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Abstract 

Background:  Respectively, prostate cancer (PCa) and breast cancer (BC) are the second most and most commonly 
diagnosed cancer in men and women, and they account for a majority of cancer-related deaths world-wide. Cancer 
cells typically exhibit much-facilitated growth that necessitates upregulated glycolysis and augmented amino acid 
metabolism, that of glutamine and aspartate in particular, which is tightly coupled with an increased flux of the tri-
carboxylic acid (TCA) cycle. Epidemiological studies have exploited metabolomics to explore the etiology and found 
potentially effective biomarkers for early detection or progression of prostate and breast cancers. However, large 
randomized controlled trials (RCTs) to establish causal associations between amino acid metabolism and prostate and 
breast cancers have not been reported.

Objective:  Utilizing two-sample Mendelian randomization (MR), we aimed to estimate how genetically predicted 
glutamate and aspartate levels could impact upon prostate and breast cancers development.

Methods:  Single nucleotide polymorphisms (SNPs) as instrumental variables (IVs), associated with the serum levels 
of glutamate and aspartate were extracted from the publicly available genome-wide association studies (GWASs), 
which were conducted to associate genetic variations with blood metabolite levels using comprehensive metabolite 
profiling in 1,960 adults; and the glutamate and aspartate we have chosen were two of 644 metabolites. The sum-
mary statistics for the largest and latest GWAS datasets for prostate cancer (61,106 controls and 79,148 cases) were 
from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) 
consortium, and datasets for breast cancer (113,789 controls and 133,384 cases) were from Breast Cancer Association 
Consortium (BCAC). The study was performed through two-sample MR method.

Results:  Causal estimates were expressed as odds ratios (OR) and 95% confidence interval (CI) per standard devia-
tion increment in serum level of aspartate or glutamate. Aspartate was positively associated with prostate cancer 
(Effect = 1.043; 95% confidence interval, 1.003 to 1.084; P = 0.034) and breast cancer (Effect = 1.033; 95% confidence 
interval, 1.004 to 1.063; P = 0.028); however, glutamate was neither associated with prostate cancer nor with breast 
cancer. The potential causal associations were robust to the sensitivity analysis.
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Introduction
The prostate (man) and breast cancers (woman) are 
almost the most frequently diagnosed cancers that also 
constitute a major cause of cancer-related deaths [1, 2]. 
In the western countries, prostate cancer is the most 
common form of cancer among men of 50yrs and older 
with a mortality-to-incidence ratio of 20% [3]. As for 
breast cancer, the United States alone in 2017 recorded 
255,180 new cases and 41,070 deaths [4]. Thus, despite 
tremendous advancements over the previous decade, 
early detection/treatment of prostate and breast cancers 
is next to satisfaction.

In cells, nutrients are essential for energetics and many 
types of bio-mass building. Accumulating evidence 
from basic studies suggests that cancer cells continu-
ously adapt to dynamic metabolic micro-environment 
by changing the way of nutrient utilization during malig-
nancy development. For instance, under aerobic condi-
tion, cancer cells often exhibit upregulated glycolysis for 
their rapid growth [5]; and they also use amino acids, 
in particular glutamine and aspartate, as anaplerotic 
nutrients for TCA cycle that is coupled with oxidative 
phosphorylation [6]. Hence, cancer cells are generally 
vulnerable to nutrient deficiency, a feature that poten-
tially provides new targets for cancer therapy [7]. Indeed, 
given altered metabolism typical of cancer tissues [8], 
quite an ever-growing number of epidemiological studies 
have exploited metabolomics to research the etiology and 
figure out biomarkers for early detection, or progression 
of prostate cancer [9].

Observationally, soy proteins, rich in glutamate and 
aspartate, are reported to lower the androgen levels but 
no large RCTs have been conducted to test their health 
effects; in addition, animal experiment results suggest 
that glutamate and aspartate can decrease the testoster-
one levels [10, 11], and diverse epidemiological studies 
suggest that consumption of soy, fruits, and vegetables 
are linked with reduced risk of recurrence and increased 
survival rate of prostate cancer and breast cancer [12–
15]. In a RCT of men, D-aspartate can reduce testos-
terone [16]. Despite these studies, however, up to now 
a causal relationship between serum levels of amino 
acids, such as glutamate and aspartate, and prostate and 
breast cancers remains elusive. Furthermore, at times the 
metabolic studies generate results that are not always 

consistent due to the differences in outcome examined, 
metabolomics platforms exploited, and characteristics 
and/or sizes of study populations.

