsequently, the branch 
angle genes or QTLs have also been identified not only 
in monocot crops like maize [10], but also in dicots like 
rapeseed [11], sesame [12], peach [13], pea [14], and 
tomato [15]. Previous studies of peanut growth habit 
have revealed a disagreement on whether the inheritance 
of these traits is cytoplasmic or nuclear [16–20]. Addi-
tionally, whether the inheritance mechanism controlling 
branch angle is monogenic or polygenic remains unclear, 

as well [21–23]. Although molecular markers have been 
developed over the past few decades to study the genetic 
mechanisms of disease-resistance, stress-tolerance, and 
high yield, there are only several peanut studies deal-
ing with growth habits. Fonceka et  al. determined that 
peanut growth habit is controlled by several QTLs with 
differing amounts of phenotypic variation, utilizing a 
chromosomal segment substitution line population[24]. 
Kayam et  al. combined bulk segregant analysis with 
sequencing results and identified a major QTL for peanut 
growth habit on B05 within a ~ 1.1 Mb segment [23]. Tra-
ditionally, linkage mapping has been an effective method 
for mapping the regions of a genome with phenotypes in 
different populations, such as recombinant inbred lines 
(RIL) and double haploid lines [25, 26]. Moreover, bulk 
segregant analysis (BSA) offers a method for rapidly iden-
tifying genes or genomic regions tightly associated with 
a given phenotype. For example, two bulks were con-
structed with a distinct phenotype derailing the allele 
distribution in each bulk around the target genetic region 
controlling the traits and genetic differences were identi-
fied [27]. With the development of high-throughput gen-
otyping technologies and access to more computational 
power, combining whole genome sequencing with BSA 
can be an efficient way to identify QTLs [28]. In addi-
tion, GWAS is a quantitative approach based on LD that 
can associate genotype to specific phenotype in diverse 
populations [29]. To reduce the false positives gener-
ated from different QTL mapping methods, two or more 
methods can be coupled to capture genotypic informa-
tion and increase the power to verify associations [30]. 
Duo et al. identified a candidate gene (CIFS1) controlling 
fruit shape in watermelon, which combined the GWAS 
profiles among 315 accessions and BSA-seq mapping in 
the F2 population [31]. Mu et al., by using genome-wide 
linkage mapping and BSA-seq, mapped a wheat stripe 
rust resistance QTL in a 0.4 cM genetic interval on chro-
mosome 7B [32]. Zhao et al. found a major QTL on LG-F 
(chromosome 13) for resistance to Sclerotinia sclero-
tiorum via linkage and association mapping in soybean 
[33]. Sun et al. discovered and validated seven consensus 
QTLs for seed oil content from GWAS and linkage map-
ping methods in Brassica napus [34]. For peanut, Luo 
et al. using the BSA-seq method discovered the nine can-
didate genes in the genomic regions of 2.75 Mb on A09 
and 1.1 Mb on B02, which control shelling percentage in 
peanut [35]. Zhang et al. identified genetic markers asso-
ciated with the key agronomic trait, such as protein and 
oil content, by GWAS in peanut based on 268 lines and 
120 markers [36]. Zhang et  al. analyzed 11 agronomic 
traits in 158 peanut accessions by GWAS, and 1,429 
genes were identified in a 200 k genomic region related 
to domestication [37]. To date, there are few reports of 
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growth habit-related traits based on QTL-seq in pea-
nut. To identify candidate genes associated with pea-
nut growth habit-related traits, we performed a GWAS 
analysis using a peanut Affymetrix version 2.0 SNP array 
and the U.S. mini-core germplasm collection based on 
phenotypic information in two environments. Two DNA 
pools with extreme phenotypes in F2 population were 
utilized for BSA-seq. Two methods previously described 
were deployed to identify the candidate genes associated 
with growth habit-related traits in peanut. The results 
may provide a reference for genetic dissection of peanut 
growth habit-related traits.

Results
Phenotypic evaluation of growth habit‑related trait
To evaluate the phenotypic variation of growth habit-
related traits, five traits for LBA, MSH, LBL, ER, and 
IOPT in two environments were analyzed. The result 
showed large phenotypic variation within the U.S. pea-
nut mini-core collection. LBA, MSH, LBL, ER, and IOPT 
varied from 32.65 to 87.30, 8.50 to 63.40, 15.00 to 77.60, 
6.38 to 46.58, and 0.77 to 4.90, respectively (Table 1). The 
coefficient of variance ranged from 15.38% to 36.89% 
(Table 1). The ANOVA results based on phenotypic traits 
in the two environments indicated significant differences 
among genotypes, environments, and genotype × envi-
ronment interactions (Additional file  1). Correlations of 
LBA with LBL, ER, and IOPT were significantly posi-
tive, while LBA with MSH was negative in two environ-
ments. The correlation between MSH and LBL revealed 
a significantly positive relationship, while the relationship 
between MSH, ER, and IOPT revealed negative correla-
tions in two environments. The LBL had a significant 
positive relationship with ER and IOPT. A positive corre-
lation was also found between ER and IOPT (Additional 
file 2).

