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Abstract 

Background:  Despite sexual development being ubiquitous to vertebrates, the molecular mechanisms underpin‑
ning this fundamental transition remain largely undocumented in many organisms. We designed a time course 
experiment that successfully sampled the period when Atlantic salmon commence their trajectory towards sexual 
maturation.

Results:  Through deep RNA sequencing, we discovered key genes and pathways associated with maturation in the 
pituitary-ovarian axis. Analyzing DNA methylomes revealed a bias towards hypermethylation in ovary that implicated 
maturation-related genes. Co-analysis of DNA methylome and gene expression changes revealed chromatin remode‑
ling genes and key transcription factors were both significantly hypermethylated and upregulated in the ovary during 
the onset of maturation. We also observed changes in chromatin state landscapes that were strongly correlated with 
fundamental remodeling of gene expression in liver. Finally, a multiomic integrated analysis revealed regulatory net‑
works and identified hub genes including TRIM25 gene (encoding the estrogen-responsive finger protein) as a puta‑
tive key regulator in the pituitary that underwent a 60-fold change in connectivity during the transition to maturation.

Conclusion:  The study successfully documented transcriptome and epigenome changes that involved key genes 
and pathways acting in the pituitary – ovarian axis. Using a Systems Biology approach, we identified hub genes 
and their associated networks deemed crucial for onset of maturation. The results provide a comprehensive view of 
the spatiotemporal changes involved in a complex trait and opens the door to future efforts aiming to manipulate 
puberty in an economically important aquaculture species.
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Introduction
Epigenetic regulation of gene expression influences a 
vast spectrum of complex traits, with examples span-
ning the onset and severity of human disease, develop-
mental transitions during growth and the expression of 

ecologically and economically relevant traits across the 
animal kingdom. Our understanding of the epigenetic 
contributions to trait variation remains low in compar-
ison to causative genes derived from approaches such 
as genome wide association studies (GWAS). How-
ever, the development of sophisticated sequence-based 
assays for the detection of chromatin state changes and 
methylation status have enabled the landmark develop-
ment of genome wide maps of regulatory elements in 
human [1–3], mouse [4–6] and other model organisms 
such as the fruit fly (Drosophila melanogaster) and 
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the nematode (Caenorhabditis elegans) [7, 8]. These 
have provided the impetus for a plethora of research 
focused on understanding epigenetic mechanisms and 
their role regulating gene expression.

Sexual maturation is a fundamental transition ubiq-
uitous to vertebrates and provides a model for the 
study of epigenetic regulation. The key tissues are 
known given the reproductive cycle is regulated by 
activation across the brain, pituitary, gonadal (BPG) 
axis in organisms spanning from mammals to teleost 
fish. Further, upon maturation these tissues undergo 
known and often profound transcriptomic remod-
eling providing a large dynamic range to increase the 
likelihood of identifying regulatory networks [9–12]. 
An energy-intensive process such as sexual matura-
tion involves the liver as energy homeostasis is linked 
to fertility (Mircea et  al. [13]; Montagner et  al. [14]). 
Additionally, several regulatory transcription factors 
[11] and single-nucleotide polymorphisms were iden-
tified in the liver Insulin-like growth factor 1 (IGF1) 
gene to be associated with age at puberty in cattle 
(Fortes et al. [15]).

The genetic architecture of sexual maturation has 
been extensively studied using association studies in 
both wild and farmed Atlantic salmon populations 
[16–19]. However, a single omic dataset would not 
be appropriate to unravel the mechanisms underly-
ing a complex physiological transition such as sexual 
maturation. Indeed, several multiomics studies in live-
stock species showed the promise of Systems Biology 
approaches to integrate multiple omics layers from 
different tissues to understand the molecular basis of 
complex traits including sexual maturation, feed effi-
ciency and host-parasite interactions (Cánovas et  al. 
[10]; Alexandre et al. [20]; Gòdia et al. [21]; Botwright 
et al. [22]).

Despite its importance as a trait of interest, sexual 
maturation can be difficult to study, as the timing of 
onset varies widely in response to both genetics and 
environmental factors and occurs prior to measur-
able phenotypic change. To overcome this, we chose to 
investigate sexual maturation in Atlantic salmon where 
photoperiod manipulation in an experimental system 
can be used to synchronize animals and access tis-
sues across the time period when animals first commit 
to the onset of puberty. We also chose a multiomics 
approach, which has the power to identify the control 
mechanisms underpinning complex traits [23, 24]. We 
describe changes in gene expression, DNA methylation 
and chromatin accessibility to study transcriptional 
and epigenomic remodeling before inferring regula-
tory networks associated with onset of maturation in a 
commercially important aquaculture species.

Results
Initiation of salmon sexual maturation and a multiomic 
workflow
Female fish were managed in a tank-based experimen-
tal system to facilitate a long-light photoperiod regime 
known to stimulate the onset of sexual maturation 
(Fig. 1A) [25, 26]. Fish from a single management group 
were sacrificed at a timepoint immediately before initia-
tion of the long-light regime (throughout referred to as 
T1) and at three timepoints afterwards (T2, T3 and T4). 
An increase in gonadal somatic index (GSI) of sampled 
fish across the time course confirmed an active response 
to the long photoperiod (Fig.  1B). Significant increases 
were observed only at T4 (t-test P-value = 0.021). Tissues 
from the BPG (brain – pituitary – gonad) axis and liver 
were sampled at each timepoint to form the basis of a 
multiomics workflow for data generation and integrative 
analysis spanning the transcriptome, DNA methylome 
and chromatin state datatypes (Fig.  1B; Supplementary 
Fig. S1).

Significant transcriptome changes in the pituitary‑gonad 
axis reveal candidate genes and regulators of maturation 
onset
We sequenced messenger RNA (mRNA) from four bio-
logical replicates of each tissue (brain, pituitary, ovary 
and liver) before and after the onset of maturation. A 
total of 3.2 billion paired-end reads were mapped against 
the Atlantic salmon reference genome with 72% map-
ping efficiency to create an average depth of 50 million 
reads per library (Data S1). Consistency across biological 
replicates within each timepoint was high for each tissue 
except for brain. Brain samples were excluded from fur-
ther analyses because of inconsistency among replicates 
(see Supplementary Results; Supplementary Fig. S2).

To begin characterization of transcriptomic remod-
eling, we compared gene expression in three post-mat-
uration samples (T2, T3 and T4) against the control T1 
in three tissues (pituitary, ovary and liver) (Fig. 1C). The 
pituitary gland showed comparatively subtle transcrip-
tomic responses that involved 543 differential expressed 
genes (DEGs; adjusted P  < 0.05 and log2FC > ±1) (Data 
S2). In contrast, more widespread remodeling was 
observed in both ovary (5993 DEGs) and liver (9541 
DEGs) (Fig. 1C, Data S2) using the same significance and 
fold change thresholds. The number of DEGs increased 
with elapsed time following the onset of the long light 
photoperiod for the two BPG axis tissues (pituitary and 
ovary). Of these, the ovary underwent the most dramatic 
remodeling over time with 403, 1709 and then 3497 
DEGs observed at timepoints T2, T3 and T4 respectively 
(Data S2). This increasing trajectory of differential gene 
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expression in ovary, coupled with the elevated GSI fol-
lowing the light stimuli (Fig.  1A), strongly suggests the 
experimental approach successfully initiated the onset of 
maturation.

