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Abstract

Background: Codon usage bias (CUB), the non-uniform usage of synonymous codons, occurs across all domains of
life. Adaptive CUB is hypothesized to result from various selective pressures, including selection for efficient ribosome
elongation, accurate translation, mRNA secondary structure, and/or protein folding. Given the critical link between
protein folding and protein function, numerous studies have analyzed the relationship between codon usage and
protein structure. The results from these studies have often been contradictory, likely reflecting the differing methods
used for measuring codon usage and the failure to appropriately control for confounding factors, such as differences
in amino acid usage between protein structures and changes in the frequency of different structures with gene
expression.

Results: Here we take an explicit population genetics approach to quantify codon-specific shifts in natural selection
related to protein structure in S. cerevisiae and E. coli. Unlike other metrics of codon usage, our approach explicitly
separates the effects of natural selection, scaled by gene expression, and mutation bias while naturally accounting for
a region’s amino acid usage. Bayesian model comparisons suggest selection on codon usage varies only slightly
between helix, sheet, and coil secondary structures and, similarly, between structured and intrinsically-disordered
regions. Similarly, in contrast to prevous findings, we find selection on codon usage only varies slightly at the termini
of helices in E. coli. Using simulated data, we show this previous work indicating “non-optimal” codons are enriched at
the beginning of helices in S. cerevisiae was due to failure to control for various confounding factors (e.g. amino acid
biases, gene expression, etc.), and rather than selection to modulate cotranslational folding.

Conclusions: Our results reveal a weak relationship between codon usage and protein structure, indicating that
differences in selection on codon usage between structures are slight. In addition to the magnitude of differences in
selection between protein structures being slight, the observed shifts appear to be idiosyncratic and largely
codon-specific rather than systematic reversals in the nature of selection. Overall, our work demonstrates the
statistical power and benefits of studying selective shifts on codon usage or other genomic features from an explicitly
evolutionary approach. Limitations of this approach and future potential research avenues are discussed.
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Background

Patterns of codon usage bias (CUB), or the non-uniform
usage of synonymous codons, vary both within and across
species [1-3]. Although non-adaptive evolutionary forces
(e.g. mutation biases, GC-biased gene conversion) are
well-known to shape codon usage patterns, natural selec-
tion also plays a significant role. The correlation between
codon frequency and tRNA abundances and the bias
towards more efficient codons in highly expressed genes
suggests selection against translation inefficiency is a
major factor shaping genome-wide codon patterns [4—6].
Codon usage is also known to vary within a gene, which
is hypothesized to reflect various other forces of selection
[7]. For example, CUB is thought to be shaped by selec-
tion for translation accuracy, such as to reduce missense
errors at functionally-important sites and the frequency of
ribosomal drop-off along a transcript, both of which can
result in non-functional proteins [8—11]. Intragenic varia-
tion in synonymous codon usage has also been proposed
to be shaped by selection to prevent ribosomal queuing
[12] and selection to avoid mRNA secondary structure
near the ends of mRNA transcripts [13—15]. Furthermore,
synonymous codon usage has been hypothesized to tune
time-sensitive processes realted to protein folding and
secretion [16, 17].

Although adaptive CUB is thought to be largely driven
by selection for translation efficiency, research indicates
potential selective advantages of inefficient codons (“non-
optimal” or “rare” codons) at certain sites within a pro-
tein [18]. Given that codon usage patterns are strongly
shaped by amino acid biases, mutation biases, and gene
expression, it is important for researchers investigating
possible adaptive codon usage patterns to ensure that
these patterns cannot be explained by non-adaptive fac-
tors. Gould and Lewontin [19] highlighted the bias of
biologists towards adaptationist storytelling, arguing that
non-adaptive evolutionary forces (e.g. genetic drift) and
other constraints (e.g. development) should be considered
before attributing a trait or behavior to adaptive evolu-
tion. With the ushering in of the genomic-era, similar
arguments have been made about the importance of test-
ing hypotheses related to selection on and adaptation of
genomic features in the context of the evolutionary null,
i.e. the expectation in the absence of selection [20, 21].
Here, we will use a population genetics based model of
coding sequence evolution with clearly defined null for-
mulations to investigate variation in selection on codon
usage related to protein structure.

It is generally accepted that misfolded proteins have
impaired function, can aggregate within the cell, and
possibly disrupt key cellular processes [10, 22, 23]. Mis-
sense errors are hypothesized to increase the frequency of
protein misfolding; thus, regions important for the pro-
tein folding are expected to be under stronger selection
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for translationally-accurate codons [10]. In addition to
the effects of missense errors, codon usage can modu-
late protein folding via changes in the elongation rates
at key steps during cotranslational folding [16]. Empirical
evidence indicate changes to elongation rates via synony-
mous codon usage can alter cotranslational protein fold-
ing in organisms ranging from bacteria to multicellular
eukaryotes [24—29]. Synonymous changes to codon usage
are known to impact cellular fitness and have been impli-
cated in human diseases through altered protein folding
[30, 31]. Understanding the role of codon usage in pro-
tein folding also has biotechnological significance, as a
recombinant protein is often expressed in an organism
with a drastically different CUB, potentially perturbing
cotranslational folding [24].

Given that protein secondary structures generally differ
in physicochemical properties and ability to cotransla-
tionally fold, researchers have hypothesized that different
structures will exhibit different patterns of CUB [17, 18,
32]. Numerous studies have examined the relationship
between CUB and protein secondary structure, but a
general relationship, if any, remains unclear [17, 32-37].
Other analyses of CUB at higher levels of protein structure
have reached different conclusions about the relationship
between codon usage and protein structure [32, 37-40].

Two probable causes for the inconsistencies across stud-
ies are (1) the different approaches for quantifying CUB
across and within genes and (2) the different ways in which
a gene or region is defined as being under selection at
the codon usage level. Various heuristic approaches have
been developed to identify selectively-favored codons and
estimate the degree of codon adaptation of a gene. For
example, the Codon Adaptation Index (CAI) relies on a
set of a priori identified reference genes that are thought
to be under strong selection for codon usage (i.e. highly-
expressed genes) in order to estimate individual codons
relative adaptiveness to its synonyms [41]. In contrast, the
tRNA Adaptation Index (tAl) estimates absolute codon
weights (i.e. weights are not scaled relative to synoyms)
based on the abundance or, more frequently, gene copy
number of the tRNA with the correct anticodon, while
also penalizing for wobble between the codon and anti-
codon [42, 43]. Neither of these commonly-used metrics
considers the impact of mutation biases or how transla-
tional selection on codon usage scales with gene expres-
sion, leading to issues with identifying which codons
are selectively-favored and estimating the level of codon
adaptation of a gene [6, 44—47]. Metrics such as CAI that
rely on codon frequencies (either genome-wide or in a ref-
erence set) can misidentify the selectively-favored codon
for an amino acid if selection is weak relative to mutation
bias and genetic drift, such that the actual selectively-
favored codon is not the most frequently used codon, even
in highly expressed genes [6, 44, 45]. Aside from leading
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to misidentification of the selectively-favored codon, this
could lead to an underestimation of a gene’s degree of
codon adaptation. In contrast, if mutation and transla-
tional selection favor the same codons, it seems likely that
metrics like tAI will overestimate the codon adaptation of
a gene, as it is unable to distinguish between selection and
mutation bias.