For the F2 population, to investigate the inheritance 
of LBA in peanut, a total of 548 F2 individuals derived 
from ‘Jihua 5’ × ‘M130’ segregated as 182 prostrate type, 
82 erect type, and 286 medium type, which didn’t fit any 
typical separation ratio of one gene model. Thus, the LBA 
trait was controlled by multiple genes.

Genetic variation, population structure and linkage 
disequilibrium in germplasm population
The 103 genotypes of the U.S. mini-core collection were 
examined using the SNP array (Affymetrix) at Gen-
eSeek (Lincoln, Nebraska, USA). A total of 12,342 SNPs 
markers were screened after filtering out SNPs with 
low-quality based on a call rate < 0.95 and minor allele 
frequency < 0.05. The marker density was shown in Fig. 1. 
Chromosome B09 had the maximum density of SNP 
(0.10 M/SNP) and the number of SNPs involved with it 
was 1,428, while chromosome A10 had the minimum 
density of SNP (0.37  M/SNP) and the number of SNPs 
involved with it was 293. The polymorphism informa-
tion content (PIC) values ranged from 0.26 to 0.30 among 
chromosomes, and the mean PIC was 0.28 (Table 2).

To evaluate the population variation, the analysis of 
population structure, phylogenetic relationship, and PCA 
were carried out using the 12,342 filtered SNPs. Structure 
analysis revealed that the U.S. peanut mini-core collec-
tion was clustered into four sub-populations (G1, G2, G3, 
and G4) (Fig.  2). G1, G2, and G3 demonstrated notable 
genetic differences, but G4 had no clear genetic differ-
ences from G1 and G2 (Fig. 2C). According to the result 
of the UPGMA tree analysis, the U.S. mini-core collec-
tion was also classified into four major clusters.

Among 103 accessions, there were four botanical vari-
eties that were classified based on morphological data 
collected from the field and current GRIN taxonomy [4]: 
var. fastigiata, var. hypogaea, var. peruviana, and var. vul-
garis (Additional file  3). As shown in Additional file  4, 

Table 1  Phenotypic variation for growth habit-related traits in the U.S. mini-core collection

SD, standard deviation; CV is the coefficient of variation

Environment Trait Max Min Mean SD CV(%)

Qingyuan LBA 87.30 36.10 67.85 10.43 15.38%

(China) MSH 32.50 8.50 18.67 6.42 34.40%

LBL 49.00 15.00 29.88 7.87 26.33%

ER 43.63 6.38 21.70 6.59 30.37%

IOPT 4.90 0.92 1.72 0.63 36.89%

Dawson LBA 87.30 32.65 68.71 12.80 18.63%

(U.S.) MSH 63.40 20.38 38.50 9.19 23.87%

LBL 77.60 26.55 51.97 10.14 19.52%

ER 46.58 11.75 28.20 7.34 26.03%

IOPT 2.68 0.77 1.38 0.30 21.52%
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the frequency of each botanical variety within each sub-
population was presented; 61.82% of hypogaea accessions 
were assigned to G1, 47.06% of fastigiata accessions were 
classified into G2, 64% of vulgaris were classified into G3, 
and 100% of peruviana accessions were classified into 
G4. Despite some discrepancies, the population structure 
is corresponding to the classification of botanical variety.

LD was estimated from the r2 (r2 < 0.2 was considered 
unlinked) correlation between each marker in the 103 
accessions of the U.S. mini-core collection. The LD decay 
in this population was approximately 0.16  M with r2 at 
0.2 (Additional file 5).