The pituitary is expected to play a key role in the early 
stages for maturation onset [27]. Hierarchical cluster-
ing of pituitary DEGs revealed two distinct gene clusters 
(via hierarchical clustering), one of upregulated genes 
(n = 333; 60% of pituitary DEGs) and one of downregu-
lated genes (n  = 125). The upregulated cluster showed 
significant gene ontology (GO) enrichment for matu-
ration-related functions including G protein−coupled 
receptor signaling and hormone activity (Supplementary 
Fig. S4 and Data S3). Pituitary DEGs were involved in sev-
eral reproduction-related functions such as steroidogen-
esis (SF1, CYP17A1), hormone receptors (GRM4, OXTR, 
PGR, DOP1R1, GALR1), genes coding for gonadotropins 
(GTHB1, GTHB2, GLHA2) and retinoic acid (RA) sign-
aling (CYP26B1, RHD8–1/2) (Fig. 2A). The upregulation 
of gonadotropins subunits is highly significant in the con-
text of onset of puberty. This included both GTHB1 and 
GTHB2 that encode the gonadotropin subunits beta-1 
and 2 as well as GLHA2 that encodes the glycoprotein 
hormone alpha chain. Together, these form the heter-
odimeric gonadotropins (GTH-1 and GTH-2) that have 

previously been shown to stimulate gonadal growth in 
the juvenile stages of both rainbow trout and coho/chum 
salmon [28–30]. Further, physicochemical characteriza-
tion of the salmon gonadotropins indicate they are func-
tionally related to follicle stimulating hormone (FSH) and 
luteinizing hormone (LH) in vertebrates (reviewed by 
[31]). We find GLHA2 gene (the common subunit pre-
sent in gonadotropins) was consistently upregulated in 
the pituitary throughout the experiment (Supplementary 
Fig. S3). Clustering DEGs in ovary revealed distinctive 
expression profiles for post-maturation and two distinct 
clusters of upregulated genes (n  = 3476; 58% of ovary 
DEGs) and downregulated genes (n = 301) were identi-
fied (Supplementary Figs.  3 and 5A, B). The functional 
profile for upregulated genes in the ovary revealed pro-
cesses related to cell adhesion, immune response and 
regulation of development (Supplementary Fig. S5; Data 
S3). Examination of ovary DEGs identified several gene 
categories related to follicular development. Following 
LH surge, several hormonal receptors (including LHR, 
GNRHR2, and AMHR2) were upregulated leading to acti-
vation of extracellular matrix proteins such as CLDN5, 
ECM1/2, MXRA8, and HAS3. The maturation response 
was also associated with upregulation of immune-related 
genes such as MYD88T, TLR, CD2, IGLL1, CCL19, and 

Fig. 1  Transcriptomic and epigenomic changes associated with onset of salmon maturation (A), Induction of maturation through photoperiod 
manipulation and sampling time points. Animals were managed via photoperiod to synchronise the timing of commitment into maturation. 4 
fish were sampled at each of the T1 (before long day photoperiod signal) and T2-T4 time points (during maturation) in 2 weeks intervals to control 
for variation between individuals. Gonadosomatic index (GSI) increased gradually from T2 till the last sampling event at T4 indicating active 
response towards maturation in these animals (B), Tissue collection and multi-omics analyses. Samples from the pituitary gland, ovary and liver 
were collected at each sampling event. Transcriptome and DNA methylome data in the three tissues along with accessible chromatin data in liver 
were collected (C), Significant transcriptome remodelling driving salmon maturation. 9 MA plots (showing differentially expressed genes (DEGs) in 
pituitary, ovary and liver (FDR < 0.05 and log2fold change > ±1) at T2, T3 and T4 during maturation compared to control samples at T1
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TRAF2. Key transcription factors (TFs) controlling ovar-
ian development (FOXL2 and GATA4) along with fol-
licular developmental genes (RSPO1, KITL, FST, AMH, 
FSTL1 and several sema/plexin genes) and steroidogen-
esis genes (CYP17A1, SF-1 and STAR​) were also upregu-
lated (Fig. 1A; Supplementary Fig. S6).

In liver, many genes were differentially expressed at all 
end time points (T4) (Data S4). Hierarchical clustering 
of the liver DEGs revealed distinctive expression profiles 
for post-maturation and identified two distinct clusters of 
upregulated genes (n = 3336) and downregulated genes 
(n  = 2347) (Supplementary Fig. S7). Upregulated gene 
cluster showed significant GO enrichment with respect 
to 45 GO-BP, 17 GO-CC and 23 GO-MF terms related 
to organic acid metabolic processes and mitochondrial 

transport (Supplementary Fig.  7 and Data S3), consist-
ent with the understood role the liver plays to provide the 
energetic potential required for the transition to puberty. 
Taken together, the multi-tissue transcriptomic profil-
ing identified key genes in pituitary as early triggers and 
ovarian genes as downstream effectors in ovary. A model 
of the pituitary-gonad axis genes and their roles during 
onset of sexual maturation is presented in Fig. 2B.

Next, we performed regulatory impact factor (RIF) 
analysis to identify key TFs significantly contributing 
to differential expression between endpoints T1 and T4 
samples (where most of the transcriptomic changes have 
occurred). Predicted TFs (obtained from [34]) and their 
target DEGs at T4 were used to identify regulators with 
significant scores (deviating > ± 2.57 standard deviation 

Fig. 2  Activation of maturation candidate genes and regulatory factors in the pituitary-gonad axis (A), Heat map of key biological candidates 
with significant expression changes in pituitary and ovary during onset of maturation. The clustering shown was obtained by comparing the 
normalised expression values (log2-transformed and mean-centered FPKM values). The red-blue scale represents the relative expression values (B), 
Model of genes implicated in activation of the pituitary-ovarian axis in Atlantic salmon and their potential roles during maturation onset. Panel B 
was adapted from [32, 33] (C), Key transcription factors (TFs) with regulatory potential identified based on co-expression with DEGs at T4 using RIF 
metrics. The Venn diagram shows overlap of these TFs among the three tissues. The heatmap shows normalized expression of top10 factors per 
tissue ranked based on their RIF scores
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from the mean; P < 0.01) (Fig. 2C; Data S4). This identi-
fied a total of 305 significant regulators (113, 68 and 123 
in pituitary, ovary and liver). Most were tissue specific 
(n = 298; 97.7%) with only 7 shared among tissue pairs 
(Fig. 2C). Next, we ranked these regulators based on their 
absolute RIF1 (based on consistent differential co-expres-
sion with DEGs) and RIF2 (based on the most altered 
ability to predict the abundance of DEGs) scores to 
identify the top-10 factors and plotted their normalized 
expression to show higher expression in the pituitary-
ovary axis (Fig.  2C). While the majority of these genes 
didn’t show significant changes in expression between 
the two time points, they were highly scored by RIF due 
to significant differences in correlation with DEGs in the 
two conditions (differential wiring). Four zinc finger pro-
teins (such as ZNF662 in pituitary and ZNF239 in ovary) 
were among these top factors, suggesting that these 
members of the ZNF gene superfamily may be involved 
in regulating onset of maturation in salmon. In fact, 
the potential contribution of ZNF genes to the matura-
tion process has been previously shown [35]. Among the 
pituitary top regulators, ERG-3 encoding early growth 
protein 3 was highly expressed in the post-maturation 
samples compared to the control. ERG-3 belongs to a 
family of immediate early response genes that contains 
a conserved zinc finger DNA-binding domain that binds 
to GC-rich sequence in the promoter regions of target 
genes [36]. A member of the early growth protein family, 
ERG-1 along with nuclear receptor steroidogenic factor 1 
(SF-1) (differentially expressed in pituitary transcriptome 
data) are essential TFs required for LHβ gene expression 
in the pituitary where EGR-1 binds and activates the LHβ 
promoter in combination with SF-1 [37].The DNA bind-
ing domain of EGR-1 is highly homologous among other 
members of this family, including EGR-3 [38].The expres-
sion patterns of both ERG-3 and SF1 suggests similar 
functions in female reproductive development in Atlantic 
salmon. Taken together, we showed that key regulators 
were identified based on their co-expression with DEGs, 
leading to a deepened understanding of gene regulation 
during maturation.