MR, as a newly approach, gets information from 
genome-wide association studies (GWAS) to evaluate 
the causal relationship between exposures and pheno-
type without any potentially harmful intervention [17, 
18]. Briefly, MR analysis widely utilizes the power of 
genetic variants as IVs to evaluate the causal associations 
between risk factors and disease outcomes [19]. Because 
genetic variants are inherently inherited at conception, 
an MR analysis can avoid potential bias along with mis-
interpretation of results by removing confounding factors 
in traditional observational studies typically associated 
with socio-economic status, lifestyle (alcohol and smok-
ing) and health status. Mendel’s second law dictates 
that each pair of alleles undergoes independent assort-
ment without interference from environmental factors. 
Two-sample MR analysis requires summary-level data 
from two independent GWASs for putative exposures 
and outcomes [20]. Here, exploiting genetically instru-
mented glutamate and aspartate from GWAS [21] and 
large case–control studies of prostate and breast cancers 
with extensive genotyping [22, 23], an MR study was per-
formed to estimate the causal effects of serum glutamate 
and aspartate levels and the development of prostate and 
breast cancers.

Subjects and methods
Study design and data sources
As shown in Fig. 1, a two-sample Mendelian Randomiza-
tion approach was designed in this study. It is based on 
the assumption that instrumental variables are related to 
serum levels of glutamate and aspartate, but independent 
of the risk of cancer and cofounders.

The IVs were extracted from the publicly available 
genome-wide association studies, which were a common, 
low-frequency and rare variants GWASs, and conducted 
in 1,960 adults to associate genetic variations with blood 
metabolites by comprehensive metabolite profiling [21]. 
The glutamate and aspartate chosen in our study were 
two of the whole 644 metabolites according three longi-
tudinal data collections. SNPs were removed as the call 
rate was less than 95%, the P value was above 10−6 and 
the minor allele frequency was less than 1%. Information 

Conclusions:  Our study found that the level of serum aspartate could serve as a risk factor that contributed to the 
development of prostate and breast cancers. Efforts on a detailed description of the underlying biochemical mecha-
nisms would be extremely valuable in early assessment and/or diagnosis, and strategizing clinical intervention, of 
both cancers.

Keywords:  Glutamate, Aspartate, Prostate cancer, Breast cancer, Mendelian randomization



Page 3 of 12Lin et al. BMC Genomics          (2022) 23:213 	

of data on the association of SNPs with serum glutamate 
and aspartate and the association of SNPs with breast 
cancer and prostate cancer were obtained from the 
GWAS database [22, 23].

Genetic instruments for glutamate and aspartate
Genetic signatures, such as SNPs, associated with glu-
tamate or aspartate were obtained from a large GWAS 
study [21], in which the participants were of European 
origin. SNPs as IVs, were not confounded by socio-eco-
nomic status and lifestyle factors (alcohol and smoking). 
Different genetic variants were obtained with different 
cutoffs for significance, genome-wide association signifi-
cance (5 × 10−8) or a less stringent significance (5 × 10−6). 
The strength of each SNP was evaluated using the F-sta-
tistic, calculated using a well-established formula [24]. A 
cutoff of 10 as a "rule of thumb" was used to distinguish 
between strong and weak instruments [25]. Weak instru-
ments can bias the findings. An MR approach is based 
on the hypothesis that genetic exposure influences the 
outcome directly [26], otherwise, it is not suitable to per-
form the analysis in the presence of pleiotropy. Thus, to 
validate that the SNPs were associated with prostate or 
breast cancer solely via glutamate or aspartate, pleiotropy 
was checked, i.e., genetic associations with prostate or 
breast cancer via estrogen-related factors such as breast 
density and use of hormone replacement therapy [27, 