Generation and analysis of BSA‑seq data
For the paternal inbred line (‘M130’), 150,190 SLAFs 
were generated from 3,355,918 reads with an average 
coverage of 22.34-fold for each SLAF. For the mater-
nal line (‘Jihua 5’), 150,080 SLAFs were produced from 
2,673,407 reads, and the average coverage of each SLAF 
was 17.81-fold. For the analysis of the P-pool, 153,081 
SLAFs were screened from 6,595,001 reads in each geno-
type with an average coverage of 43.08-fold. For the anal-
ysis of the E-pool, 152,528 SLAFs were screened from 

5,720,671 reads in each genotype with an average cover-
age of 37.51-fold (Table 3). From the 153,423 SLAF tags, 
9,956 polymorphic SLAF were obtained. A distribution 
diagram of the markers on each chromosome was drawn 
according to the results of SLAF positioning on the 
genome (Fig.  3). After read-depth and quality filtration, 
only 1,911 high-quality and polymorphic SNPs remained 
for subsequent SNP-index and Δ(SNP-index) calculation. 
In the visualization of Δ(SNP-index) (Additional file  6), 
one sharp peak was observed on B05 with the Δ(SNP-
index) > 0.5823, which was concentrated in the 4.08  Mb 
regions on B05.

Genome‑wide association mapping for growth‑related 
traits in U.S. mini‑core collection
In this study, the 103 peanut germplasm accessions with 
12,342 (MAF > 0.05) SNPs were used to perform the asso-
ciation analysis. The quantile–quantile (QQ) plot showed 
that the GLM model (considering PCA) was suitable for 
reducing the number of false positive results (Additional 
file 7 and Additional file 8). Therefore, we conducted the 
GWAS for the growth-related traits with the GLM + PCA 
model. A total of 91 associated SNPs was detected in two 

Fig. 1  The distribution of SNPs detected in the entire association mapping panel. Red and gray horizontal bars show genomic regions that are rich 
and poor in SNPs, respectively 
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locations (Additional file 9). These SNPs were located on 
chromosomes A01, A02, A03, A04, A05, A06, A07, A09, 
A10, B04, B05, B06, B07, B08, and B10.

The nineteen SNPs were identified for LBA on chro-
mosomes A01, A04, A05, A06, A09, A10, B04, B05, and 
B06, and their PVE values ranged from 8.66% to 14.36%. 
Among these SNPs, there was one significant SNP on 
B06 with 14.36% PVE, and the eighteen suggestive SNPs 
distributed on different chromosomes. Chromosomes 
A04 and B06 had more associated SNPs than other chro-
mosomes, with 8 and 3 SNPs, respectively. In addition, all 
three loci for LBA were located close together in B06.

A total of the  16 suggestive SNPs were detected on 
chromosomes A05, B05, B06, and B07 for ER. There were 
10 SNPs on B07 in a genomic region from 11,291,810 to 
20,276,565 with the PVE ranging from 13.79% to 14.55%. 
On B06, there were 2 SNPs at positions 2,362,556 and 
135,069,925, respectively. The locus AX-147254196 in 
B06 was also detected in LBA. For IOPT, the  six SNPs 
were identified, including five significant SNPs on A04, 
A09, B04, B14 and B10, and one suggestive SNP on A02 
with the PVE ranging from 10.44% to 21.35%. Moreover, 
two SNPs were close in B04.

Thirty-eight and 12 associated SNPs were detected 
for MSH and LBL, respectively. The 38 significant SNPs 

for MSH dispersed on nine chromosomes contributed 
10.88% to 17.14% of PVE. Among 12 SNPs for LBL, 
AX-176798127, AX-176797149, and AX-176792618 were 
also associated with ER, and AX-147254196 was identi-
fied related to LBA, ER, and LBL.

Candidate genes associated with SNPs
Within the 160  kb of suggestive and significant SNPs, a 
total of 597 candidate genes were identified, among them 
113 were for LBA, 203 for MSH, 90 for LBL, 123 for ER, 
and 68 for IOPT (Additional file 10), respectively. These 
candidate genes were distributed on A01, A02, A03, 
A04, A05, A06, A07, A09, A10, B05, B06, B07, B08, B09, 
and B10. There were more genes detected in the A sub-
genome than in the B subgenome. Among these genes, 
66 genes were associated with plant growth (Additional 
file  11). Twenty-nine genes coding for the F-box pro-
tein or F-box protein interaction domain protein may be 
involved in the degradation of cellular proteins. Twelve 
genes coding for the zinc finger protein were found to 
have a response to light and phytohormones. Three and 
seven genes coding the MADS-box transcription factor 
were identified on the A and B subgenomes, respectively. 
Seven bHLH genes, one WRKY gene, and one bZIP gene 
that were involved in plant growth were also detected in 
associated analysis. In addition, two genes, Aradu.BYT1F 
and Araip.WX8L5, code for the cytochrome P450 super-
family protein; Aradu.72XAG and Araip.MB9LT code for 
the GATA transcription factor; and Araip.V0CRV and 
Aradu.3X0HY code for the FRIGIDA-like protein.