Genome wide increase in CpG methylation levels in ovary 
during maturation
To investigate the regulatory mechanisms controlling 
differential gene expression, we constructed genome-
wide CpG methylation maps for Atlantic salmon using 
whole-genome bisulfite sequencing (WGBS). Methylome 
data was collected from two biological replicates at the 
terminal time points (T1 and T4, Fig. 1B) from the three 
tissues (pituitary, ovary and liver), generating 2.6 billion 
paired-end uniquely mapped reads (average coverage 
of 11x) (Data S4). We found an average genome-wide 

methylation rate of 81% per sample (Supplementary 
Fig. S8; Data S5), similar to the rate observed in verte-
brate genomes (60–90%) [39, 40]. Methylome data was 
assessed based on coverage, read mapping and consist-
ency between biological replicates (see Supplementary 
Results; Data S5; Supplementary Fig. S8). Among the 
different dinucleotide contexts, CpG methylation con-
tributed the vast majority (~ 99.5% on average) compared 
to CHH or CHG methylation which were excluded from 
further analysis (Supplementary Fig. S8; Data S5).

By comparing CpG methylation patterns between T4 
and T1 timepoints, we identified 1902, 2982 and 1606 
differentially methylated regions (DMRs) in the pitui-
tary gland, ovary and liver respectively (Supplementary 
Fig.  9A, B; Data S6). The average length of DMRs was 
short (251 bp) and their distribution was both genome 
wide (Supplementary Fig.  9C) and strongly tissue spe-
cific, with few regions shared between tissue pairs and 
only 8 found in all three tissues (Supplementary Fig. 9D). 
The genomic location of these DMRs were highly non-
random, with 52% found to overlap protein coding genes 
and another 18% located within 5 kb upstream or down-
stream of coding genes (Supplementary Fig.  9E). Next, 
we investigated the directionality of DMRs across tissues 
and found approximately equal rates of hyper-methyla-
tion (increased methylation in T4) and hypo-methyla-
tion (decreased methylation in T4) in both the pituitary 
and liver (Fig.  3A). Strikingly, the majority of DMRs in 
ovary were hyper-methylated (2175 DMRs or 73%). The 
increase in methylation occurred independent of genom-
ics location (Fig. 3A), however we identified many fewer 
DMRs in promoters (7% of the 2175 DMRs) and 5 kb 
downstream of genes (11%) compared with those located 
in coding regions (52%) or within intergenic regions 
(30%). Given the ovary underwent the largest increase 
in upregulation of gene expression and had the highest 
number of DMRs, hyper-methylation appears to have 
played a role. This is consistent with DNA methylation 
having important roles during epigenomic reprograming 
in embryo and stem cell development [41], compared to 
highly stable methylomes in somatic cells [42]. Further, 
increased methylation response has been associated with 
the initiation of human puberty [43] and the ovary also 
undergoes the most radical physiological change dur-
ing maturation as it transforms via vitellogenesis and 
oocyte development in preparation for egg release during 
spawning. The gene catalogue present within differen-
tially methylated regions (DMRs) was assessed for their 
function in relation to the trait. The majority of ovar-
ian differentially methylated genes (DMGs) were hyper-
methylated (n  = 1165; 74%) (Fig.  3A) and significantly 
enriched for three biological process (GO-BP), one cel-
lular component (GO-CC) and 24 molecular function 
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(GO-MF) terms including those with maturation-related 
functions such as semaphorin, glutamate receptor activ-
ity and cell adhesion molecule binding (Fig. 3B; Data S7). 
Several genes encoding Semaphorin and Plexin proteins 
were upregulated in ovary (Fig.  2A) implicating a role 
during ovary development. In mouse, Semaphorin-4D/
Plexin-B1 binding is involved in ovary follicular develop-
ment through extracellular matrix re-organization, cell 
adhesion and proliferation [44–46].

Co‑analysis of DNA methylomes and transcriptomes 
implicated chromatin remodeling genes and key 
transcription factors
To search for evidence of a generalized and genome-wide 
association between gene expression levels and meth-
ylation status, expression levels for all genes with either 
differential gene body or promoter methylation were 

evaluated (Supplementary Fig. S10A, B). This revealed 
no correlation for either comparison, consistent with 
previous studies reporting weak correlation between 
global changes in DNA methylation and gene expres-
sion in different species including humans [47, 48] and 
more recently in fish [49]. We next explored the dynamic 
between DNA methylation and gene expression by assess-
ing the overlap of genes declared as both DEG and DMG. 
The overlap was low and non-significant for liver (38 / 
616 or 6% of DMGs were also DEGs) and pituitary (11 
/ 762 or 1.4% of DMGs were DEGs) (Supplementary Fig. 
S10C). However, 195 or 14% of ovary DMGs (195/1357) 
were also DEGs, a number that exceeded random expec-
tation in 83.8% of 1000 permutations tests (Fig. 3C). This 
suggests changes in methylation status may directly con-
trol gene expression in a targeted subset of genes. If true, 
we would expect to see correspondence between the 

Fig. 3  Multi-tissue DNA methylome maps reveal differentially methylated genes with key roles in salmon maturation (A), Changes in CpG 
methylation across four genomic regions per tissue, promoters were defined as regions located 5 kb upstream of transcription start sites (TSSs) 
(B), Significantly enriched gene ontology (GO) terms among ovary hypermethylated genes (n = 1156) against background of ovary genes 
(hypergeometric test, Bonferroni-adjusted P < 0.05) (C), Significant overlap between ovary DMGs and DEGs (D), Methylation and expression 
directionality at gene bodies confirms that gene body methylation is associated with gene activation (E), Significantly enriched GO terms (adjusted 
P < 0.05) among the list of 148 hypermethylated genes in ovary (F), Heatmaps showing significant increases in CpG methylation and expression 
of genes driving GO enrichment shown in part F. G Heatmaps showing significant increases in CpG methylation and expression of transcription 
factors and maturation candidate genes and among the list of the 148 genes. H CpG methylation profiles for the GRM8 gene. The methylation plot 
shows percentages of methylated CpGs along with coverage depth at each CpG site. Pink rectangles represent the DMR and genomic coordinates 
are indicated below the density plot
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directionality of the expression and methylation changes. 
This appeared to be the case, as 82% of upregulated 
genes (148 / 179; Binomial P-value = 8.727E− 20) were 
hyper-methylated at T4 relative to T1 (Fig.  3D), match-
ing the conventional expectation of gene body methyla-
tion mediated control of gene expression [50, 51]. The 
148 genes were enriched for 3 GO-CC terms related to 
chromatin remodelling complexes (SWI/SNF and nBAF) 
(Fig.  3E; Data S7), and the associated genes displaying 
coordinated expression and methylation status (Fig. 3F). 
For example, the ARID1B gene encodes AT-rich inter-
active domain-containing protein 1B and SMARCA2 
encodes the global transcription activator SNF2L2. Both 
proteins are involved in chromatin remodeling as they 
are core components of the Switching defective/sucrose 
nonfermenting (SWI/SNF) remodeling complexes [52] 
that carry out enzymatic change to chromatin structure 
by altering DNA-histone contacts [53]. These complexes 
are evolutionary conserved protein complexes involved 
in regulating diverse pathways such as differentiation and 
cell proliferation including gynecologic cancer (Wang 
et  al. [51]). Indeed, many components of the SWI/SNF 
complexes have been implicated in embryonic germline 
development (Klochendler-Yeivin et  al. [52]) including 
initiation of sex-dependent differentiation in mouse (Ito 
et al. [53]).

Several TFs implicated in ovary development were also 
present among the 148 hyper-methylated and upregu-
lated genes. Plotting the normalized mean expression and 
methylation suggests a coordinated response (Fig.  3G; 
Data S7). Prominent examples include RUNX1 that is a 
critical TF for cell lineage specification [54] and ovar-
ian development though interaction with FOXL2 [55]. 
Another gene, TLE4, encodes transducin-like enhancer 
of split 4 that is a member of the TLE co-repressor super-
family, some of which are associated with female fertility 
[56]. Finally, AHR2G encodes aryl hydrocarbon receptor 
2 gamma and is implicated in regulating growth of ovar-
ian follicles in mice [57]. This raises the possibility these 
regulatory genes serve as key regulatory factors, acting to 
regulate a wide array of other genes with important func-
tions during ovarian development. Prominent candidates 
are IGF-1 encodes insulin like growth factor 1 that stimu-
lates either proliferation, or differentiation of granulosa 
cells [58] following FSH secretion. Other genes involved 
in follicular development (SPON1, PLEXNB1, SEMA4F) 
[41–43] and the control of gonadotropin-releasing hor-
mone excitability via glutamate receptor 8 [59] (Fig. 3H). 
Taken together, the results confirmed that while meth-
ylation alone does not control genome-wide patterns of 
gene expression, our integrated methylome/transcrip-
tome analysis demonstrated that coordinated response of 
core components of the SWI/SNF complex and specific 

TFs with genes involved in ovary development, suggest-
ing key roles during the onset of the maturation process 
in the target organ (ovary).