28] and high body mass index (BMI) [29], with PhenoS-
canner V2 website (www.​pheno​scann​er.​medsc​hl.​cam.​
ac.​uk). It is a comprehensively curated genetic cross-
reference system and provides all well-established asso-
ciations of known SNPs with their phenotypes, including 
subgenome-wide associations [30]. In order to make sure 
the independent contribution of selected SNPs, i.e., the 
correlation between the selected SNPs, LD-link website 
(https://​ldlink.​nci.​nih.​gov/, population: CEU) was used 
to perform a linkage disequilibrium (LD) test, which was 
a suite of web-based applications designed to easily and 
efficiently interrogate LD in population groups. For SNPs 
(r2 < 0.8), the SNPs (5 × 10−8) were used. For less strongly 
associated SNPs (5 × 10−6), only the uncorrelated SNPs 
(r2 < 0.01) were chosen.

Genetic associations with prostate and breast cancers
Summary data for prostate cancer was extracted from the 
largest GWAS meta-analysis including 79,148 cases and 
61,106 controls of European ancestry from the PRACTI-
CAL consortium (http://​pract​ical.​icr.​ac.​uk/​blog/) [23]. 
Summary statistics for breast cancer was extracted from 
the latest and largest meta-GWAS from BCAC includ-
ing 133,384 cases and 113,789 controls (http://​bcac.​ccge.​
medsc​hl.​cam.​ac.​uk/) [22]. The participants were women 
of European ancestry. The written consent of listed par-
ticipants was provided, and all the studies from which we 

Fig. 1  The flowchart of Mendelian Randomization analysis of serum levels of glutamate and aspartate and risk of development of breast cancer 
and prostate cancer

http://www.phenoscanner.medschl.cam.ac.uk
http://www.phenoscanner.medschl.cam.ac.uk
https://ldlink.nci.nih.gov/
http://practical.icr.ac.uk/blog/
http://bcac.ccge.medschl.cam.ac.uk/
http://bcac.ccge.medschl.cam.ac.uk/
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extracted data for our MR analysis were supported by the 
ethical review boards.

Statistical analysis
In order to evaluate the casual effect between glutamine 
and aspartate and cancers, MR methods including sim-
ple median, weighted median (WM), penalized weighted 
median, the inverse-variance-weighted (IVW), penal-
ized IVW, robust IVW, penalized robust IVW, MR-Egger, 
penalized MR-Egger, robust MR-Egger, and penalized 
robust MR Egger are selected for analysis. Penalized anal-
yses would give consistent estimates if a plurality of the 
instrumental variables are valid [31–33]. Among them, 
IVW is the major analyses method. For multiple inde-
pendent genetic variants, IVW could weigh the average 
of these single causal estimates using the inverse of their 
approximate variances as weights [34]. The weighted 
median method [35] and MR Egger [34] were conducted 
in the sensitivity analysis to account for potential bias 
from unknown pleiotropy. The WM method could be 
considered to account for differences in the precision of 
estimates and could provide consistent estimates even if 
50% of the information comes from invalid SNPs [35]. 
The simple median estimator is calculated as the median 
of the Wald ratio estimates [ratio of SNP on outcome to 
SNP on glutamate and aspartate]. The estimate obtained 
by WM method were validated as IVs were greater than 
or equal to three SNPs [36]. Otherwise, the Wald ratio 
was directly used as there was one SNP. Causal estimate 
was also obtained from MR-Egger, which was based on 
the assumption that the pleiotropic effects were inde-
pendently distributed from the genetic associations with 
the exposure [34]. The intercept from MR Egger was 
checked whether it was nonzero because this indicates 
that some of the genetic predictors might be acting other 
than via the exposure (i.e., directionally pleiotropic) [34], 
invalidating the IVW estimates. The MR Egger estimate 
is less precise than that from IVW, because the vari-
ance of the MR Egger estimate additionally depends on 
the variability between the genetic associations with the 
exposure, and it is much larger than that from IVW [34]. 
Supplementing these more widely used approaches, a 
robust adjusted profile score (RAPS), that is robust to idi-
osyncratic pleiotropy [37], and improved MR methods 
including the robust option, penalized option, and the 
penalized option of the weighted median, IVW, and MR-
Egger [38] were recently developed MR methods.