Other problems emerge when attempting to use these
metrics to infer differences in the nature of selection
within genes. Metrics like tAl that do not consider relative
differences between synonymous codons, but absolute
differences across all codons, are particularly prone to
amino acid biases when comparing codon usage patterns
[18, 48]. While many studies often delineate codons into
subsets of “optimal” and “non-optimal” codons, the crite-
rion for classification varies between studies [17, 49, 50].
Indeed, determining codon optimality using tRNA-based
metrics has led to the odd situation where all synonyms
for an amino acid are classified as optimal or non-optimal
[17]. Additionally, the selectively-favored codon may vary
depending on the selective pressure, e.g. the most effi-
cient codon may not be the most accurate codon, thus
broad terms such as “optimal” lack context [51, 52].
Due to the variation in codon preference across selective
pressures, we prefer the phrase “most selectively-favored
codon” As the strength of selection on codon usage can
vary across amino acids, statisitcal comparisons of codon
usage metrics that consider relative differences between
synonymous codons across protein regions (e.g. protein
structures, signal peptides) can lead to misleading con-
clusions about the nature of selection on codon usage if
these regions are biased towards certain amino acids. For
example, if a protein region is biased towards amino acids
for which selection on synonymous codon usage is weak
(relative to mutation bias and genetic drift), then compar-
ing the mean CAI between theses regions may incorrectly
indicate that the nature or strength of selection on codon
usage differs within these protein regions [48]. Although
other studies have attempted to control for factors like
amino acid biases or gene expression when studying the
relationship between adaptive codon usage and protein
structure, their approaches are, in addition to the codon
usage metric used, ad-hoc in nature [17, 38].

Recent work has relied on comparative approaches to
examine the functional relationship between codon usage
and protein structure, recognizing that purifying selec-
tion would lead to conserved codon usage patterns [17,
37, 40], although much of this work does not explicitly
model evolutionary processes (selection, mutation, drift,
etc.) Alternative to species-based comparative approaches
are single-genome population genetics approaches which
explicitly attempt to model such evolutionary processes.
Single-genome population genetics based approaches
have been used in various context to examine selection

Page 30f 19

on codon usage [4, 6, 11, 44]. One particularly powerful
population genetics approach is the Ribosomal Overhead
Cost version of Stochastic Evolutionary Model of Protein
Production Rates (ROC-SEMPPR), which is able to sep-
arate out the effects of mutation and selection on codon
usage by accounting for the natural variation in inter-
genic gene expression [6, 44, 45]. Unlike many approaches
which either average codon usage over regions using
heuristic metrics or delineate codons categorically as
either optimal or non-optimal, ROC-SEMPPR provides
quantitative, codon-specific estimates of mutation bias
and natural selection. More specifically, the estimates of
the model parameter An for each codon from ROC-
SEMPPR reflect the population genetics parameter sN,
— the selection coefficient of a codon times the effective
population size — in a gene of average expression.

ROC-SEMPPR was originally developed for estimat-
ing selection and mutation biases based on genome-
wide codon frequencies, but recent work has used ROC-
SEMPPR to investigate both intragenic and intragenomic
differences in codon usage patterns [48, 53]. ROC-
SEMPPR is implemented in a Bayesian framework [44,
54], allowing for model comparisons using Deviance
Information or similar criteria. As a proof of principle,
we tested for differences in selection on codon usage
related to protein secondary structures and intrinsically-
disordered regions (IDRs) in S. cerevisiae and E. coli, two
common model organisms for studying CUB. Although
model comparisons indicate selection on codon usage dif-
fers across protein structures in both species, these differ-
ences are relatively minor quantitative differences rather
than large, systematic reversals in the directon or nature
of selection on codon usage between protein structures.
In other words, for both S. cerevisiae and E. coli, natu-
ral selection on codon usage is largely consistent across
protein structures, with differences in selection related
to different categories of protein structures likely being
rare, weak, or both. This highlights a key point that was
sometimes missing from previous analyses: although dif-
ferences in codon usage across protein structures may
be statistically significant and even reflect selective dif-
ferences (assuming the proper controls are used), these
effects are overall very small. Based on our results, claims
that certain structures preferentially use “non-optimal’,
“rare’; or “slow” codons are overstated [36, 39]. Quantita-
tive shifts in selection are more consistent with claims that
some codons are enriched in certain protein structures
relative to others (again, assuming the proper controls are
used).

Similar to the differences between protein secondary
structures, we find evidence for slight shifts in selection
between the termini and core of secondary structures,
but only in a few scenarios. More importantly, we show
that a previously detected enrichment of slow translating
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codons near the start of helices, which was proposed to
be due to selection to assist in cotranslational folding [17],
was the result of biases in amino acid usage and/or fail-
ing to control for the effects of gene expression. Overall,
this work demonstrates the power of population genet-
ics approaches for testing hypotheses related to intragenic
differences in selection on codon usage.

Results

Validation of method

Previous work has made claims regarding qualitative dif-
ferences in the nature of selection on codon usage related
to protein structure and attributed these changes to sys-
tematic reversals in the nature of selection from rapid to
slow elongation, or relaxation of selection against transla-
tion errors [36, 38, 39]. Using a simulated dataset based on
the empirically-determined helices and coils from S. cere-
visiae (1,097 genes, the smallest dataset we have between
the two species), we tested for qualitative differences in
selection between protein regions in a systematic man-
ner by reversing the directionality of selection at vary-
ing frequencies. We note that these simulated sequences
have the same amino acid sequences as the empirically-
determined secondary strucutres, but the codon usage
is determined by the provided parameters (see Meth-
ods for details). Briefly, the Uniform Selection Regions
were assumed to be evolving entirely under the same
selective pressure, i.e. the selection coefficients An of a
codon did not change within or across these regions. In
contrast, a percentage of amino acid sites in the Hetero-
geneous Selection Regions were randomly chosen to be
evolving under the opposite selective pressure, i.e. the
selection coefficients An of these codons were the oppo-
site (i.e. multiplied by -1) of the An used in the Uniform
Selection Regions. The remaining amino acid sites in the
Heterogeneous Selection Regions were simulated using
the same selection coefficients as in the Uniform Selection
Regions. To help clarify the purpose of these simulations,
this could represent the case when selection on codon
usage in Uniform Selection Regions only acts to reduce
translation inefficiency, while selection on codon usage
in Heterogeneous Selection Regions acts to reduce ineffi-
ciency at some amino acid sites and increase inefficiency
at other sites. This example broadly reflects the hypoth-
esis that selection on codon usage qualitatively varies
between protein structures to assist some structures with
cotranslational folding.

When comparing the selection coefficients An esti-
mated from the Uniform Selection Regions and the
Heterogeneous Selection Regions, we clearly see that all
Deming regression slopes § are less than 1 (Additional
File 1, Fig. S1). Unsurprisingly, when 100% of sites in the
Heterogenous Selection Regions are evolving under the
opposing selective pressure, An is negatively-correlated
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and falls along the y = —x line, consistent with expec-
tations (Additional File 1, Fig. S1A). This indicates that
having sites within the Heterogenous Selection Regions
evolving under opposing selective pressures (e.g. selec-
tion for and against inefficiency) reduces the selection
coefficients An relative to the An estimated from the
Uniform Selection Regions. These results indicate that
An is a weighted average of the various selective forces
shaping coding sequence evolution within a region.
Insight into ROC-SEMPPR’s behavior can be gained
by observing the effects of having 50% of the codons
evolving under the opposite selective pressure from the
remaining codons (Additional File 1, Fig. S1B). In this
case, the mean Ar for every codon in the Hetergogenous
Selection Region is O, reflecting that ROC-SEMPPR is
unable to identify the selectively-favored codon in this
region and leading to a flat line (i.e Deming regression
slopes B = 0) when comparing selection estimates Apn
between the two regions. This model behavior is expected
because ROC-SEMPPR is correctling estimating the
average selection coefficient of a codon within these regions.
Essentially, the opposite selective pressures in this region
cancel out when estimating the average selection coef-
ficient, making it appear as if no codon is favored over
its synonyms. Even when only 1% of sites were evolving
under the opposing selective pressure in the Hetero-
geneous Selection Regions, we were able to detect a
significant downward bias in A7 using Deming regression
slopes B (Additional File 1, Fig. S1C-D). In addition, many
An estimates show downward selective shifts (defined
conservatively as when the 95% posterior probability
intervals of the estimates fail to overlap, see Methods) in
the Heterogeneous Selection Regions relative to the Uni-
form Selective Regions, also as expected. We emphasize
this analysis is performed on a single simulated dataset of
~ 1,100 genes, the smallest out of all datasets in terms of
number of genes represented. Using the smallest dataset
gives us a sense of the limits of our statistical power, but
this should not be considered a formal power analysis.