Differential chromatin accessibility strongly correlates 
with bidirectional regulation of global gene expression 
in liver
To deepen the characterization of the epigenomic fea-
tures during maturation, we performed ATAC-seq (assay 
for transposase-accessible chromatin sequencing [60]) 
to produce genome-wide maps of chromatin accessibil-
ity changes. ATAC-seq was performed for ovary among 
the other tissues and peak enrichment around transcrip-
tion start sites used as the key quality control metric 
(TSS, Supplementary Fig. S11). Following data pruning, 
we took only 12 liver libraries (3 replicates across all 4 
timepoints) and a total of 699 million uniquely mapped 
paired-end reads (Data S8) forward into joint analysis 
with RNA-seq and WGBS data.

To characterize changes in chromatin state following 
long light initiation, we defined differentially accessible 
regions (DARs) where mapping counts differed signifi-
cantly (at adjusted P  < 0.05 and log2FC > ±1) between 
T1 and other time points (Data S8). The direction of 
change was approximately balanced between DARs with 
increased and decreased accessibility, broadly matching 
the balance between up and down regulated global gene 
expression changes observed for liver (Fig. 1C). Starting 
with the subset of DARs co-located with genes (exons 
and introns) we found the proportion of variation in gene 
expression explained by chromatin accessibility changes 
was high (Fig. 4A, B, Supplementary Fig. S12). For exam-
ple, chromatin state changes at T2, compared with T1, 
explained 56% of the variation in gene expression using 
linear regression. The dynamic was bidirectional, with 
accessibility changes associated with both up and down 
regulation of global gene expression, and strongest at the 
early timepoint T2 (Fig. 4B). We repeated the analysis for 
DARs located within 5 kb of transcription start sites to 
assess the strength of association with physically proxi-
mal putative cis-regulatory elements (CREs; non-coding 
genomic regions that could regulate expression of nearby 
genes). These had even higher association, explaining 
approximately 60% of the variation in global gene expres-
sion (Supplementary Fig. S13).

Hierarchical clustering of the significant DARs 
revealed 3 distinct clusters of similar accessibility pat-
terns (Supplementary Fig.  14; Data S8). To explore the 
relationship between chromatin accessibility changes and 
gene expression, we first mapped the genomic location 
of DARs and found the majority were located in genes 
(65%) or within 5 kb upstream (6%) or 5 kb downstream 
(4%), affirming the quality of the ATAC-seq dataset 
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(Fig. 4C). We also detected a quarter of DARs located on 
average 36 kb distal to their nearest gene, a low propor-
tion in comparison to domesticated terrestrial livestock 
[61]. Next, we plotted the mean normalized accessibility 
and expression across the four genomic locations to show 
that CREs more tightly controlled the downregulation of 

genes compared to DARs located in gene bodies, down-
stream regions or within intergenic regions (Fig. 4D, red 
box). Next, we focused on CREs given their established 
role on transcriptional regulation via TF binding [62]. 
Intersecting the co-accessible cluster of DARs with gene 
models in the salmon genome (Supplementary Fig. S14), 

Fig. 4  Dynamics of liver chromatin accessibility and gene expression as a function of genomic location (A), Chromatin accessibility and gene 
expression are positively correlated. 3 MA biplots showing genome-wide gene expression and overlain differentially accessible regions at gene 
bodies at T2, T3 and T4 compared to T1. Accessibility levels are shown in red-blue spectrum reflecting open- to closed chromatin states at gene 
bodies and the corresponding gene expression in grey colour (B), Regression analyses conducted on significant DARs located at gene bodies 
and gene expression data. The table shows that accessibility at T2 explains the majority of the observed differential expression throughout 
the experiment. Red squares highlight the correlation of the paired accessibility and expression data of the same time point (C), The genomic 
distribution of co-accessible DARs clusters across gene models in the salmon genome, promoter defined as genomic regions located 5 kb upstream 
of TSSs (D), Multi-omic heatmaps showing mean accessibility and expression at each of the four time points per genomic location
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identified a small subset of CREs (n  = 65) underwent 
increased accessibility early in the time course (Fig. 4C) 
and the majority (n = 46; 79%, Χ2P  < 8.028− 08) of their 
nearest genes were upregulated in a tightly coordinated 
manner (Supplementary Fig. S15). The gene set associ-
ated with coordinated up regulation exhibited significant 
GO enrichment related to lipid metabolism and energy 
metabolism (AAcyl-CoA biosynthesis) (Supplementary 
Fig. S15). Acyl-CoA are coenzymes involved in energy 
synthesis, consistent with the expectation of liver func-
tion through an energetically costly transition such as 
maturation. Together, the previous results clearly demon-
strated chromatin state changes played a dominant role 
in directing global gene expression changes in liver.

Integration of multiomics data to infer gene regulatory 
networks underlying maturation onset
The final component of our analysis sought to integrate 
all available datatypes to infer gene regulatory networks 
(GRNs) responsible for the onset of maturation. GRNs 
provide a platform for integrating multiomic data and 
can be used to characterize the dynamics of perturba-
tions during biological transitions such as embryogen-
esis, puberty, and other complex physiological evolutions 
[63–67]. Here, we used the approach to co-analyze genes 
with evidence of differential behavior using seven cat-
egories that included expression (DEGs and key TFs), 
changed methylation at gene bodies (DMGs) or pro-
motors (DMPs) and differential chromatin accessibil-
ity (DACs) at genes and putative promoters (defined as 
regions 5 kb upstream of a transcription start site TSS). 
Of the seven categories, the majority of 1858 genes pri-
oritized for GRN construction were DEG (n  = 1400) 
or DMG (n  = 700). The overlap between categories, 
for example where genes were both DEG and DMG 
(n = 442), is given in Fig. 5A. The gene set showed signifi-
cant GO enrichment (1 GO-CC and 8 GO-MF terms) to 
hormone activity and steroid hormone receptor activity 
(Fig. 5B). The expression patterns of these genes not only 
showed clear tissue-specific clustering, but also resolved 
the maturation status of the samples (Supplementary Fig. 
S17) suggesting biological relevance to the trait under 
investigation.

GRN inference using 1858 genes yielded 835,084 con-
nections with a mean of 449 connections per gene. For 
visualization, we only considered gene-gene connections 
with significance according to the PCIT algorithms and 
from correlations ≥0.95 (929 gene with 17,708 connec-
tions) (Fig.  5C). Most network genes (N  = 777, ~ 42%) 
belonged to pituitary compared to 33 and 25% in ovary 
and liver. These figures also were reflected in the num-
ber of connections per tissue (Fig.  5C). Genes with the 
highest change in the number of connections are likely 

to be key regulators, and the top 20 included five zinc 
finger proteins (Data S9). Two of these transcription fac-
tors, ZNF664 and ZNF239, were expressed in pituitary 
suggesting their key role in maturation onset. Interest-
ingly, the most highly connected genes also included 
two uncharacterized (dark) Atlantic salmon genes 
(106,590,493, 106,612,553) that displayed maximum 
expression in ovary.