Heterogeneity test was performed using Cochran’s 
Q-test to identify whether the MR results were biased by 
the potential heterogenic factors. A leave-one-out per-
mutation test was performed to assess whether the IVW 
estimate was biased by the influence of particular SNPs. 
Causal estimates between glutamate and aspartate levels 

and prostate and breast cancers risk were expressed as 
odds ratios (OR) and 95% confidence interval (CI) per 
standard deviation increment in plasma glutamate or 
aspartate level.

All the analyses with P < 0.05 were considered statisti-
cally significant. All statistical analyses were performed 
using the R Studio (R version 4.0.2) software and the R 
package “Mendelian Randomization”.

Results
Genetic instruments for glutamate and aspartate
The SNPs as the potential IVs obtained from the large 
GWASs of European ancestry [21], were not confounded 
by socio-economic status and lifestyle factors (alco-
hol and smoking). By using different cutoffs for signifi-
cance, the different genetic variants were selected. With 
genome-wide association significance (P < 5 × 10−8), 5 
SNPs were selected, including 1 SNP for glutamate and 
4 SNPs for aspartate. However, the result of the linkage 
disequilibrium test on the LD-link website showed that 
rs139051778 and rs33966350 associated with aspar-
tate were not independent. In fact, these two SNPs were 
within a same gene; thus, to get more reliable results, 
rs139051778 were excluded for analysis, as rs33966350 
were with lower P value. With a less stringent signifi-
cance (P < 5 × 10−6), 14 genetic variants were associated 
with serum glutamate or aspartate levels. Finally, the 
characteristics of these 18 genetic variants in total were 
shown in Table 1.

The selected SNPs were from genes thought to be 
functionally relevant to the exposures and none of the 
SNPs were associated with key confounders. The SNP 
rs113141482 is on the gene GPR158, which encodes 
G protein-coupled receptor 158 (GPR158). GPR158 
is a newly characterized cell surface protein that plays 
the same role, as other G-protein coupled receptors 
(GPCRs), on promoting prostate cancer (PCa) malig-
nancy. Indeed, currently, the glutamate family member 
GPR158 is a therapeutic target for PCa [39]. The SNP 
rs33966350 is a locus on the gene ENPEP associated with 
blood pressure [35] and is related to aspartate, given that 
the gene is also relevant to the metabolism of aspartate 
in function: ENPEP encodes glutamyl aminopeptidase, 
catalyzing the cleavage of glutamate and aspartate from 
the N-terminal polypeptides.

Associations with prostate and breast cancers
Based on the single genome-wide significant SNPs, 
the result of IVW analysis (Figs. 2 and S1) was shown 
that the genetically instrumented aspartate was posi-
tively associated with prostate and breast cancers. 
Importantly, when less strongly associated SNPs 
was included, the results from the improved the MR 
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methods including the robust IVW and penalized 
robust IVW methods also showed a significant associa-
tion with prostate cancer (Table S1) and breast cancer 
(Table S2). Interestingly, the intercept of MR Egger, 
penalized MR-Egger, robust MR-Egger and penalized 
robust MR-Egger were not equal to zero and there was 
no pleiotropy. In addition, the P values of MR Egger, 
penalized MR-Egger, robust MR-Egger and penalized 
robust MR-Egger were less than 0.05. Therefore, the 
causal association in the Figs. 2 and S1 was further sup-
ported. However, the association between aspartate 
and breast cancer did not remain in the result of IVW 
analysis when including less strongly associated SNPs 
(Figs. S2 and S4).

Genetically instrumented glutamate was not signifi-
cantly associated with breast cancer and prostate can-
cer based on the single genome-wide significant SNPs 
(Fig.  3). These associations were generally robust to 

different SNP selections as less strongly associated SNPs 
were included (Figs. S3, S5, Tables S3 and S4).

The summary information of GWASs on outcomes 
was displayed in Table S5. And the genetic associations 
between serum levels of glutamate and aspartate and the 
outcomes were shown in Table 1.