As noted elsewhere, the An value of a codon is equal
to sN, value for that codon relative to the most selectively
favored codon of an amino acid when encoded in a gene
with average expression, i.e. ¢ = 1. We were able to detect
overall selective differences between two regions, even if
only 1% of sites in one of the regions was shaped by a dif-
ferent selective pressure (Additional File 1, S1). Our simu-
lated results likely represent an approximate lower bound
on the number of sites under differing selective pressures
necessary to detect systematic differences in natural selec-
tion between protein structures using ROC-SEMPPR. We
emphasize that this test only considers the case when
the nature or directionality of selection on codon usage
varies frequently within a region. In this case, the Deming
regression slope S is expected to be significantly different




Cope and Gilchrist BMC Genomics (2022) 23:408

from 1 when comparing selection coefficients An between
regions. Similarly, consistent relaxation of selection on
codon usage is expected to result in S significantly deviat-
ing from 1. Biological examples of this include the hypoth-
esized relaxation of selection against missense errors at
sites that are less functionally-important to the protein [8]
or are less likely to lead to misfolding [10, 38], and relaxed
selection against ribosome drop-off at the 5’-ends of tran-
scripts [55, 56]. In contrast, more idiosyncratic changes
in selection on codon usage would not be expected to
change B, but would manifest as shifts in the An of indi-
vidual codons between regions. These shifts in An need
not be in the same direction due to the various selective
pressures that can act on synonymous codon usage, such
as translation efficiency, translation accuracy, and mRNA
secondary structure. Importantly, the various selective
pressures do not necessarily favor the same codon [51,
52]. In this case, shifts in An are expected to reflect the
dominant selective pressure, such that An reflects the
most selectively-favored codon, with opposing selective
pressures weakening this shift.

To ensure that comparing model fits with the Deviance
Information Criterion (DIC) would not always result in
overfit or overparameterized models being favored, we
used a simulated dataset for which the nature and strength
of natural selection was the same across helices, sheets,
coils, structured regions, and intrinsically-disordered
regions (IDRs), i.e. they were simulated using the same
selection coefficients An. As expected, a model fit assum-
ing no differences in selection between the secondary
structures was 85 DIC units better than model assuming
selection varied between the three secondary structures.
Using this same simulated dataset, we observed only two
codon-specific quantitative shifts when comparing Apn
120 parameter estimates across three secondary struc-
tures which is consistent with an expected false positive
error rate of 0.05 (p = 0.98 for one tail exact binomial test
that the false positive error rate is greater than 0.05 with
n = 120 total comparisons between three sets of param-
eters with 40 parameters in each, or one tail binomial test
for short; Additional File 1, Fig. S2A — C). Similarly, we
observe only one codon-specific quantitative shift when
comparing An estimates for simulated structured and
intrinsically-disordered regions (p = 0.60 for one tail
binomial test with n = 40 comparisons; Additional File 1,
Fig. $2D).

Selection on codon usage varies between protein
secondary structures

Based on predicted secondary structures from PsiPred
[57] in S. cerevisiae, we found that the best supported
model allowed selection on codon usage to differ across
helices, sheets, and coils (Table 1, Model Y1). Model Y;
is 68 DIC units better than the next best model assuming
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Table 1 Comparison of model fits examining variation in codon
usage between predicted protein secondary structures. The null
model (Yp) assumes no differences in selection on codon usage
between secondary structures). H: helix. E: sheet. C: coil.

ADIC = DIC; — DICgest

Groupings

Species Model | ] 1] ADIC
\& H E C 0
Y> HE - C 68

S. cerevisiae Y3 H EC - 285
Yy HC E - 425
Yo HEC - - 621
E; H E C 0
E) HE - @ 61

E. coli E3 H EC - 251
E4 HC E - 358
Eo HEC - - 471

no difference in selection between helices and sheets (Y5),
and 621 DIC units better than the null model assuming no
difference across secondary structures. We obtained sim-
ilar results when using empirically-determined secondary
structures, but the best two models were ambiguous as
to whether selection differed between helices and sheets
(Additional File 1, Table S1 Y, vs. Y1, ADIC =~ 1). Sim-
ilar results using predicted secondary structures from
PsiPred were obtained for E. coli. The best overall model
E; allowed for selection to differ across helices, sheets,
and coils, with a 61 DIC unit improvement over the model
assuming no differences between helices and sheets (Ep)
and 471 DIC unit improvement over the null model (Ey).
Unlike S. cerevisiae, similar model fits in E. coli using
empirical data clearly favored E; over the next best model
E, (Additional File 1, Table S2, E; vs. E1, ADIC = 20).

Comparing selection An on codon usage between
secondary structures
Model fits using predicted secondary structures from
PsiPred [57] indicate selective shifts on codon usage
across protein secondary structures. Comparing selection
estimates An (based on predicted secondary structures)
between protein secondary structures with a Deming
regression revealed no significant differences between any
of the three secondary structures (Fig. 1) in either species.
Combined with our simulation work, this suggests the fre-
quency of qualitative selective shifts between any of the
three secondary structures is rare, i.e. likely <1% of sites.
Although no qualitative (i.e. overall) selective shifts on
codon usage were detected, examination of the 95% pos-
terior probability intervals for selection estimates Ap
indicate clear quantitative differences in the strength of
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Fig. 1 Comparison of selection estimates An between different protein secondary structures. values are scaled relative to the genome-wide most
selectively-favored codon. Points represent values for each codon, while error bars represent the 95% posterior probability intervals. Codons
showing significant selective shifts are colored by amino acid property. Negative values indicate a change in the selectively-favored codon relative
to the genome-wide most selectively-favored codon. The Deming regression slope 8 and 95% confidence intervals (noted in parentheses) are
represented by solid and dashed black lines, respectively. ps indicates the Spearman rank correlation between the An of the two regions. (A,D)
Coils vs. Helices. (B,E) Coils vs. Sheets. (C,F) Helices vs. Sheets

selection related to individual codons. We find that for
most of the 18 amino acids with multiple synonyms, selec-
tion differs between secondary structures for at least one
codon (i.e. its An 95% posterior probability intervals do
not overlap). These differences mostly reflect quantita-
tive changes in the average strength of selection and not
a qualitative switch in the most selectively-favored codon.
The one qualitative exception to this appears to be serine
(S4 and Sy) in coils of S. cerevisiae. While codons TCT and
AGC are disfavored in helices and/or sheets, this is not the
case for coils in which there appears to be no differences in
the preference for these two codons and the genome-wide
most selectively-favored codons (TCC and AGT, respec-
tively, Fig. 1A,B). However, while we do detect quantitative
selective shifts across secondary structures, these shifts
are very small and are expected to have little impact on
codon frequencies across protein secondary structures
(Fig. 2, see Additional File 1, Fig. S4 — S6 for plots of

individual structures with observed codon frequencies),
especially for genes with average to low expression levels.