Differential GRN connectivity implicates TRIM25 
and its associated subnetwork as key mediators 
of the transcriptional responses
Key regulators are likely to undergo substantial change in 
their number of connections and identify gene networks 
driving the transition to maturation. This prompted 
construction of separate networks using pre- and post-
maturation stage data, before identifying those “hub” 
genes that underwent the largest change in connectiv-
ity (pipeline workflow is provided in Supplementary Fig. 
S1B). For visualization, we only included 10% of the most 
significant connections that included 1412 genes with 
17,260 connections in the pre-maturation GRN and 1310 
genes with 22,059 connections in the post-maturation 
GRN (Supplementary Fig. S18). Next, we computed the 
differences in the patterns among the tissues compris-
ing the two networks. The pituitary gland and ovary 
had the most abundance (~ 45 and 32%, respectively) of 
connections compared to a lower percentage of connec-
tions (~ 23%) in liver after maturation (Supplementary 
Fig. S18). We computed the differential connectivity 
for all genes and identified the most differentially con-
nected genes (DCGs) (n  = 186 genes; 10%) (Data S9) 
between the pre- and post-maturation networks. These 
were mainly expressed in pituitary (44%) and most con-
nections involved DEGs (74%) and DMGs (47%). Finally, 
we identified regulators that gained the most connec-
tions post-maturation (Table  1, Fig.  6). The top ranked 
regulators were TRIM25, R3HDM2 and a salmon dark 
gene (uncharacterized 106,590,493) that was differen-
tially methylated and highly expressed in ovary (Fig. 6A). 
TRIM25 encodes the estrogen-responsive finger protein 
(a ubiquitin E3 ligase) underwent a profound change 
(60-fold) in connectivity (from 10 to 599). It is a ZF-TF 
with multiple roles in signal transduction during devel-
opment. It belongs to the tripartite motif-containing 
(TRIM) family, most of which have E3 ubiquitin ligase 
activities implicated in innate immunity and tumorigen-
esis with multiple roles in signal transduction during 
development [68–70]. It was predominantly expressed in 
pituitary and contributed to 3 categories in the network 
(DEG, TF, DAC).

Next, we focused on TFs contained among the top 
10 regulators that were differentially connected. This 
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Fig. 5  Multi-omics derived gene regulatory network (A), Intersection among the 1858 genes selected for network analyses. Network genes were 
divided into 7 categories: differentially expressed genes (DEG), differentially expressed genes/promoters (DMG, DMP), differentially accessible 
regions (genic and promoter regions as DAC), genes harboring SNPs reported in literature as being associated with salmon maturation (SNP), 
tissue-specific genes (TS) and key regulators identified by RIF (TF). The nature of a given intersection is indicated by the dots below the bar plot. 
For example, the 442 genes in the second column are both differentially methylated and differentially expressed but not found in other categories 
(B), Enriched gene ontology (GO) terms (hypergeometric test, Bonferroni-adjusted P < 0.05) among the list of 1858 network genes (C), Gene 
regulatory network constructed using the PCIT algorithm, for visualization only nodes with significant correlations ≥ ±0.95 (929 genes with 17,708 
connections) were considered. All nodes are represented by ellipses except for genes coding key regulators (TFs) have diamond shape. Nodes with 
yellow borders are differentially methylated, whereas nodes with white labels are differentially accessible. Node colours are relative to the tissue 
of maximum expression with blue represents the pituitary, red represents ovary and green represents liver. The size of the nodes is relative to the 
normalized mean expression values in all samples. Connectivity structures of the 1858 network genes used to build the network are shown
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identified ZNF423 to be the most differentially connected 
TF (from 58 to 576) and Krueppel-like factor 11 (KLF11) 
as the least differentially connected TF (from 513 to 9) 
(Fig. 6; Table 1). Enrichment of motifs for a ubiquitin E3 
ligase (CNOT4) and ZNF TF (Zic) among ATAC-seq 
signals at CREs confirms their regulatory roles. Several 
studies have previously demonstrated roles for ZNF fac-
tors in controlling onset of female puberty in many spe-
cies including humans [71–73]. Finally, we focused on 
the subnetwork associated with TRIM25 (being the top 
ranked regulator), the TRIM25-associated networks con-
sisted of 213 genes (Supplementary Fig. S19) of which 
108, 90 and 15 were highly expressed in liver, pituitary 
and ovary, respectively (Fig. 6B). We ranked the TRIM25-
connected genes based on mean expression per tissue 
and identified key mediators of the transcriptional pro-
files observed in each tissue. NCOR2 encoding Nuclear 
Receptor Corepressor 2, a co-repressor that mediates 
transcriptional silencing of target genes and GH2 encod-
ing the growth hormone somatotropin-2 were highly 
expressed in the pituitary. Genes involved in immune 
responses and cell signaling (SASH1B encoding SAM 
and SH3 domain-containing protein 1-like; involved in 
the TLR4 signaling pathway that may stimulate cytokine 

production/endothelial cell migration in response to 
pathogens and SULF2 encoding Sulfatase 2) were highly 
expressed in ovary. In liver, genes implicated in energy 
homeostasis (GDH2 encoding glutamate dehydrogenase 
that controls body energy partitioning through amino 
acid-derived gluconeogenesis and FAS encoding fatty 
acid synthase) were highly expressed (Fig. 6B).

Discussion
Identifying the biological mechanisms controlling com-
plex traits is a sizable challenge. We designed our study 
on the assumption that the dynamic network of mol-
ecules coordinating the spatiotemporal changes driving 
sexual maturation would be inaccessible to investiga-
tion using only a single layer of “omics”. We anchored the 
study around the collection of tissue transcriptomes to 
visualize their changing circuitry across the period where 
Atlantic salmon commence their trajectory towards sex-
ual maturation. Importantly, we also characterized the 
changing epigenomic landscape through interrogation 
of DNA methylation and chromatin state changes. Inte-
gration of the resulting multiomic dataset used rigorous 
quantitative approaches, and when performed inside the 
context of a defined biological transition, has given us an 

Table 1  Top 20 differentially connected genes (DCGs) associated with onset of sexual maturation in Atlantic salmon. Gene annotation, 
tissue of maximum expression, the omic category and differential connectivity data between pre- and post-maturation are shown

GeneID Number of 
connections

Differential 
connectivity

Annotation Contribution Tissue of 
maximum 
expression

Omic category

Pre- Post- Post vs Pre

106,574,348 10 599 589 E3 ubiquitin/ISG15 ligase TRIM25-like 28.57 pit DE, DMG

106,590,493 114 657 543 uncharacterized protein LOC106590493, partial 28.57 ov DE, DMG

106,566,126 90 609 519 R3H domain-containing protein 2-like 28.57 ov DE, DAC

106,573,705 58 576 518 zinc finger protein 423 42.86 pit DE, TF, DAC

106,589,399 43 551 508 protocadherin-15-like 14.29 pit DMG

106,562,515 4 508 504 RILP-like protein 1 28.57 liv DE, DMG

106,562,229 30 533 503 tumor necrosis factor receptor type 1-associated 
DEATH domain protein-like

28.57 ov DMG, DAC

106,612,386 41 535 494 zinc transporter protein DDB_G0282067 28.57 ov DE, DMG

106,568,904 37 525 488 putative ferric-chelate reductase 1 14.29 ov DE

106,568,722 10 489 479 cAMP-specific 3\’,5\’-cyclic phosphodiesterase 4B-like 14.29 pit DMG

106,606,431 487 32 − 455 metalloproteinase inhibitor 2-like 14.29 pit DE

100,195,217 543 87 − 456 protein phosphatase 1H 28.57 liv DE, DAC

106,613,686 560 104 −456 Krueppel-like factor 2 28.57 liv DE, DAC

100,195,880 474 11 − 463 Ependymin-1 precursor 14.29 pit DE

100,195,838 488 18 − 470 ependymin-2 precursor 28.57 ov DE, DMP

106,588,682 594 113 − 481 zona pellucida sperm-binding protein 3-like 14.29 pit DE

106,610,009 546 46 −500 guanylate cyclase soluble subunit beta-1 28.57 liv DMP, DMG

100,194,692 513 9 −504 Krueppel-like factor 11 28.57 liv DE, TF

100,196,465 560 31 − 529 glyoxalase domain-containing protein 5 14.29 ov DE

106,586,502 559 7 − 552 serine/arginine repetitive matrix protein 2-like 42.86 ov DE, DMG, DAC
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unprecedented ability to characterize the onset of matu-
ration at the molecular level in a non-model species of 
worldwide aquaculture and ecological importance.