Sensitivity analysis
As IVs were greater than or equal to three SNPs, the MR-
Egger intercept test was performed to examine the plei-
otropy. The intercept values from MR Egger analysis were 
nonzero, suggesting that the MR Egger estimate may 
have greater validity and the pleiotropy did not bias the 
results.

The single genome-wide significant SNPs in the 
Tables  2 and 3 and less strongly associated SNPs in the 
Tables S1 and S2 were to predict serum level of aspar-
tate and the result of MR-Egger intercept test indicated 

Fig. 2  Causal associations between aspartate and prostate and breast cancers

Fig. 3  Causal associations between glutamate and prostate and breast cancers
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that the intercept of the MR-Egger did not significantly 
differ from zero. Therefore, no signs of directional plei-
otropy among these instruments were discovered. Less 
strongly associated SNPs in Tables S3 and S4 were to 
predict serum level of glutamate and the similar result 

of MR-Egger intercept test was shown. There was only 
one SNP at genome-wide association significance to pre-
dict glutamate, the MR-Egger intercept test could not be 
performed (Table  4). Additionally, robust adjusted pro-
file score (RAPS) was also used to test the idiosyncratic 

Table 2  MR analysis using different methods for genetic associations between aspartate and prostate cancera

a  Single nucleotide polymorphisms with genome-wide significance (P < 5 × 10–8) were used as genetic predictors
b  SE Standard Error

MR method Association Heterogeneity

Estimate SEb 95% CI (Down) 95% CI (Up) P-value Q P-value

Simple median 0.038 0.030 -0.021 0.096 0.206

Weighted median 0.032 0.023 -0.012 0.077 0.155

Penalized weighted median 0.032 0.023 -0.012 0.077 0.155

IVW 0.042 0.020 0.003 0.081 0.034 1.868 0.3932

Penalized IVW 0.042 0.020 0.003 0.081 0.034

Robust IVW 0.041 0.013 0.015 0.068 0.002

Penalized robust IVW 0.041 0.013 0.015 0.068 0.002

MR-Egger -0.042 0.097 -0.232 0.147 0.660

MR-Egger intercept 0.106 0.118 -0.126 0.338 0.370

Penalized MR-Egger -0.042 0.097 -0.232 0.147 0.660

Penalized MR-Egger intercept 0.106 0.118 -0.126 0.338 0.370

Robust MR-Egger -0.042 0.046 -0.131 0.047 0.354

Robust MR-Egger intercept 0.106 0.068 -0.028 0.240 0.121

Penalized robust MR-Egger -0.042 0.046 -0.131 0.047 0.354

Penalized robust MR-Egger intercept 0.106 0.068 -0.028 0.240 0.121

Robust adjusted profile score 0.043 0.041

Table 3  MR analysis using different methods for genetic associations between aspartate and breast cancera

a  Single nucleotide polymorphisms with genome-wide significance (P < 5 × 10–8) were used as genetic predictors.
b  SE Standard Error

MR method Association Heterogeneity

Estimate SE2 95% CI (Down) 95% CI (Up) P-value Q P-value

Simple median 0.030 0.020 -0.009 0.068 0.134

Weighted median 0.031 0.016 -0.001 0.063 0.060

Penalized weighted median 0.031 0.016 -0.001 0.063 0.060

IVW 0.032 0.015 0.004 0.061 0.028 0.4410 0.8021

Penalized IVW 0.032 0.015 0.004 0.061 0.028

Robust IVW 0.032 0.007 0.018 0.046 0.000

Penalized robust IVW 0.032 0.007 0.018 0.046 0.000

MR-Egger 0.015 0.070 -0.122 0.152 0.827

MR-Egger intercept 0.021 0.086 -0.148 0.191 0.805

Penalized MR-Egger 0.015 0.070 -0.122 0.152 0.827

Penalized MR-Egger intercept 0.021 0.086 -0.148 0.191 0.805

Robust MR-Egger 0.015 0.022 -0.029 0.059 0.496

Robust MR-Egger intercept 0.021 0.033 -0.044 0.087 0.521

Penalized robust MR-Egger 0.015 0.022 -0.029 0.059 0.496

Penalized robust MR-Egger intercept 0.021 0.033 -0.044 0.087 0.521

Robust adjusted profile score 0.032 0.036
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pleiotropy, which further confirm the IVW findings 
(Tables 2, 3, 4 and Tables S1, S2, S3, S4). The single MR 
estimates were provided from each of the genetic vari-
ants using MR-Egger method (Fig. S9). The above results 
showed that all 18 variants in Table 1 were valid instru-
mental variables and could be used in the MR analysis.