Candidate gene validation
The identified candidate gene Araip.E64SW was selected 
to validate the gene expression level between ‘Jihua 
5’ (erect) and ‘M130’ (prostrate). As shown in Fig.  4, 
the expression level of this gene detected by qRT-PCR 
showed significant difference between ‘Jihua 5’ and 
‘M130’. For instance, the expression level of ‘M130’ was 
significantly higher than that of ‘Jihua 5’at the day 9, 
after that, the expression level of ‘M130’ was gradually 
decreased from day nine to day 39, while the expression 
level of Jihua maintained steadily.

Discussion
Plant architecture is the three-dimensional organiza-
tion of the aerial portion of a plant, which is strictly 
controlled by genetics [38]. It is mainly governed by 
the angle of branches, the number and length of the 
branches, plant height, and the structure of reproduc-
tive organs [39]. These traits determine the variety 
adaptability, planting patterns, mechanized harvest-
ing, disease resistance, and potential yield. There are 
four market types of peanut plants: Spanish (bunch), 

Table 2  The summary of the number of polymorphic SNPs 
mapped in the 20 chromosomes of peanut

Chr chromosome, PIC polymorphism information content

Chr No. of SNPs Chr. length (Mb) Density of SNP 
(kb/SNP)

PIC

A01 845.00 106.85 126.45 0.28

A02 452.00 93.54 206.94 0.29

A03 607.00 134.89 222.23 0.28

A04 637.00 122.71 192.63 0.27

A05 586.00 109.45 186.77 0.27

A06 554.00 112.00 202.16 0.28

A07 440.00 78.82 179.13 0.28

A08 299.00 49.37 165.13 0.28

A09 350.00 120.50 344.28 0.29

A10 293.00 109.30 373.05 0.30

B01 601.00 137.29 228.43 0.28

B02 325.00 108.95 335.22 0.28

B03 482.00 135.54 281.19 0.28

B04 487.00 132.17 271.39 0.29

B05 456.00 149.84 328.61 0.27

B06 633.00 136.16 215.10 0.29

B07 680.00 126.13 185.48 0.30

B08 1010.00 129.56 128.28 0.26

B09 1428.00 147.06 102.99 0.26

B10 1177.00 135.98 115.53 0.26
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Virginia (bunch), Virginia (runner), and Valencia 
(bunch). In the Spanish type, the plants grow erect with 
pods produced in clusters mainly around the taproot. 
For the bunch and runner types, the branches elongate 
either partially or completely along the surface of the 
soil. The flowering period is also considerably shorter 
in bunch type cultivars than in spreading type ones. 
Hence, the growth habit of peanut is of major agro-
nomic importance. In this study, we combined GWAS 

Fig. 2  Population structure analysis, phylogenetic tree construction, and principal component analysis (PCA) within the U.S. mini-core collection. 
A Population structure analysis. B Phylogenetic tree constructed with UPGMA clustering method. C Principal component analysis showing the 
population structure in the diversity panel. Four subpopulations are designated as G1, G2, G3, and G4 

Table 3  Summary of SLAF numbers and marker depths

Sample ID SLAF number Total depth Average 
depth ( ×)

Jihua5 150,080 2,673,407 17.81

M130 150,190 3,355,918 22.34

P-pool 153,081 6,595,001 43.08

E-pool 152,528 5,720,671 37.51
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and BSA-seq to find the loci associated with the peanut 
growth habit-related traits in the U.S. mini-core collec-
tion and an F2 population.

The core collection of germplasm resources has been 
developed to represent the whole germplasm collection 
in most crop species, such as maize [40], rice [41], and 
sorghum [42]. Peanut mini-core collections were estab-
lished to represent the genetic diversity within the much 
larger germplasm collections and to provide manage-
able resources to conduct field studies. For peanut, three 
separate peanut mini-core collections comprising of 298, 
112, and 184 accessions were established in China, the 
United States, and India, respectively [43–45]. Jiang et al. 
used 109 simple sequence repeat markers to genotype 
the 298 accessions in Chinese peanut mini-core collec-
tion and performed GWAS for 15 agronomic traits [46]. 
The phenotypic and molecular dissection for peanut high 
oleic acid can be found in the ICRISAT mini-core collec-
tion by Mukri [47]. To date, there are no reports involv-
ing GWAS of peanut growth habit-related traits using 
the U.S. mini-core collection, therefore the results of this 
study provide an important foundation for study of pea-
nut growth habit-related traits as well as the potential to 
use these associated markers in the genetic improvement 
of peanut. The U.S. mini-core collection was utilized in 
this study, presenting four botanical peanut varieties (var. 
fastigiata, var. hypogaea, var. vulgaris, and var. peruvi-
ana) but the other two botanical varieties (var. aequa-
toriana and var. hirsuta) were not included [4]. Adding 

the addition of these two botanical varieties into the U.S. 
mini-core collection would enhance the genetic diversity, 
increase panel size, and provide a more comprehensive 
subset to the entire U.S. peanut germplasm collection [4; 
36–37].