The availability of dimensional data allowed us to iden-
tify the dominant epigenomic changes controlling gene 
expression. We conclude that global changes in DNA 
methylation had little predictive power to explain chang-
ing gene expression beyond a small subset involved in 
chromatin remodeling. While methylation changes are a 
striking feature of embryonic development, they appear 
not to have been responsible for the rapid and numer-
ous changes in gene expression documented here. Con-
versely, we observed high correlation between chromatin 
state changes and altered gene expression for the single 
tissue with ATAC-seq data (liver). The correlation was 
highest for differentially accessible regions immediately 
adjacent to coding genes, implicating cis-regulatory 
elements.

The identification of key genes relied on characteri-
zation of differential behavior using samples collected 
before, and after, fish were subjected to a photomanipu-
lation trigger designed to stimulate maturation. Multiple 
data patterns confirm we successfully initiated early-stage 
maturation. Increasing average gonadosomatic index 

demonstrates a physiological response occurred, and this 
was paralleled by significant global upregulation of gene 
expression in the ovary and a more modest remodeling 
of the pituitary transcriptome. Together, this provided 
confidence that the characterized DEG, DMG and DAC 
patterns are likely to successfully implicate genes directly 
involved in maturation. We showed upregulation of 
pituitary hormones including gonadotropins along with 
other pituitary genes involved in a range of reproduction 
related functions including steroidogenesis. Differentially 
methylated genes were enriched for follicular develop-
ment and the control of gonadotropin-releasing hormone 
excitability. Integrated transcriptome and methylome 
analysis in ovary implicated chromatin remodeling genes 
in controlling maturation. Finally, differentially accessi-
ble CREs in liver were enriched for lipid metabolism and 
energy metabolism genes.

Despite the advantages of the multiomic approach 
used, limitations may be imposed by the range of tis-
sues, timepoints and technical features of the assays used. 
For example, we treated tissues as homogenous entities 
in an approach that ignores the spectrum of constituent 
cell types and their differentiated roles that single-cell 
multiomic studies have begun to explore [73]. Further, 

Fig. 6  Pre- and Post-maturation networks based on differentially connected genes (DCGs) (A), Subnetworks of the most differentially connected 
trio genes between pre- and post-maturation networks (top). This revealed TRIM25, a E3 Ubiquitin ligase as the key regulator with the greatest 
number of gained connections in the post-maturation network. Subnetworks of top differentially connected regulators (TFs) (bottom), networks 
created with the most differentially connected TFs between pre- and post-maturation networks showed zinc finger protein 423 (ZNF423) as 
the key regulator with the greatest number of gained connections and Kruppel-like factor 11 (KLF11) as the regulator with the least number of 
gained connections going from pre- to post-maturation (B), Expression patterns of genes of the TRIM25-asscoiated network. The heatmap shows 
hierarchical clustering based on mean-centred normalised (log2FPKM) expression values
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suboptimal partitioning of the brain at dissection ham-
pered our ability to assign the role of the hypothalamus 
separately from the brain stem, cerebellum, and olfactory 
bulb. Consequently, the variation in whole brain tran-
scriptomes among replicates within timepoint was so 
large as to prevent meaningful analysis. Finally, we were 
unable to generate high quality chromatin state data from 
ovary samples despite repeated attempts. An incomplete 
compendium of tissues and datatypes has resulted in an 
imperfect view of the changing epigenomic landscape.

The promise of multiomic data will remain unfulfilled 
without methodological approaches capable of iden-
tifying system perturbations associated with pheno-
typic change. Here, we used a gene regulatory network 
approach which has proven successful for investigation of 
puberty and other complex traits [20, 65, 66]. We iden-
tified TRIM25, a gene encoding the estrogen-responsive 
finger protein, as the network element undergoing the 
most dramatic change in connectivity and strongly sug-
gests it plays a key role. Looking forwards, it is tempt-
ing to speculate that several genes identified represent 
high value targets for manipulation via gene editing in 
an attempt to delay or ablate sexual maturation. Among 
the range of putative targets identified, the core compo-
nents of the SWI/SNF chromatin remodeling complex 
(ARID1B and SMARCA2) are appealing due to their 
ability to exert wide ranging change in gene expression. 
The results described may therefore lead to better man-
agement of unwanted early maturation within an aqua-
culture setting where the completion of maturation is 
associated with reduced product quality and production 
inefficiencies.

Materials and methods
Experimental design
Animals were managed using photoperiod manipulation 
to synchronize the timing of commitment into matura-
tion. A population of female brood stock were used that 
were ~ 36 months post fertilization in April 2017. The 
management of the animals and associated timeline for 
sampling events is given in Fig. 1A. In order to measure 
and control for variation between individuals, 4 fish (bio-
logical replicates) at each of the four time points (T1-T4) 
were used. The maturation status of animals (leading up 
to the long day photoperiod initiation) was monitored by 
ultrasound. Control samples at T1 time point were col-
lected on mid-June 2017 before induction of maturation 
occurred late-June 2017. Following the application of the 
long photoperiod, tissues were sampled at different three 
time points in 2 weeks intervals (T2-T4). At each sam-
pling event, the gonadosomatic index GSI was calculated 

from the ovary mass as a proportion of the total body 
mass as follows:

RNA isolation, RNA‑seq library preparation and sequencing
Tissue samples were preserved in RNA-Later at − 80 °C 
and total RNA was isolated using RNeasy mini kit (QIA-
GEN) as previously described [71]. Tissues were lysed 
twice in 450 μL of lysis solution on a Precellys 24 homog-
enizer for 30s at 4.0 ms − 1. RNA was washed twice before 
elution with 40 μL at room temperature. RNA quality 
was checked using a NanoDrop ND-1000 spectrometer, 
Qubit 2.0 fluorometer and Agilent 2100 bioanalyzer. 
Messenger RNA (mRNA) was isolated from 1 μg of total 
RNA. Sixty-four RNA-Seq libraries (4 time points × 4 tis-
sues × 4 biological replicates) were prepared using the 
TruSeq RNA Sample Preparation Kit (Illumina). Librar-
ies were sequenced on Illumina Nova-Seq 6000 sequenc-
ing platform at the Australian Genome Research Facility 
(AGRF) in Melbourne, Australia. Sequencing produced 
a total of 4.4 billion individual 150 bp paired-end reads 
and ~ 70 million PE reads per library (Data S1).

Transcriptomic data quality control (QC), genome 
mapping and read counting RNA-seq reads were checked 
for quality using FastQC software. High quality reads 
(Q > 30) were mapped to the Atlantic salmon genome 
ICSASG_v2 [74] using TopHat2 version 2.1.1 [75] using 
the default parameters. BAM (alignment) files were 
sorted by read name and converted into SAM format 
using SAMtools version 1.4 [76]. The package HTSeq 
version 0.7.2 [77] was applied to count unique reads 
mapped to exons using default parameters except for 
“reverse” with the strandedness.

Genomic DNA isolation, WGBS library preparation 
and sequencing
Tissue samples were snap frozen in liquid Nitrogen (LN2) 
and stored at − 80 °C until genomic DNA (gDNA) was 
extracted using DNeasy blood and tissue kit (QIAGEN). 
Tissues were lysed in 360 μL of lysis solution on a Pre-
cellys 24 homogenizer for 30s at 4.0 ms − 1. Samples were 
incubated with 40 μL of Proteinase K enzyme at 56 °C 
for 1 h. Following lysis, samples were treated with RNase 
(8 μL of RNase A incubated for 2 min at room tempera-
ture). DNA was bound to the provided columns, washed 
twice and eluted in 100 μL at room temperature. gDNA 
purity were assessed by gel electrophoresis and Nan-
oDrop ND-1000 spectrometer. DNA concentration and 
integrity were assessed using Agilent 2100 bioanalyzer. 
gDNA was fragmented (200-400 bp) by sonication using 
Covaris S220, followed by end repair/adenylation and 

GSI = [ovary weight/total body weight]× 100.
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adapter ligation. Bisulfite modification was performed 
to the DNA fragments using the EZ DNA Methylation-
GoldTM Kit (Zymo Research, Inc.). Twelve libraries pre-
pared from 3 tissues (pituitary, ovary and liver), 2 time 
points (T1 and T4) and 2 biological replicates. Libraries 
were sequenced on HiSeq 2500 sequencing platform at 
Novogene, Hong Kong. Sequencing produced a total of 
2.2 billion individual 150 bp paired-end reads and 185 M 
PE reads per library. Bisulfite conversion rates (percent-
age of C changed to T after bisulfite treatment) were con-
sistently > 99.8%.