Intrinsically-disordered regions show distinct patterns of
selection on codon usage

In S. cerevisiae, we found that information on whether
a region was structured or intrinsically-disordered better
explained intragenic codon usage patterns than protein
secondary structures in S. cerevisiae (Table 2, Models Y
vs. Y5, ADIC = 220). Consistent with this, selection was
9% weaker, on average, in IDRs compared to structured
regions (Deming Regression B = 0.905, 95% CI: 0.823
— 0.988, Fig. S3A). In contrast to S. cerevisiae, splitting
codons into structured regions and IDRs in E. coli did
a worse job of explaining intragenic codon usage pat-
terns than secondary structures (Table 2, Model E5 vs.
E1, ADIC = 343). This was unsurprising given the rarity
of IDRs in prokaryotic proteomes [58]. Despite being a
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Shifts in Selection:
Secondary Structures
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Fig. 2 Comparison of expected codon frequencies across protein secondary structures as a function of protein production rates ¢. Expected codon
frequencies are estimated using equation 1 (see Materials and Methods). The bottom right histogram gives distributions of protein synthesis rates ¢
on the log 10 scale
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Table 2 Model comparisons of structure categorizations based
on the Deviance Information Criterion (DIC), where the smallest
value is considered the best model fit. For simplicity, only models
which are an improvement over the model over the best
secondary structure model (Table 1) are shown, with the
exception of the Structured and IDR model for E. coli. H: helix. E:
sheet. C: coil. Superscripts S and D indicate if the secondary
structure predictions include predictions from structured regions
SorIDRs D, respectively, ie. S = HSEC®. R = HPEPCP

Groupings
Species Model | Il ]] v Vv Vi ADIC
Yio R e Y )
Yo R e N N & N 0 XF
S.cerevisiae Vg HD - [ ¢ 83
Y7 e - B B2 ¢ P s
Ye - B - C D 117
Ys S - - - - D 466
Y HP - B2 - P - 686
Es H - - C D o0
Es R BP0 @ 29
E. coli Eo H KPP - & @ 30
E; HP - =] 2 @ 45
Eg H® HP P 2 @ 47
E bSO SO _ csb - 77
Es S - - - - D 420

worse fit compared to the secondary structure model in
E. coli, the structured regions vs. IDR model is still a sig-
nificant improvement over the null model (Tables 1 and
2, Model Eg vs. E5, ADIC = 129). Even though the Dem-
ing regression slope comparing structured regions and
IDRs in E. coli was of similar magnitude to the same slope
estimated for S. cerevisiae (0.905 vs. 0.933, respecitvely),
the slope was not significantly different from 1 (Fig. S3B,
Deming Regression B = 0.933,95% CI: 0.849 — 1.020).
Although selection on codon usage was weaker, on aver-
age, in IDRs of S. cerevisiae, we note a subset of amino
acids demonstrate the opposite pattern in which selec-
tion against certain codons appears to be stronger: alanine
(A), histidine (H), lysine (K), proline (P), and threonine
(T) (Fig. S3A). In addition, serine (S4 and Sy) shows shifts
in the selectively-favored codon in IDRs relative to struc-
tured regions, with the former showing preference for
TCT and AGC. This is similar to the results observed in
coils for S. cerevisiae, but in this case, the selective shifts
clearly indicate one of the codons is preferred over the
other (i.e. the 95% posterior probability intervals do not
overlap with 0, Fig. S3A). Alanine (A), serine (S4), and
threonine (T) showed a similar pattern in E. coli (Fig. S3B).
Interestingly, many of these amino acids have a higher
propensity for forming disordered regions and/or serve
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as sites for phosphorylation [59, 60]. Despite the appar-
ent qualitative shift between structured regions IDRs in
S. cerevisiae, as well as various quantitative shifts, these
shifts have very little impact on the expected codon fre-
quencies (Additional File 1, Fig. S7 — S9).

We found that categorizing the predicted structured
regions (from I[UPRED2) based on the corresponding sec-
ondary structure predictions (from PsiPred) improved the
overall model fits in both species (Models Y¢ and Eg),
indicating differences in codon usage between secondary
structures are not solely due to the presence of IDRs.
Comparing selection estimates An from the secondary
structures (with IDRs removed) to An estimated from
IDRs suggests selection on codon usage is, on average,
stronger in coil and sheet secondary structures compared
to IDRs in S. cerevisiae (Additional File 1, Fig. 3). Although
a comparison of helices to IDRs has a slope estimate
consistent with stronger selection in helices, this slope
is not statistically significant (Deming regression f =
0.905, 95% CI: 0.806 — 1.000). In E. coli, all three Deming
regression slopes are less than 1, but only the compar-
ison between coils and IDRs is statistically significant
(Fig. S3F—H). When comparing An between secondary
structures after removing IDRs, we found that many
codons still exhibited significant selective shifts between
secondary structures (Fig. 3). Notably, the observed selec-
tive shifts in S. cerevisiae on codons TCT (Sz) and AGC
(S2) in coils appears weakened or missing when IDRs are
removed, suggesting the previously observed results were
driven by differences in selection in IDRs.

Given that all categories of secondary structures were
predicted to fall into structured regions or IDRs (Addi-
tional File 1, Table S3), we tested whether further divid-
ing up the secondary structures into their corresponding
structured and disordered components was better able to
explain codon usage variation across regions. Seemingly
the most logical split of coils into structured coils (i.e.
those likely falling into protein domains) and IDR coils
were better model fits than the models that relied solely
upon secondary structure or disorder information in both
S. cerevisiae and E .coli (Model Yg and Eg, respectively). In
S. cerevisiae, splitting coils into the structured and disor-
dered regions improved upon the model where the IDRs
were taken from all three secondary structure classifica-
tions in (Model Yg vs. Yg, ADIC = 34), but this model was
a worse fit in E. coli (Model Eg vs. Eg, ADIC = 29). Sur-
prisingly, dividing both coils and helices into structured
regions and IDRs in S. cerevisiae further improved the
model fit (Model Yg vs. Y19, ADIC = 83).

Selection on codon usage varies at the termini of helices in
E. coli, but not S. cerevisiae

Using empirically-determined secondary structures (due
to the inaccurate identification of secondary structure
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Fig. 3 Comparison of selection estimates An between secondary structures (predicted IDRs removed) and IDRs. Points represent An values for
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boundaries by prediction tools [17, 32]) in S. cerevisiae,
we found no evidence that natural selection varies at the
termini of sheets or coils based on model comparisons
via DIC. This was regardless of our choice of the size of
the termini (2 or 3 amino acids) or the minimum length
of the structure (4 to 7 and 6 to 10 amino acids, respec-
tively; Additional File 1, Table S4 — S5). Regarding the
helix secondary structures, only found strong evidence
for differences in selection between the core and termini
when we used termini of 2 amino acids and included 4
amino acid long structures in our analysis (14 DIC). We
note that 4 amino acid structures with 2 amino acid ter-
mini don’t actually contain a core section. Further, when
we restrict our analyses to secondary structures longer
than 4 amino acids, support for differences in selection
between termin and core disappeared. For completeness,
we note the ADIC scores were less than 10 DIC units
when we restricted our minimum lengths to 5 and 6 amino
acid. Excluding 31¢-helices and 7 -helices had no meaning-
ful impact on these results (Additional File 1, Table S6).