We first performed GWAS of growth habit-related 
traits on the peanut Affymetrix version 2.0 SNP array 
with the U.S. mini-core collection. By phenotyping the 
103  accessions of the U.S. peanut mini-core collection 
in two environments, large phenotypic variation and 
significant differences among genotypes and environ-
ments were observed for the peanut growth habit-related 
traits. Positive correlations were observed between the 
LBA, LBL, ER, and IOPT, while a negative correlation 
was observed between LBA and MSH. These results 
suggested that a spreading plant type tended towards a 
shorter plant height. A total of 12,342 SNPs with an aver-
age of 5.19 per Mb were detected in the whole genome, 
and the average PIC was 0.28. It was higher than that of 
0.19 [48] but lower than that of 0.53 [4] and 0.44 [36]. The 
panel was classified into four groups based on popula-
tion structure, PCA, and phylogenetic network analysis. 
The results from this structure corresponded to the pre-
vious study that was constructed by using SSR markers 
[4]. Otyama et  al. [48] separated the mini-core collec-
tion into four or five groups by using SNPs marker from 
a 58  K SNP array data. Moreover, the LD decay limits 
the mapping resolution of GWAS. Cao et al. [49] applied 
the 30,000 SNPs that were identified from 298 soybean 

Fig. 3  A distribution diagram of the markers on each chromosome. Black and gray horizontal bars show genomic regions that are rich and poor in 
SNPs, respectively
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accessions to evaluate the LD level and found that the 
mean LD (r2) declined to 0.2 within 360  Kb. Sun et  al. 
[50] found that the LD decay was approximately 0.82 Mb 
in the 719 diverse accessions of upland cotton, where the 
r2 drops to the half the maximum value. Recently in pea-
nut, Otyama et  al. [48] detected the LD decay distance 
at 3.78 Mb, where the r2 dropped to half the maximum 
value. Based on an LD decay value of 150-160 kb (r2 = 0.2) 
in our study, the entire cultivated peanut genome (~ 2.7 
G) will require 16,875–18,000 evenly spaced markers for 
a comprehensive GWAS evaluation. To reduce false-pos-
itive SNPs associated with these traits, two models have 
been developed, including the GLM-PCA and MLM-
PCA-K. Although the MLM with either the PCA + K 
or Q + K model has been demonstrated as a successful 
method for identifying associations by many studies [11, 
51, 52], we found the GLM-PCA was more suitable to the 
evaluation of population by comparing it to the MLM-
PCA model (Additional file 7 and Additional file 8).

The accuracy of the GWAS results was affected by 
many factors, including sample size, incomplete genotyp-
ing, genetic heterogeneity, and genetic background [53]. 
The best way to validate the reliability of GWAS results 
is by using at least two methodologies. One method is 
validating the QTLs associated with the trait in different 
populations, and the other method of mutual validation 

is currently achieved by combining association mapping 
and linkage mapping in RIL or F2 populations, or inte-
grating association mapping and transcriptome analy-
sis, or BAS-seq. Han et al. performed QTL mapping and 
GWAS analysis associating capsaicin content in Capsi-
cum using two RIL populations and one GWAS popula-
tion and identified 10 co-localized QTLs [54]. Zhao et al. 
validated a major QTL in maize for cadmium accumula-
tion through QTL mapping and GWA study [55]. Li et al. 
identified a locus for seed shattering in rice by combining 
BSA with a GWAS evaluation [56]. In this present study, 
we combined GWAS and BSA-seq associated analysis 
to identify candidate genes associated with LBA in pea-
nut. The same locus on chromosome B05 in the peanut 
genome was mapped using GWAS and the NGS-assisted 
BSA approach. For BSA-seq, a 4.08  Mb physical map 
interval (142,610,834–146,688,220) on B05 was identified 
to be significantly associated with LBA. It was notewor-
thy that a SNP (AX-147251085) associated with LBA was 
detected in the same region on B05 144,353,467 in 103 
peanut mini-core collection with GWAS. Based on the 
LD decay distance, we narrowed down and confirmed the 
region in 160  KB (144,193,467–144,513,467) on B05. A 
comprehensive analysis around the SNP (approximately 
80 kb upstream and downstream) and using an annota-
tion of the reference genome Arachis ipaensis identified 
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the annotated genes in this genome region containing 
four candidate genes associated with the F-box family 
protein (Araip.E64SW, Araip.YG1LK, and Araip.JJ6RA) 
and pentatricopeptide repeat (PPR) super family protein 
(Araip.YU281) which have been shown to be important 
in plant growth and development [57, 58]. In this study, 
the expression levels of Araip.E64SW in prostrate plant 
type materials were significantly lower at 19th, 29th, and 
39th day, indicating the gene universally plays a negative 
role in regulation of the horizontal growth of branches. 
For ‘Jihua 5’, there was little change in the expression lev-
els of this gene. However, it showed a downward trend 
in ‘M130’. Hence, the inhibition of Araip.E64SW may 
enhance the creeping growth of the first pair of lateral 
branches.