WGBS data QC, genome mapping and methylation calling
Raw data quality control was performed using Trim 
Galore v0.5 (http://​www.​bioin​forma​tics.​babra​ham.​
ac.​uk/​proje​cts/​trim_​galore/) to filter bases (Q scores 
< 30) and remove both universal and indexed adapter 
sequences. Processed high-quality data were mapped to 
into a bisulfite-converted version of the Atlantic salmon 
reference genome ICSASG_v2 [72] using BSseeker2 
v2.1.8 [78] with default parameters for aligning paired-
end libraries using Bowtie2 [79]. PCR duplicates were 
removed using Picard MarkDuplicates (http://​broad​insti​
tute.​github.​io/​picard/). Filtered (duplicates-free) reads 
(110 M PE reads) were retained for downstream meth-
ylation analysis with an average genome coverage of 
11x in pituitary, ovary and liver. Methylation calling was 
conducted using the Python script call-methylation.py 
within BSseeker2. CGmap files were used for subsequent 
exploratory and differential methylation analyses. The 
mstat command within CGmap tools was used to gener-
ate global and CG context (CG, CHG, CHH) DNA meth-
ylation levels [80].

DNA methylome exploratory analyses
As CG methylation contributed to the bulk of methyl-
ated Cs, average methylation levels of genome-wide CpG 
positions were calculated in 50 kb bins across the genome 
using mbin command within CGmap tools and plot-
ted as Violin plots using the R package vioplot, https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​viopl​ot/​index.​html. To 
begin assessment of the quality of our libraries, common 
CpGs with minimum 10x coverage among the 12 sam-
ples were used in PCA using prcomp implemented in R. 
Correlation matrices (based on Pearson coefficient) were 
prepared using the R package corrplot (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​corrp​lot/​index.​html). Hier-
archical clustering analysis was conducted with hclust 
implemented in R using compute linkage and Euclidean 
distances.

Nuclei extraction, ATAC‑seq library preparation 
and sequencing
ATAC-seq libraries were prepared from snap-frozen 
tissues using the Omni-ATAC method [81] with few 
modifications. A mortar and pestle were used to grind 
frozen tissue (20 mg) in LN2 using. The pulverized tis-
sue powder was transferred to a pre-chilled 2 ml dounce 
homogenizer containing 1 mL cold 1x homogenization 
buffer and homogenized with the pestle to form a uni-
form suspension (10–20 strokes). The homogenate was 
filtered with a 40uM nylon cell strainer (BD Falcon) 
before layering onto the iodixanol solution as described 
previously 69. The ratio of nuclei to enzyme concen-
tration was optimised for each sample by performing 
transposition reactions containing 50,000, 100,000 and 
200,000 nuclei with 2.5ul of tagment enzyme in 50ul 
of transposition mix [81]. The transposed DNA was 
amplified with custom primers as described elsewhere 
[82], before libraries were purified using Agencourt 
AMPure XP beads (Beckman Coulter) and quality 
controlled using a Bioanalyzer High Sensitivity DNA 
Analysis kit (Agilent). Twelve liver ATAC-seq librar-
ies arising from 3 biological replicates × 4 time points 
(T1-T4) were sequenced at the IMB sequencing facil-
ity (University of Queensland) on an Illumina NextSeq 
150 cycle (2 X 75 bp).

Chromatin accessibility data QC, genome mapping 
and peak calling
Sequencing produced a total of 1.2 billion individual 
paired-end reads (Data S8). Raw reads were mapped to 
the Atlantic salmon reference genome ICSASG_v2 58 
using BOWTIE2 version 2.3.5.1 with the --very-sensitive 
parameter [77]. Duplicate reads were removed using the 
MarkDuplicates function in Picard tools (version 1.119) 
http://​broad​insti​tute.​github.​io/​picard/). Multi-mapped 
reads and mitochondrial reads were filtered out and only 
uniquely mapped reads (MAPQ > 10) were extracted 
from alignment files using SAMTOOLS for downstream 
analyses. For peak calling, the model-based analysis of 
ChIP-seq (MACS2) (https://​github.​com/​macs3-​proje​
ct/​MACS) was used to identify read enrichment regions 
(peaks) using default parameters “-f BAMPE”. Only peaks 
detected in at least two replicates per condition were 
used for downstream analyses, and peaks across time-
points were merged to generate a list of consensus peaks. 
The number of raw reads mapped to each peak was quan-
tified using the Python package HTSeq version 0.11.1 
[75].

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://cran.r-project.org/web/packages/vioplot/index.html
https://cran.r-project.org/web/packages/vioplot/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
http://broadinstitute.github.io/picard/
https://github.com/macs3-project/MACS
https://github.com/macs3-project/MACS
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Statistical analyses
Differential gene expression and clustering analyses
The edgeR package [83] was used to analyse raw counts 
within the R statistical computing environment to infer 
differential gene expression among tissues. The four tis-
sues at the long photoperiod time points (T2, T3 and T4) 
were compared to the control samples at T1. P-values 
for differential gene expression were adjusted for multi-
ple testing using the Benjamini and Hochberg algorithm 
[84]. For further analyses of differential expression, only 
genes with a false discovery rate (FDR) of < 0.05 and have 
at least absolute log2(fold change) > 1 were considered 
significant. PCA was conducted on the lists of signifi-
cant DEGs using normalised expression data (log2FPKM) 
using the function --prin_comp within trinity. Hier-
archical clustering analysis was conducted using trin-
ity’s utility analyze_diff_expr.pl on significant DEGs in 
each tissue where mean-centred normalized expression 
(log2-transformed FPKM+ 1) were compared across time 
points [85]. Gene clusters with similar expression pat-
terns were obtained using the Perl script define_clusters_
by_cutting_tree.pl within trinity to cut the hierarchically 
clustered gene tree into clusters with similar expression 
using the --Ptree option.

Gene ontology (GO) enrichment of the identified 
co‑expressed gene clusters
To infer the functions of the gene clusters, gene ontology 
(GO) enrichment was performed to identify the enriched 
biological themes using the R package clusterProfiler ver-
sion 3.9 using default settings [86]. The ENTREZ gene 
identifiers of up- and downregulated clusters per tis-
sue were used as query gene list against the background 
genes in each tissue. For the enrichment analysis, GO 
terms with a corrected P-value of < 0.05 were considered 
significant. Categories of candidate genes implicated in 
maturation were visualized as heatmaps using their nor-
malised expression values with the R package pheatmap 
version 1.0.12 https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
pheat​map/​pheat​map.​pdf.

Inference of master regulators
Master regulator analysis was performed using regulatory 
impact factor (RIF) metrics described by [87] to identify 
key regulators contributing to the transcriptional diver-
gence in the T4 vs T1 comparison per tissue. Predicted 
transcription factors (TFs) in Atlantic salmon genome 
were obtained from a previous salmon transcriptomic 
study [71]. Normalized data of these genes were retrieved 
for T1 and T4 samples in this current study. As most of 
the transcriptional changes were detected at T4, RIF was 
applied only to the T4-T1 comparisons for each tissue. 
Genes were filtered based on expression, genes with a 

mean expression FPKM < 0.2 were excluded. Briefly, RIF 
exploits the differential co-expression concept where reg-
ulators were contrasted against unique lists of genes that 
were differentially expressed at T4 (compared to T1) per 
tissue. RIF comprises of two different metrics that assign 
scores to putative regulators consistently differentially 
co-expressed with target genes (RIF1), and to those able 
to predict the abundance of target genes (RIF2). Those 
scores deviating ±2.57 standard deviation from the mean 
were considered significant (corresponding to a t-test 
P < 0.01). The regulators identified were used as input for 
construction of gene regulatory networks as summarized 
in Supplementary Fig. S1b.