Taken altogether, there is evidence selection on codon
usage varies between the termini and core of helices in
S. cerevisiae, but only for very short structures, which
seem to be of questionable biological relevance.
Switching our focus to E. coli, using empirically-
determined secondary structures, DIC-based model com-
parisons indicate differences at termini relative to the core
in helical structures when we restricted the minimum
length of helices from 4 to 7 amino acids (Table 3 and
Additional File 1, Tables S7 — S7). In this case, we find that
An values for 8 codons are significantly different between
the termini and core (p = 0.25 for one tail binomial test
with n = 120; Additional File 1, Fig. S12). On the other
hand, sheets demonstrated variable patterns depending
on the length, similar to what we saw with helices in S.
cerevisiae. When restricting the length to a minimum of
4 or 5 amino acids, DIC indicates there is a difference
between the core and termini of sheets (48 and 24 DIC
Units, respectively), which corresponds to cores of 0 and
1 amino acid, respectively. As with helices in S. cerevisiae,
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Table 3 Comparing models with termini (first and last 2 amino acids, respectively) of secondary structures separated from the core of
the structure in S. cerevisiae and E. coli. Results are for secondary structures of minimum length 6 amino acids. H: helix. E: sheet. C: coil.
ADIC = DIC; — DICgest. Secondary structures based on empirically-determined secondary structures

Groupings
Species Model Secondary I ] I} ADIC
Structure

Yig Whole Structure - - 0
Yip H Termini Core - 2
Yic N-terminus Core C-terminus 33
Y14 Whole Structure - - 0

S. cerevisiae Yie E Termini Core - 33
M N-terminus Core C-terminus 57
Yig Whole Structure - - 0
Yin C Termini Core - 47
Yqi N-terminus Core C-terminus 96
Eip Termini Core - 0
Eic H N-terminus Core C-terminus 13
Eig Whole Structure - - 64
Eie Whole Structure - - 0

E coli Eig E N-terminus Core C-terminus 37
Eif Termini Core - 43
Eip Whole Structure - - 0
Eyj C Termini Core - 6
=] N-terminus Core C-terminus 14

these results with sheets in E. coli should be taken with
caution given that DIC clearly supports no difference in
selection between the core and termini of sheet compo-
nents with a minimum length 6 and 7 amino acids (37
and 49 DIC Units). The same analyses always favored no
differences between the termini and core in coils, though
note that the ADIC scores less than 10 DIC units when we
restricted our minimum lengths to <6 amino acids.

Previous claim of selective shifts at the start of helices is due
to artifacts

Although we could not entirely rule out that selection on
codon usage differed at the termini of helices in S. cere-
visiae (see above), we found no support for the model
allowing for differences in selection on codon usage at the
second and third positions of helices relative to the model
assuming no differences in selection within helical struc-
tures (ADIC = 30) [17]. Using simulated data that assumes
the strength and direction of selection for a codon is con-
stant across the entire genome, we found the odds ratios
reported by [17] were within the range of odds ratios gen-
erated using the simulated data (Fig. 4). Importantly, these
odds ratios are not centered around 1, inconsistent with
the expectation under the null commonly used in hypoth-
esis tests with odds ratios. This suggests the enrichment

of “optimal” and “non-optimal” codons at positions 1 and
4, and positions 2 and 3, respectively, of helices observed
by [17] are an artifact of various confounding factors, such
as amino acid biases and gene expression, that can shape
codon usage patterns unrelated to natural selection.

Discussion

The goal of this work is to quantify the general relation-
ship between codon usage and protein structure. This is
in contrast to other work which has focused on identify-
ing regions thought to be important to protein structure
due to conservation of synonymous codon usage pat-
terns between species [17, 37, 40]. To account for the
effects of amino acid biases and gene expression, we used
the population genetics-based model ROC-SEMPPR that
explicitly includes the effects of mutation bias, selection,
and genetic drift on synonymous codon usage patterns.
Fitting ROC-SEMPPR to different genic regions allowed
us to test for qualitative and quantitative differences in
selection on codon usage related to protein structure in
S. cerevisiae and E. coli using both emprically and com-
putationally determined structures. With the exception of
serine codons TCT and AGC codons in helices and sheets,
we found no evidence for qualitative shifts in the nature
of selection across protein secondary structures and IDRs
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Fig. 4 Odds ratio distributions for 100 simulated genomes by relative position in helices. Genomes were simulated assuming selection was identical
across all positions in the helices. Dashed red lines indicate the odds ratio reported by [17] estimated from real codon usage patterns. Only proteins

in either species. Instead, we observed a high frequency
of small quantitative shifts in the strength of selection for
specific codons across different protein structures. Impor-
tantly, there were not consistent patterns in the direction
of these selective shifts. Our results contrast with previous
work [36, 39] which has claimed that certain protein struc-
tures show preferences for slow codons: overall, selection
on codon usage is highly correlated between protein struc-
tures. While our results are consistent with enrichment of
a codon within a structure relative to another structure,
our results do not indicate differences in the occurrence of
systematic reversals in codon preference between regions.

We also find evidence that selection on codon usage
varies at the termini of helices in S. cerevisiae and E. coli.
In addition, we also found limited evidence that selec-
tion on codon usage varied at the termini of sheets in
E. coli. However, evidence of differences in selection on
codon usage at the termini of secondary structures in both
species were sensitive to the minimum lengths (in num-
ber of amino acids) of the structures included in these
analyses. It is unclear if this indicates a length-dependent
effect on selection on codon usage at the termini or a
loss of statistical power. We could not exhaustively test all
possible minimum length cutoffs or definitions of a sec-
ondary structure termini (e.g. the first 2 vs. first 3 amino

acids); thus, we cannot exclude the possibility that even
some of the stronger evidence of differences in selection
on codon usage within secondary structures (e.g. differ-
ences between termini and core of helices in E. coli) is not
due to some artifact. Regardless, while our results are con-
sistent with possible enrichment of certain codons in the
termini of certain secondary structures [32], our results
do not indicate a systematic changes in codon preference
at the termini of these structures.

The codon-specific nature of ROC-SEMPPR’s Ap
parameter allows the detection of codon-specific differ-
ence that may be hidden to other approaches that average
over the codon and amino acid usage of a region. For
example, our results suggest overall weaker selection on
codon usage in IDRs, which is consistent with either relax-
ation of selection against missense errors in IDRs (as
hypothesized by [38]) and/or increased selection for inef-
ficient codons within IDRs to modulate cotranslational
folding of upstream structured regions (as hypothezied
by [39]). Nevertheless, a subset of amino acids (alanine,
glycine, histidine, lysine, proline, serine, and threonine)
showed stronger selection between synonymous codons
compared to structured regions in both species. All 7 of
these amino acids have higher propensities for forming
IDRs (e.g. proline, serine, lysine, alanine, glycine) or play
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common functional roles in IDRs such as serving as sites
for phosphorylation (serine and threonine) [59, 60]. We
speculate the apparent increased selection against cer-
tain codons in IDRs is due to stronger selection against
missense errors for these amino acids in IDRs.

Previous work found differences in codon usage
between secondary structures were due to the inclusion of
IDRs [39]. In contrast, many of the selective shifts between
secondary structures we detected remained after removal
of IDRs, although the magnitude of these differences was
reduced. These conflicting results highlight a potential
issue with relying on metrics that average over the codon
usage of a region This suggests approaches relying on met-
rics such as CAI, which is calculated as an average of
codon usage across all amino acids within a region, may
obfuscate codon-specific selective shifts.