Peanut growth habit is a complex agronomic trait. To 
understand the genetic architecture of this comprehen-
sive characteristic, the peanut growth habit traits were 
decomposed into five related traits, including LBA, MSH, 
LBL, ER, and IOPT. Among these traits, ER and LBL 
were strongly positively correlated with one another, 
with correlation coefficients of 0.79 and 0.63 within the 
environments of Qingyuan, Baoding, China and Daw-
son, GA, USA, respectively. The significant phenotypic 
correlation between ER and LBL could account for the 
four co-localization SNPs, which are AX-176798127 on 
chromosome A05 with 14.60% PVE, AX-176797149 with 
14.60% PVE and AX-176792618 with 14.04% PVE on 
chromosome B05, and AX-147254196 with 19.28% PVE 
on chromosome B06. However, the instability of environ-
ment for the growth habit-related traits made it difficult 
to detect overlapping QTLs under a small number of 
environments [59].

A total of 66 annotated candidate genes were identi-
fied underlying the associated QTLs in the U.S. mini-core 
collection using the GWAS method. Among these anno-
tated genes (Additional file  11), several genes encoded 
the transcription factors mediating plant growth and 
developmental processes, which included the bHLH 
family [60], bZIP family [61], WRKY family [62], MADS-
box family [63], and GATA​ family [64]. In addition, we 
detected some genes encoding a zinc finger family pro-
tein, such as the C2-H2 zinc finger protein, which is 
involved in various biological processes, including hor-
mone signaling, growth, and development [65]. The 
two genes, Aradu.BYT1F and Araip.WX8L5, encode the 
Cytochrome P450 superfamily protein, which is the larg-
est enzymatic protein family in plants related to growth 
and developmental signals [66]. In addition, the genes 
coded by Aradu.61ZU5 on A01, Araip.K5RKY on B08, 
and Araip.H00Y0 and Araip.DEM20 on B07 were asso-
ciated with a FAR1-Related sequence, which plays mul-
tiple roles in light signal transduction, circadian clock, 

photomorphogenesis, and shoot meristems [67]. Pre-
vious studies showed that the spreading/bunch type 
of peanut growth habit was controlled by one locus on 
B05 (145,553,897 ~ 146,6459,943  bp), a putative gene 
associated with a FAR1-Related sequence [23]. Moreo-
ver, we constructed a high-density genetic map and 
co-localized 12 QTLs for growth habit-related traits on 
B05 (159,819,755 ~ 159,987,803  bp). However, the SNP 
(AX-147251085) associated with LBA was identified at 
position 144,353,467 on B05 in this study. Although the 
physical regions had no overlap, these three regions were 
within a megabase from each other and provide a genetic 
link for further map-based cloning. Furthermore, we also 
found some QTLs distributed on different chromosomes 
with high PVE for the growth habit-related traits. Over-
all, the candidate genes identification provides possible 
molecular targets but complex interactions with many 
biological factors such as percentage of each effector, 
sample size, multiple alleles, strong or weak associations, 
degrees of linkage disequilibrum, and the degree of cor-
relation using a GWAS model. Therefore, the candidate 
genes must be validated with quantitative (q)RT-PCR. 
Overall, our study provides efficient strategies for detect-
ing QTLs for growth habit-related traits in peanuts, and 
these findings will facilitate the development of agro-
nomically-beneficial plant architecture to enhance pea-
nut production.