Furthermore, there was no sign of heterogenetic effects 
between the genetic effects and risk of prostate and breast 
cancers in the Cochran’s Q statistics test (Tables 2, 3 and 
Tables S1, S2, S3 and S4) and It was identified that the 
IVW estimate was not biased by the influence of particu-
lar SNPs in the leave-one-out sensitivity analysis, based 
on SNPs with genome-wide significance and more SNPs 
with less stringent significance (Figs. S6, S7 and S8).

Discussion
Balanced diet/nutrition intake constitutes a preventive 
strategy for cancer incidences that in turn may impede 
the development and progression of cancer. Amino acids, 
glutamine and aspartate in particular, are vital alternative 
nutrients for cellular energetics and biomass synthesis 
apart from glucose. With consistency of the implication 
of evolutionary biology theory, our finding suggested 
that aspartate, with the potential to affect the endocrine 
system [40], was a underlying risk factor for prostate and 
breast cancers.

To the best of our knowledge, it is the first MR study 
to examine the potential causal effects of glutamate 
and aspartate on prostate and breast cancers. Geneti-
cally instrumented glutamate and aspartate can remove 
potential confounding factors in observational studies 
and make a difference of the effects of these two dietary 
programs, which are correlated and co-occur. And at the 
same time it can also minimize the measurement error 
in nutrition studies from self-reported dietary consump-
tion [21]. Furthermore, it is cost-efficient depending on 
large GWASs and case–control studies with extensive 
genotyping [41]. The samples for MR analysis were from 
two completely separate GWASs, one sample for genetic 
variants on exposures (glutamate and aspartate) [42] and 
the other sample for genetic variants on outcomes (pros-
tate cancer [23] and breast cancer [22]), which means any 

correlation in the sample with the exposures is unlikely 
to be replicated in the sample with the clinical outcomes.

Despite above-claimed strength, this study has sev-
eral limitations. First, our findings on serum aspartate 
were seemingly inconsistent with anti-cancer effect of 
aspartate in food, such as soy [14, 15, 43–45]. A pos-
sible explanation is that the effects of serum glutamate 
and aspartate reflected endogenous exposures that may 
distinguish with exogenous dietary exposures; but lev-
els of serum glutamate and aspartate are likely affected 
by dietary consumption [46]. Second, MR requires the 
genetic instruments associated with the exposures and 
the genetic variants are no pleiotropy. There are no 
confounders in the causal association [47]. As a result, 
here only 1 SNP associated with glutamate met the 
requirements with genome-wide significance threshold 
(P < 5 × 10−8). Thus, the exposure glutamate was dropped 
in the sensitivity analysis, which might lead to the 
decreased reliability of the result without MR-Egger and 
WM analysis. Therefore, more less strongly associated 
SNPs were included for analysis. However, the inconsist-
encies between the results of IVW and MR Egger anal-
yses could also be caused by weak instrument bias and 
the potential differences in validities of all the selected 
SNPs. Third, the genetic associations in our study were 
from studies largely conducted in European descent with 
genomic control [21, 48]. Some genetic variants may be 
different from other populations, which was caused by 
“population bottlenecks” [49]. Thus, the results in our 
study might not be applied to other populations in other 
parts of the world, although the allele frequency of major 
SNP was similar in ethnic groups. GWAS datasets from 
other populations should be collected to replicate and 
confirm the findings. Fourth, it could not be assessed 
whether in our estimates the effects of glutamate and 
aspartate on cancers vary by sex or age. The stratified MR 
analysis should be performed. Fifth, to reduce the pos-
sibility of false positive results, a Bonferroni correction 
(corrected P: 0.05/4 = 0.0125) of multiple independent 
tests (tests for associations of two metabolites with two 
types of cancer, respectively) should be used. Therefore, 
our findings were deemed suggestive evidence of possible 