Perhaps the most surprising finding of this work was
that splitting up both helices and coils based on disorder
predictions provided the best overall model fit in S. cere-
visiae. Although a “disordered coil” seems like a natural
categorization for a protein structure, the phrase “disor-
dered helix” or “disordered sheet” seems contradictory.
Because previous work has found that IDRs can form
transient secondary structures (particularly helices) under
certain conditions [61, 62], this might explain some of the
shift we see between “ordered” and “disordered” helicies
and sheets. Clearly, our interpretation is highly speculative
and further work in this area is needed.

Although we find some evidence of selective shifts at
the termini of helical secondary structures in S. cerevisiae,
we find no evidence supporting selective shifts at posi-
tions 2 and 3 of helical secondary structures [17]. The
results in [17] is likely due to confounding factors that
can also impact codon usage patterns, such as amino acid
biases, which can be particularly problematic when using
metrics such as tAl [18]. An important feature of our pop-
ulation genetics based approach is revealed from the null
distributions generated under the assumption of no selec-
tive differences at positions 2 and 3. That is, the true null
distribution of odds ratios is not centered around 1 as
is usually assumed (Fig. 4). These findings illustrate that
while ad-hoc approaches to analyzing sequence data can
be useful, care must be taken to ensure that the analy-
sis is consistent with the corresponding evolutionary null
model [21]. An evolutionary null model is often meant
as the expected patterns if a trait were evolving exclu-
sively in the absence of selection (i.e. genetic drift and
mutational bias), but in our case, it refers to the patterns
expected if the strength and direction of natural selec-
tion on codon usage were the same between two regions.
As an alternative to purely ad-hoc approaches, population
genetics approaches can be used for generating evolution-
ary null distributions for hypothesis testing with ad-hoc
approaches, as we show here.
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Selectively-favored codons identified by ROC-SEMPPR
may differ from those identified by other methods that
fail to account for the effects of mutational biases and
how codon usage changes as a function of gene expres-
sion. As previously noted, the selectively-favored codon
may not be the most frequently used codon if the strength
of mutation bias and genetic drift is strong relative to
natural selection, even in the case of highly expressed
genes [6, 44, 45]. The normalized translational efficiency
(nTE) metric used by [17] to investigate the relationship
between codon usage and protein secondary structure is
based on the relative supply of tRNA (similar to tAl) and
the demand for a tRNA, as estimated by codon usage
in the transcriptome based on observed mRNA abun-
dances. The selectively-favored codons for each amino
acid identified by ROC-SEMPPR and nTE are in agree-
ment for only 11 of the 19 amino acids (Additional
File 1, Fig. S13). A common pattern emerges for the
other 8 amino acids: the selectively-favored codon is also
mutationally-favored based on ROC-SEMPPR’s parame-
ter estimates. This leads to the odd situation where the
supposedly selectively-favored codon according to nTE
decreases in frequency as gene expression increases. Even
though nTE considers gene expression when estimating
demand for a tRNA, it does not consider how codon fre-
quencies change with gene expression or how mutation
biases impact codon usage. We suspect this leads to the
nTE metric over-penalizing codons that are both muta-
tionally and selectively-favored. We also found that nTE
is poorly correlated with empirical ribosome densities,
suggesting it is a poor estimate of translation efficiency
(Additional File 1, Fig. S14).

Codon usage is predominantly thought to be related to
protein structure via modulation of cotranslational folding
by altering the speed of translation or by reducing mis-
sense errors at sites thought to be important for protein
folding [10, 28, 63]. Studies on the association between
regions of slow codons and larger protein domains often
focus on regions that are 35 or more amino acids down-
stream from the domain to take the restrictive nature
of the ribosome tunnel on domain folding into account
(long [37, 40]. In a similar manner, when considering sec-
ondary structures, the elongation rate of the codon in
the ribosome’s active site will only impact the cotransla-
tional folding of upstream secondary structures. However,
it is unclear how large these offsets would need to be
given that helical structures can begin forming within
the ribosome tunnel [64—66]. To the best of our knowl-
edge, studies on the relationship between codon usage
and protein secondary structure, including this one, have
not taken into account an offset when examining the rela-
tionship between codon usage and seccondary structure.
Although this oversight may have little impact if the offset
is small, this should be explicitly tested.
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Like all models, the biological realism of ROC-SEMPPR
is sacrificed for the sake of tractability. The selection coef-
ficients An estimated using ROC-SEMPPR will reflect
the average strength and direction of natural selection
on codon usage within a region, including but not lim-
ited to selection for translation efficiency, selection for
translation accuracy, and selection related to mRNA sec-
ondary structure. Given the richness of biological systems,
it would be interesting to build upon our analysis and
take other factors that might affect CUB into account.
For example, some evidence suggests mRNA stem struc-
tures occur more frequently in helices and sheets [67].
Faure et al. [68] proposed alterations to elongation rates
via mRNA secondary structure could modulate cotrans-
lational protein folding, but previous work has also found
that mRNA secondary structure rarely impacts ribosome
elongation rates [69]. Regardless, if mRNA secondary
structure is correlated with protein secondary structures,
then, because we are ignoring it, we expect selection
related to mRNA secondary structure to be absorbed into
our estimates of An. In contrast, if mRNA secondary
structure is not correlated with protein secondary struc-
ture, then selection acting on mRNA secondary structure
will contribute to the uncertainty in our estimates of An.
Conceivably, one could add mRNA stability as an addi-
tional category when defining different coding regions.
A similar analysis could be performed by incoporating
knowledge of evolutionarily conserved and variable amino
acid sites, with the former hypothesized to be under selec-
tion against missense errors at these sites [8, 10]. Such
analyses could provide insight into the mechanistic basis
of the observed selective shifts; however, these analyses
are beyond the scope of our focus.

In addition to mutation bias, another nonadaptive evo-
lutionary force that has been shown to shape codon usage
is GC-biased gene conversion generated during meiotic
recombination [70]. For the present study, we note that
GC-biased gene conversion has previously shown to be
present in yeast, but its impact is relatively small [71, 72]
and the effects of hitchhiking on codon usage in yeast have
been somewhat controversial [73-76]. For other organ-
sisms whose genomes are believe to be more strongly
impacted by GC-biased gene conversion, one could take
a categorial approach similar to the one we use here and
categorize genes by their recombination rate, if known.
In theory, ROC-SEMPPR could be expanded to explicitly
include GC-biased gene conversion as a quantiative term.

Conclusions

We find that methods rooted in population genetics can
be used to test for shifts in natural selection on codon
usage. A key advantage of ROC-SEMPPR is it can be
applied to any organism with a sequenced genome, requir-
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ing no other input, such as empirical estimates of gene
expression [44, 54]. ROC-SEMPPR provides estimates of
selection for individual codons, unlike other approaches
based on heuristic measures of codon adaptation, such as
CAIL We emphasize that we are attempting to quantify
the average, genome-wide relationship between selection
on codon usage and protein structure. These selective
shifts are expected to reflect general mechanisms related
to the folding of a protein structure [17, 39]. This is in
a similar vein to work that has made broad statements
about the preferences of a protein structure for certain
codons, such as «-helices are preferentially encoded by
translationally efficient codons [36]. Our work suggests
that such statements are overly-simplistic, as the observed
direction and magnitude of selective shifts clearly varies
by codon, although these shifts are generally very small.
A remaining challenge is to establish the relative impor-
tance of the different selective forces that can shape the
adaptive evolution of codon usage (e.g. translation effi-
ciency, translation accuracy, mRNA secondary structure)
related to protein structure. The direction of natural selec-
tion related to these aspects of codon usage do not always
operate in the same direction [51, 52]. Future work inves-
tigating differences in natural selection on codon usage
related to protein folding, protein secretion, and other
processes will benefit from the use of such models that
are capable of separating out the different selective forces
shaping codon usage.