Conclusion
In this study, the SNP (AX-147,251,085 and 
AX-144,353,467) associated with LBA by GWAS was 
validated  by the results of BSA-seq through combined 
analysis of GWAS and BSA-seq. Based on LD decay 
distance, the genome range related to LBA on B05 was 
shortened to 144,193,467–144,513,467. Three candidate 
genes related to F-box family proteins (Araip.E64SW, 
Araip.YG1LK and Araip.JJ6RA) and one candidate gene 
related to PPP family proteins (Araip.YU281) may be 
involved in plant growth and development. The expres-
sion analysis revealed that Araip.E64SW is involved in 
peanut growth habits. These candidate genes will provide 
molecular targets in marker assisted selection for peanut 
growth habits.

Methods
Plant materials and phenotyping for growth habit‑related 
traits
A total of 103 accessions of the U.S. mini-core collec-
tion were planted in Dawson, Georgia, USA (N31°46′ 
and W84°26′) and Qingyuan, Baoding, China (N39°99′ 
and E118°70′) in 2018. The seeds of 103 accessions of 
the U.S. peanut mini-core collection originally came 
from the USDA-ARS Peanut Germplasm Collection at 
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Griffin, GA, USA and the accessions were purified by 
Dr. Chen at Auburn University [68]. All these materials 
were granted permission. The experimental research on 
plants including field investigation and sample collection 
were performed under institutional guidelines in accord-
ance with local legislation. These accessions were grown 
in a randomized complete block design with two replica-
tions. Three plants from each plot were selected to inves-
tigate the lateral branch angle (LBA), main stem height 
(MSH), lateral branch length (LBL), extent radius (ER), 
and the index of plant type (IOPT). We used the elec-
tronic protractor to measure the LBA, which is the angle 
between the main stem and the first lateral branch. The 
other traits were measured using a measuring tape, and 
the standards of measurement are as follows: MSH is the 
length from the meristematic region of the first pair lat-
eral branches on the main stem to the internode of the 
parietal lobe; LBL is the length from the junction with the 
main stem to the parietal lobe of the longest first lateral 
branch; ER is the longest distance between the main stem 
and the first lateral branch; and IOPT is the ratio of the 
longest branch of the first pair lateral branches to main 
stem height.

An F2 population developed from the cross of ‘Jihua 
5’ × ‘M130’ was used for bulked segregant analysis. The 
female parent, ‘Jihua 5’, is an erect growth habit peanut 
variety, and its LBA, LBL, and ER are significantly below 
that of male parent ‘M130’, which has a prostrate growth 
habit. The F2 population was grown in Qingyuan, Baod-
ing, China (N39°99′ and E118°70′) for phenotyping. ‘Jihua 
5’, ‘M130’ and F2 were originally possessed by Hebei Agri-
cultural University.

Genome wide association analyses for growth 
habit‑related traits
DNA extraction, genotyping, and SNP screening
The genomic DNA of 103 accessions from the U.S. mini-
core collection was extracted from young healthy leaves 
for genotyping using the CTAB method [69]. The geno-
typing was performed using an SNP array (Affymetrix) 
from GeneSeek (Lincoln, Nebraska, USA). No samples 
were excluded due to low quality or low call rate (< 0.95). 
The high-quality SNPs retained after filtering had a call-
ing rate < 0.95 and minor allele frequency (MAF) < 0.05.

Population structure and association mapping analysis
The genetic structure of the U.S. mini-core collection 
based on polymorphic SNPs was analyzed in STRU​
CTU​RE v2.3.4. Ten independent runs were performed 
using the following parameters: k value of 1 to 10, a 
burn-in period of 10,000, and 100,000 Markov Chain 
Monte Carlo (MCMC) replications. The Q matrix was 

calculated in STRU​CTU​RE v2.3.4. TASSEL 5.0 software 
was used to determine the PCA as well as the associa-
tion between SNPs and phenotypic traits using a gen-
eral linear model (GLM) with PCA. The LD parameter 
(r2) between pairwise SNPs (MAF > 0.05) was estimated 
using PopLDdecay (https://​github.​com/​BGI-​shenz​hen/​
PopLD​decay). The threshold of suggestive and significant 
association between a trait and the SNPs in the GLM 
was p < 1.0 × 10−3 [i.e., − log10(p) = 3.0] [11, 70] and 
P < 1 × 12,342−1 [i.e., − log10(p) = 4.09] [15, 71]. The sig-
nificance threshold was based on the Bonferroni correc-
tion for multiple tests (1/n, where n was the total number 
of SNPs used in the association analysis), and the GWAS 
results were visualized with Manhattan plots using the 
qqman package in R software [72].