Differential CpG methylation analysis
The R package DSS was used to identify differential 
methylation regions using common CpGs [88]. In each 
tissue, two replicates at T4 were compared to the con-
trol samples at T1 based on CpG methylation levels. At 
each CpG site, the methylation (M) level was calculated 
as a proportion of the total counts (coverage) as follows: 
M levels = [methylated counts / total counts] × 100. 
DSS was selected as it considers the biological variation 
among replicates (characterized by a dispersion param-
eter) and the sequencing depth. Differentially methylated 
loci (DMLs) were identified by estimating mean methyla-
tion levels for all CpG sites followed by estimating disper-
sion at each site and conducting a Wald test (P < 0.001). 
Smoothing (combining information from nearby CpG 
sites to improve the estimation of methylation levels) was 
utilised to obtain mean methylation estimates in WGBS 
data where the CpG sites are dense. Based on the DML 
results, regions with statistically significant CpG sites 
were identified as a differentially methylated regions 
(DMRs) with minimum length/distance of 50 bp and 
minimum CpG coverage of 3. Mean methylation between 
groups of greater than 10% (delta = 0.1) and P  < 0.001 
was considered significant. A circos plot was produced 
to visualize multi-tissue genome-wide DMRs using Cir-
cos (http://​circos.​ca/​softw​are/). Individual DMRs were 
also visualized using the showOneDMR function within 
the DSS package to plot both the methylation percent-
ages (including a smoothed curve) as well as the coverage 
depths at each CpG site.

DMR annotation, DMGs/DEGs correspondence analysis
Differentially methylated regions were compared against 
the protein coding gene set annotated on reference 
ICSASG_v2 using custom Perl scripts. This classified 
DMRs as overlapping a gene body (genic), 5 kb upstream 
of a transcription start site TSS (putative promoter), 5 kb 
downstream of TSS (5 kb downstream), or otherwise 
intergenic. The distance between each DMR and nearest 

https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf
https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf
http://circos.ca/software/
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gene is provided in Data S5, S6. The overlap between 
significant genes from differential expression and meth-
ylation was checked using the intersect function within 
bedtools [89].

GO enrichment of DMGs
GO enrichment analyses were conducted on both the 
sets of hypermethylated genes (n  = 1156) and genes 
found to be hypermethylated and upregulated in ovary 
(n = 148) using the R package clusterProfiler. Genes driv-
ing GO enrichment were plotted as a heatmap using the 
R package pheatmap as above.

Differential accessibility and clustering analyses
Samples from the long photoperiod time points (T2, 
T3 and T4) were compared to control samples (T1) for 
each tissue. Raw counts were analyzed using the R pack-
age edgeR and P-values were corrected for multiple test-
ing using the Benjamini and Hochberg algorithm. Peaks 
with FDR < 0.05 and log2FC > ± 1 were considered sig-
nificantly differentially accessible regions (DARs). PCA 
of significant DARs used normalized accessibility data 
(log2CPM) prepared using the function --prin_comp 
within Trinity. Hierarchical clustering analysis was con-
ducted using analyze_diff_expr.pl where mean-centred 
normalized accessibility (log2CPM + 1) were compared 
across time points [83]. Gene clusters with similar acces-
sibility patterns were obtained using the Perl script 
“define_clusters_by_cutting_tree.pl” to cut the hierarchi-
cally clustered gene tree into clusters with similar acces-
sibility patterns as described above.

Genomic distribution of DARs within clusters
Hierarchical clustering identified both accessible and 
inaccessible DAR clusters. DARs per cluster were anno-
tated in a genomic context (genic, promoter, 5 kb down-
stream or intergenic) as previously done for annotation 
of DMRs.

ATAC‑seq and RNA‑seq correspondence analysis
Only DARs co-located with genes and promoters were 
used for co-analysis with gene expression data. The 
relationship between accessibility of DARs and gene 
expression was visualized by overlying information of 
significant DARs to genome-wide normalized expression 
estimates in liver samples and plotted as a MA-biplot. A 
linear regression analyses were performed to assess cor-
relations between accessibility and expression abundance 
and the effect of changes in accessibility and changes in 
gene expression across time. Chromatin accessibility and 
gene expression data were visualized using Gnuplot ver-
sion 5.0.7 (http://​www.​gnupl​ot.​info) by overlying acces-
sibility data of significant DARs at genes and promoters 

to genome-wide normalized expression estimates at each 
timepoint.

Multiomic (transcription/accessibility) heatmap analy-
sis per time point and genomic regions.

All heatmaps were produced using the R package 
pheatmap using normalized gene expression/accessibility 
values. GO enrichment analyses have been conducted on 
the set of nearest genes to accessible promoters using the 
R package clusterProfiler as described above. The inte-
grated genome viewer (IGV) was used to visualize the 
relationship between accessibility and gene expression in 
a 15 kb region that contains HMGRC gene and its pro-
moter region.

Motif enrichment analyses
The function findMotifsGenome.pl within Homer soft-
ware version 4.11 (http://​homer.​ucsd.​edu/​homer/) was 
used with default parameters to find sequence motifs sig-
nificantly enriched among accessible DARs vs inaccessi-
ble DARs located within promoter regions.TF motifs that 
are highly enriched (P value < 1 × 10− 10) were selected.

Gene regulatory network (GRN) analyses
Genes from different omics analyses (DEGs, DMGs, 
DMPs, DACs) along with transcription factors identified 
by RIF (key TFs), as well as information from published 
work for tissue-specific (TS) genes and gene-harboring 
GWAS SNPs (SNPs) were selected based on overlap (at 
least twice) and mean normalized expression (at least 0.2 
FPKM) for network construction. The R package UpSetR 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​UpSetR/​vigne​
ttes/​basic.​usage.​html) was used to investigate the overlap 
among genes from different sources based on presence/
absence data.

For gene network inference, the Partial Correlation 
and Information Theory (PCIT) algorithm was applied 
to the selected genes [90] to identify significant connec-
tions (edges) between genes (nodes), considering all sam-
ples for this initial network. PCIT tests the relationships 
between all possible three-combinations of genes (trios) 
to determine correlations between gene pairs consider-
ing the influence of other genes present within the data-
set. Hence, this algorithm determines the significance 
of the correlation between given gene pairs after taking 
into account all the other genes included in the network. 
PCIT has been extensively used for integrating multitis-
sue multiomics data to gain insights into regulatory net-
works associated with complex traits (Alexandre et  al. 
[20]; Gòdia et al. [21]; Botwright et al. [22]). Connections 
between gene nodes were considered significant when 
the partial correlation was greater than 1.96 standard 
deviations from the mean (corresponds to P < 0.05). The 

http://www.gnuplot.info
http://homer.ucsd.edu/homer/
https://cran.r-project.org/web/packages/UpSetR/vignettes/basic.usage.html
https://cran.r-project.org/web/packages/UpSetR/vignettes/basic.usage.html
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output of PCIT was visualized using Cytoscape Version 
3.7.2 [91].

To explore differential connectivity during maturation 
onset, two other networks were created using the same 
set of genes (used in the initial network): one using 12 
samples at T1 (pre-maturation) and a second using 36 
samples at T2, T3 and T4 (post-maturation).

The number of connections of per node was computed 
in both networks to identify differentially connected 
genes (DCGs) upon the transition to puberty. Based on 
the degree of differential connectivity the top 20 DCGs 
were identified. From these networks, we explored a 
series of subnetworks based on 1) the top trio DCGs and 
the top regulators (TFs) among based on the degrees of 
connectivity between pre-and post-maturation.
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