Methods

Protein-coding sequences (CDS) and amino acids
sequences for S. cerevisiae S288c (GCF_000146045.2) and
E. coli K12 MG1655 (GCF_000005845.2) were down-
loaded from NCBI Refseq. Previous analysis of CUB in
E. coli indicated approximately 750 genes had outlier
codon usage patterns, many of which were hypothesized
to be due to horizontal gene transfer [42]. Fitting these
outlier genes with ROC-SEMPPR revealed selection on
codon usage within these genes was anti-correlated with
the remaining genes [48]. Here, our analysis of E. coli
excludes these outlier genes.

Identifying protein secondary structure

Our analysis makes use of both protein secondary struc-
tures determined empirically via methods like X-ray crys-
tallography, and computationally via methods like PsiPred
[57]. The empirical data is a more conservative dataset,
with fewer proteins available but more accurate and reli-
able designations of protein secondary structures. The
current implementation of PsiPred has an overall accuracy
score of 84% [77], but secondary structure prediction algo-
rithms generally struggle with accurately identifying the
termini of secondary structures [17, 32]. Therefore, anal-
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yses of codon usage at secondary structure termini were
based exclusively on empirically-determined secondary
structures.

Empirically-determined protein secondary structures
and corresponding protein sequences were obtained from
the Protein Data Bank (PDB). Residues were grouped into
three overarching structural groups based on their DSSP
classification: helix (DSSP H, G, and I), sheet (DSSP E and
B), and coil (DSSP S, T, and ?). This classification system is
consistent with secondary structure prediction algorithms
[57] and other analyses of codon usage patterns based on
empirically-determined secondary structures [17, 32, 35,
36, 78]. Note that the classification symbol (.) is a catchall
containing any amino acids not matching any other DSSP
classifications. Protein sequences from PDB were aligned
to the S. cerevisiae and E. coli proteomes using BLAST.
Sequences were considered mapped to the proteomes if
the PDB sequence covered 80% of the length of the pro-
tein and had a percent identity score of 95% or higher. This
provided us with 1,097 and 1,285 protein sequences with
empirically-determined secondary structures in S. cere-
visiae and E. coli, respectively. This dataset was used for
comparing selection on codon usage between and within
secondary structures.

Protein secondary structures were predicted for all
nuclear protein sequences for S. cerevisiae and for 1,742
proteins in E. coli using the PsiPred software [57] at
default settings. PsiPred combines the secondary struc-
tural classifications of DSSP into helices (H), sheets (E),
and coils (C).

Identifying structured and intrinsically-disordered regions
Unlike protein secondary structures, empirically-
determined intrinsically-disordered regions (IDRs) are
rare. The DisProt database includes only 134 proteins
with IDRs for S. cerevisiae. Thus, our analysis of codon
usage patterns in IDRs and structured regions in S. cere-
visiae and E. coli relied on predicted IDRs using IUPRED2
[79], which provides a quasi-probability of the an amino
acid falling into a disordered region, using default set-
tings. An amino acid with a quasi-probability of greater
than 0.5 is more likely to be disordered, while a quasi-
probability less than 0.5 is more likely to be structured;
thus, amino acids with a score less than or equal to 0.5
were classified as structured, while amino acids with
a score greater than 0.5 were classified as disordered,
consistent with the analysis done by [39].

Analysis with rOC-SEMPPR

All analyses of CUB was performed using ROC-SEMPPR
with the R package AnaCoDa [54]. We note ROC-
SEMPPR assumes weak selection. To meet this assump-
tion, serine was split into separate codon groups: the 4
codon group TCN (S4) and the 2 codon group AGN (S»).
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For any amino acid with 7., synonymous codons, the
probability of observing codon i in gene g can be described
by the equation

e—AMi_Ani¢g

Pig = Z}{«m o~ AM— A 1)
where AM represents mutation bias, A7 represents nat-
ural selection, and ¢ represents the evolutionary average
protein production rate of gene g. Note that A indi-
cates the mutation bias and natural selection parameters
are relative to a reference codon. ROC-SEMPPR’s muta-
tion bias AM parameter represents the log of the ratio
of mutation rates between two synonymous codons [44].
Although originally described as being proportional to
relative differences in translation efficiency between two
synonymous codons [44], An can also be interpreted as
the critical population genetics parameter sN,, where N, is
the effective population size and s represents the selection
coefficient relative to the reference codon, here chosen to
be the most selectively favored codon for an amino acid.
Because ROC-SEMPPR assumes the strength of selection
varies with a gene’s expression level ¢ and scales this term
such that the average level of expression across genes is
¢ = 1, An represents the strength and direction of natural
selection for a codon in a gene with an average expres-
sion level. For genes with lower or higher expression than
average, the strength of this selection simply scales with ¢,
i.e. sN, = Ang.

A deeper understanding of the model parameters can be
obtained by considering the cases of no protein produc-
tion ¢ = 0 and average protein production ¢ = 1. We
note that ROC-SEMPPR scales ¢ such that the E[ ¢] = 1.
In the case of no protein production, natural selection on
codon usage is completely absent, resulting in mutation
biases determining the synonymous codon frequencies.
In case of average protein production, the synonymous
codon frequencies will reflect the relative strengths and
directions of mutation bias and natural selection (pro-
portional to drift). For example, if the mutation bias is
stronger and in the opposite direction of natural selection
(i.e. mutation and selection favor different codons), then
the mutationally-favored codon is expected to be more
frequent in an average expression gene. Importantly, ¢
scales the strength of natural selection such that strong
mutation biases can be (but not necessarily will be) over-
whelmed in highly expressed genes. Previous work indi-
cates ROC-SEMPPR’s parameter estimates correlate well
with empirical measurements in S. cerevisiae and E. coli
[44, 48].

Analysis of selective shifts on codon usage between protein
structures

ROC-SEMPPR was fit to all protein-coding sequences in
S. cerevisiae and E. coli to obtain gene-specific estimates
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of protein production rates ¢ and codon-specific esti-
mates of mutation bias AM. Protein-coding sequences
were then partitioned based on the corresponding sec-
ondary structure (based on empirically-determined or
predicted structures) of each codon/amino acid. This par-
titioning resulted in FASTA files in which the represented
protein-coding sequences contained only one type of pro-
tein structure. When fitting ROC-SEMPPR to these data,
we estimated the selection coefficients An while keeping
the mutation bias AM and protein productions rates ¢
fixed at their genome-wide estimates, similar to [48]. Our
previous work has shown that estimating protein produc-
tion rates with ROC-SEMPPR instead of using empirical
gene expression estimates has little impact on estimates of
selection and mutation bias [44]. We also emphasize that
empirical gene expression estimates are highly variable
across measurements taken from different labs, bringing
into question which empirical dataset is best [45]. We pre-
viously showed that the distribution of correlation coef-
ficients of gene expression estimates taken from different
labs is similar to the distribution of correlation coeffi-
cients between ROC-SEMPPR estimated ¢ and empirical
gene expression estimates (see Supplemental Figure S2
in [48]).