Table 4  MR analysis for genetic associations between glutamate and prostate and breast cancersa

a  Single nucleotide polymorphisms with genome-wide significance (P < 5 × 10–8) were used as genetic predictors

Outcome MR method Association

Estimate 95% CI (Down) 95% CI (Down) P-value

Prostate Cancer IVW 0.029 -0.053 0.110 0.490

Prostate Cancer Robust adjusted profile score 0.029 0.506

Breast Cancer IVW 0.041 -0.020 0.102 0.186

Breast Cancer Robust adjusted profile score 0.041 0.215



Page 9 of 12Lin et al. BMC Genomics          (2022) 23:213 	

associations (0.0125 < P < 0.05). Hence, this necessitates 
further studies to replicate our findings and get more 
conclusive results. Last but not the least, the underlying 
pathways of the causal effects remained to be clarified.

Aspartate and glutamate belong to the arginine fam-
ily, along with asparagine, glutamine and arginine itself. 
They are inter-convertible via complex metabolism in 
most mammals. In our findings, aspartate was the risk 
factor for prostate cancer and breast cancer develop-
ment. Emerging evidence reveals that glutamine and 
interlinked asparagine metabolism may be critical for 
endothelial cell (EC) metabolism, as a regulator of angio-
genesis [50]. Therefore, the fact that the serum levels of 
aspartate and glutamine serving as a risk factor might be 
exerted via their relevant metabolites given that aspara-
gine and glutamine are known to promote cancer cell 
proliferation and vessel sprouting. Furthermore, in one 
breast cancer model, asparagine bioavailability impacts 
the ratios of epithelial-to-mesenchymal-like tumor cells 
and tumor progression [51]. In the epithelial‐mesenchy-
mal transition (EMT) and PCa progression, aspartate is 
generally a recognized contributor, its metabolism when 
elevated is accompanied with high levels of adenylosuc-
cinate, arginosuccinate, malate, asparagine known to be 
correlated with tumor progression [52].

Another plausible mechanism underlying our find-
ings is a link between aspartate and arginine via the urea 
cycle. The urea cycle detoxifies free ammonia in the liv-
ers of mammals, in which arginine is synthesized in two 
steps: citrulline and aspartate are used to synthesize 
argininosuccinate which is then converted to arginine. 
Arginine is a non-essential amino acid in adults but is 
necessary for fast-growing cells such as cancer cells. Cur-
rently Graboa et  al. [53] have reported that arginine is 
crucial during malignancy development. Arginine depri-
vation has been a novel and promising approach to treat 
tumors that are not hepatocyte-derived thus unable to 
self-suffice for arginine owing to a lack of the urea cycle 
[54]. However, the effects of glutamate and aspartate 
on human health are very complex. Some studies show 
that nutritional supplements, aspartate and glutamate, 
possess beneficial health and anti-oxidative effects. For 
example, aspartate can improve liver metabolism [55], 
and glutamate can modulate the body weight [56], regu-
late the release of hormones [57] and lipid metabolism 
[58], probably owing to its impact upon the TCA cycle 
and ATP production [59]. Aspartate might also operate 
by lowering androgens [10], and high level of circulating 
androgens is a risk factor for prostate cancer, a notion for 
which there is, however limited, evidence in human stud-
ies [16].

Currently, the technique of ultra-high performance 
liquid chromatography-tandem mass spectrometry 

measuring levels of amino acids such as aspartate and 
glutamate has been well validated [60]. It will be worth-
while to exploit more relevant genetic instruments if 
available. Our work, based on MR studies that con-
stitute a tool for testing causation, cannot dictate the 
exact size/degree of causal effects [61] nor can replace 
clinical trials; however, the findings built on the ever-
growing knowledge about the effects of glutamine and 
aspartate on prostate cancer and breast cancer devel-
opment is for sure greatly relevant to dietary recom-
mendations, along with providing guidance for cancer 
prevention as well as public health in general.
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