Bulked‑segregant analysis for the growth 
habit‑related trait
DNA extraction, SLAF Libraries construction, 
and high‑throughput sequencing
Genomic DNA was extracted using the modified CTAB 
method from fresh leaves of the ‘Jihua 5’, ‘M130’, and 
F2 populations (35 with prostrate growth habit and 35 
with erect growth habit), which were used for BSA-seq 
[69]. Four DNA pools were constructed: the P1 pool 
from the 20 ‘Jihua 5’ plants, the P2 pool from the 20 
‘M130’ plants, the prostrate pool (P-pool) from the 35 
extreme prostrate plants, and the erect pool (E-pool) 
from the 35 extremely erect plants of the F2 genera-
tion. DNA from these four pools was digested to com-
pletion with HaeIII and RsaI (NEB, Nanjing, China). A 
single-nucleotide A overhang was added to the digested 
fragments with Klenow Fragment (3′- 5′ exo-) (NEB, 
Nanjing, China) and dATP at 37℃. The duplex Tag-
labeled sequencing adapters (PAGE-purified, Life Tech-
nologies, Gaithersburg, MD, USA) were ligated to the 
A-tailed DNA with T4 DNA ligase. Polymerase chain 
reaction (PCR) was performed using diluted shearing-
ligation DNA samples, dNTP, Q5® High-Fidelity DNA 
Polymerase, and PCR primers. The PCR products 
were then purified using Agencourt AMPure XP beads 
(Beckman Coulter, High Wycombe, UK). Fragments 
ranging from 300 to 500 base pairs (with barcodes 
and adaptors) in size were excised and purified using a 
QIAquick gel extraction kit (Qiagen, Hilden, Germany). 
Gel-purified products were then diluted. Paired-end 
sequencing with read lengths of 125 bp was performed 
using an Illumina HiSeq 2500 system (Illumina, Inc., 
San Diego, CA, USA) according to the manufacturer’s 
recommendations at Beijing Biomarker Technologies 
Corporation (http://​www.​bioma​rker.​com.​cn).

https://github.com/BGI-shenzhen/PopLDdecay
https://github.com/BGI-shenzhen/PopLDdecay
http://www.biomarker.com.cn
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Analysis of SLAF‑seq data to identify the genomic regions 
for growth habit‑related traits
The barcodes and the terminal 5-bp positions were 
trimmed from each high-quality read, and clean reads 
from the same sample were mapped onto the A. duran-
ensis and A. ipaensis genome sequence using SOAP 
software [73]. SNP and Insertions/Deletions (InDels) 
were detected using the software GATK [74]. To dis-
cover the genomic regions for SNPs associated with 
growth habit-related traits, the association analysis 
method of SNP-index was used [28]. The SNP-index 
and the Δ(SNP-index) values were calculated as follows:

SNP-index(P) = MR/(PR + MR), SNP-index(E) = ME/
(PE + ME), Δ(SNP-index) = SNP-index(R) – SNP-
index(E), where MR is the depth of the R population 
derived from M(maternal parent), and PR is the depth 
of the R population derived from P; ME indicates the 
depth of the E population derived from M, and PE indi-
cates the depth of the E population derived from P.

Candidate genes confirmation
Based on LD decay, the predicted genes around the 
suggestive and significant SNPs within the 160 kb and 
annotations of diploid ancestors of cultivated peanut, 
A. duranensis and A. ipaensis, were downloaded from 
the PeanutBase (https://​peanu​tbase.​org/​home).

Quantitative real‑time PCR analysis
To validate the expression levels of candidate genes 
between prostrate and erect accessions, the identified 
candidate gene, Araip.E64SW, was selected to perform 
the quantitative real-time PCR (qRT-PCR) analysis. 
The ‘Jihua 5’ (erect) and ‘M130’ (prostrate) were used 
for this study. Fresh first pair of lateral branch were 
collected at 9th, 19th, 29th, and 39th day after planting. 
The procedure of total RNA extraction, cDNA syn-
thesis, qRT-RCR amplification, and candidate genes 
expression analysis were used as previously described 
[75], in which the amplification program was set as fol-
lows: 95℃ for 5  min followed by 40 cycles of 95℃ for 
10 s and 60℃ for 30 s, 95℃ for 15 s, and 60℃ for 60 s. 
Three biological and technical repetitions were used for 
gene sample. The gene-specific primers were designed 
by Primer 5 (Additional file 12). The housekeeping gene 
ADH3 was used as an internal control gene for qRT-
PCR normalization.
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