To determine if codon usage patterns are statistically
different between protein secondary structures, structural
groupings were combined, e.g. helices and sheets (or more
specifically, the corresponding FASTA files) were com-
bined into one group (FASTA file) as opposed to treating
them as separate groups (FASTA files). These structural
groupings were then further merged into different models
such that each structure category was represented once,
either as a standalone group (e.g. helix) or grouped with
another secondary structure (e.g. helix and sheet as one
group). To be clear, “different models” simply refers to dif-
ferent ways in which different secondary structures were
grouped. This ensured the sequence data (i.e. the num-
ber of codons, protein-coding sequences, etc.) is the same
across all models, making them directly comparable. We
note that the first 35 codons of all genes were excluded
to help reduce the impact of a weaker selection on codon
usage at the 5’-end of genes [56].

A similar analysis to the one outlined above for com-
paring codon usage between secondary structures was
performed based on the predictions using IUPRED2, in
which we compared a model which had structured and
disordered regions as separate groupings to a model which
treated them as one grouping. Finally, an analysis was per-
formed which combined information from PsiPred and
IUPRED?2 to classify amino acids based on both meth-
ods for classifying structural information. This allowed
us to distinguish coils which may be found as part of a
larger structured domain from coils part of intrinsically-
disordered regions.
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Analysis of selective shifts on codon usage within protein
structures

To examine variation in codon usage within secondary
structures, empirically-determined secondary structures
were divided into the N-terminus and C-terminus regions,
with all codons in between being classified as the core
of the secondary structures. To assess robustness of our
results, we varied the minimum number of amino acids
for a secondary structure as low as 4 in both species, and
as high as 10 amino acids in S. cerevisiae and as high as 7
amino acids in E. coli. We note that the median lengths (in
number of amino acids) of helices, sheets, and coils were
10, 4, and 4 (respecitvely) for S. cerevisiae, and 9, 4, and
4 (respectively) in E. coli. For S. cerevisiae, we also varied
the termini region to be the first and last 2 or 3 amino
acids. To test the hypothesis presented by [17] in S. cere-
visiae, helices of minimum length 6 amino acids were split
up into the second and third codons (relative to the start
of the helix) and the remainder of the helix.

Comparing model fits and estimates of selection

For statistically comparing codon usage patterns, ROC-
SEMPPR model fits were compared using the Deviance
Information Criterion (DIC) [80]. Briefly, DIC is a
Bayesian information criterion which tries to balance the
overall model fit to the data as determined by the poste-
rior distribution and the number of parameters used to
fit the data. If the level or nature of selection on codon
usage differs between two structures, then it is expected a
model treating these structures as separate groupings will
have a better (lower) DIC score than model fits treating
the structures as single (or merged) groupings. We follow
the general rules of thumb for comparing models using
information criterion [81]. A model that differs from the
minimum DIC model by fewer than 2 DIC units has sub-
stantial statistical support. A difference in the range of
the 2-4 DIC units are still considered to have strong sup-
port, while a difference of 4-7 DIC units are considered to
have less support. However, a model that differs from the
minimum DIC model by 10 or more DIC units can gen-
erally be disregarded. We note that all ADIC values will
represent DIC; — DICpgegt, where DIC; is the DIC score
of the i model and DICg is the minimum DIC score
(i.e. the best model) of the models under consideration.
This means that all reported ADIC values will fall into the
range [ 0, 00).

Comparing models via DIC indicates differences in
selection on codon usage between structural regions, but
does not tell us how they differ. Similar to [48], we
broadly compared codon-specific estimates of selection
An between structural groupings using a model-II regres-
sion, which accounts for errors in both the independent
and dependent variables [82]. In this work, we used the
Deming Regression, as implemented in the R package
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deming. A Deming regression on An estimated from dif-
ferent structural grouping with a slope of B = 1 (i.e.
y = x) would suggest there is not a general shift in natu-
ral selection on codon usage between the two groupings
that can be described by the functional relationship Ang
= BAn4. On the other hand, a Deming regression slope
B significantly different from 1 is consistent with an over-
all shift in natural selection on codon usage between the
two structural groupings being compared. For each amino
acid, its corresponding An values were scaled relative to
the most selectively-favored synonymous codon, i.e. the
one most favored by natural selection based on fitting the
null model where selection on codon usage does not vary
across structural categories; specifically, models Yy and Eg
for S. cerevisiae and E. coli, respectively. As a result, the
null model reference codon An value is always 0 and its
synonyms are always An > 0, unless there’s a structure-
specific shift in the most selectively-favored codon. In this
case, there can be An values less than 0.

Importantly, the Deming regression only summarizes
a possible overall shift in the strength or direction of
selection on codon usage between two structural group-
ings, but does not rule out the possibility that selection is
different between specific codons. This information can
be obtained by comparing the An estimates for a codon
across the different protein structures. We focus on the
codons for which the An 95% posterior probability inter-
vals do not overlap between structural groupings, as we
are most confident in the sign of any shift in selection.

Simulating codon usage patterns for model validation

To test if we are able to detect shifts in selection
across protein regions, we simulated codon usage of two
regions under the ROC-SEMPPR model using the empir-
ically determined helices and coils in S. cerevisiae (1,097
protein-coding sequences represented) as templates. The
codon usage at each amino acid site in the simulated
helices, which we refer to as the “Uniform Selection
Regions,” is evolving under the same selective pressure.
Codon usage in the Uniform Selection Regions was sim-
ulated used the An values, as well as the mutation bias
AM and protein production rates ¢, estimated from a
ROC-SEMPPR model fit to the entire set of S. cere-
visiae protein-coding sequences, excluding mitochondrial
sequences. As an example, if we assume these An values
represent selection against translation inefficiency, then
the codon usage at all amino acid sites in the Uniform
Selection Regions are evolving under selection to reduce
translation inefficiency. In contrast, some percentage of
amino acid sites (1%, 10%, 50%, 100%) in the simulated
coils, which we refer to as the “Heterogeneous Selection
Regions,” were randomly selected to be evolving under
the opposite selective pressure of the Uniform Selection
Regions i.e. the selection coefficients An at these sites is
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anticorrelated with the An used for the Uniform Selec-
tion Regions. Building upon our example from above, if
the Uniform Selection Regions are evolving entirely under
selection to reduce translation inefficiency, then these
sites in the Heterogeneous Selection Regions are evolv-
ing under selection to increase translation inefficiency.
The remaining amino acid sites in the Heterogeneous
Selection Regions are evolving under the same selective
pressure, i.e. the same selection coefficients An as the
Uniform Selection Regions.

To make sure our approach is robust to factors such
as protein structure-specific amino acid biases, we sim-
ulated approximately 6,000 S. cerevisiae genomes such
that the selective pressure was the same across all protein
structures (i.e. all structure had the same values of selec-
tion parameter An). Codons from the simulated dataset
were assigned to different structures based the computa-
tionally predicted structures from PsiPred or IUPRED2.
Qualitative and quantitative shifts between helices, sheets,
and coils, and between structured regions and IDRs were
determined as described in Comparing model fits and
estimates of selection.

Evaluating effects of confounding factors in analyses of
position-specific codon usage

Previous work found that positions 2 and 3 (relative to
the start) of helices in S. cerevisiae were enriched in non-
optimal codons [17]. To determine if this pattern can
be generated by amino acid biases or gene expression,
the yeast genome was independently simulated 100 times
using AnaCoDa [54] under the ROC-SEMPPR model with
the genome-wide selection coefficients An and mutation
bias AM, as well as the gene-specific estimates of pro-
tein production rates ¢, such that the nature of selection
was the same for every codon across the genome. Pro-
teins used by [17] for their analysis of position-specific
codon usage were pulled and all helices were aligned by
position. For each position, enrichment of non-optimal
codons based on the nTE metric (as defined in [17]) was
tested using a Fisher’s exact test. This generated a distri-
bution of 100 odds ratios per position, which were then
compared to the reported odds ratios in [17].
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