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Abstract 

Background:  The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates 
and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. 
However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) 
are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants.

Results:  Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and 
genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and com‑
putational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity 
and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as 
alpha, beta, gamma, and delta strains, and profile mutational changes at the population level.

Conclusions:  DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity.
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Background
The coronavirus disease 2019 (COVID-19) pandemic, 
caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), has presented a global health 
challenge of a magnitude not experienced in over a 
century. In response to the pandemic, large-scale diag-
nostic capabilities have been implemented to track viral 
spread and inform public health strategies such as con-
tact tracing and social distancing [1–4]. The current 
tests for COVID-19 rely on reverse transcription (RT) 
and PCR test or rapid antigen detection assays, which 
are used for detection of SARS-CoV-2 nucleic acids or 
proteins, respectively. These diagnostics, paired with 
vaccination, have greatly succeeded in reducing both 
the prevalence and severity of COVID-19 in some 

regions of the world. However, the ongoing evolution of 
SARS-CoV-2 and the emergence of variants of concern 
(VoC) such as alpha (B.1.1.7), beta (B.1.351), gamma 
(P.1), and delta (B.1.617.2) that have higher transmis-
sion rates and/or possess partial resistance to vaccines 
and antibody therapeutics threaten to alter the trajec-
tory of the pandemic [5–11].

Genomic surveillance is crucial to monitoring the 
continuously mutating SARS-CoV-2 and prevent-
ing wide-spread circulation of current VoC, as well 
as future variants with potentially enhanced vac-
cine- and antibody-resistance. Genomic surveillance 
is most often performed by whole genome sequencing 
(WGS) of the ~ 30,000 base genome of SARS-CoV-2, 
which consists of RNA-extraction (typically from 

Graphical abstract
DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous 
diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biore​nder.​com.

http://biorender.com


Page 3 of 16Yermanos et al. BMC Genomics          (2022) 23:289 	

nasopharyngeal swab samples) followed by molecular 
library preparation and deep sequencing. In addition to 
variant classification, WGS provides a powerful tool to 
infer evolutionary parameters such as mutation rates, 
effective reproductive number (Re), and genetic drift; 
and the implementation of WGS combined with large-
scale databases (e.g., GISAID) is providing unprec-
edented insight on viral evolution in real-time and 
across geographic regions [12–15]. Although major 
limitations of WGS are that it is often resource-, cost-, 
and time-intensive, and while scale-up of WGS has led 
globally to more than 2 million sequenced genomes 
(as of June 2021 on GISAID), this pales in comparison 
to the number of infections globally (~ 183 million as 
of June 2021). Furthermore, WGS is unevenly applied 
across countries, for example in the United King-
dom 10.9% of positive patients have been sequenced, 
whereas, in countries such as Brazil and South Africa 
only 0.11 and 0.52% have been sequenced, respectively 
(as of June 2021). This problem becomes even more 
critical considering many of the countries with the low-
est fraction of sequenced genomes are also the ones 
where infection rates are highest, and thus represent 
hotspots for viral evolution and potential origins for 
future VoC. Therefore, increasing the throughput and 
capacity for genomic surveillance of SARS-CoV-2 is 
essential for monitoring and preventing the spread of 
existing and emerging VoC.

While PCR tests have achieved large-scale implemen-
tation for SARS-CoV-2 detection and diagnosis, they 
are unable to produce information on viral sequence 
diversity and evolution. In contrast, WGS does enable 
genomic surveillance and detection of variants, but the 
required costs and resources limit its implementation 
at large-scale globally. Targeted amplification combined 
with deep sequencing offers a compromise between these 
two methods, as demonstrated by several recent studies 
that have described protocols for SARS-CoV-2 testing 
[16–19]. However, these methods currently rely upon 
selectively sequencing only a few conserved regions of 
the SARS-CoV-2 genome. For example, the SARSseq 
method described by Yelagandula et  al., relies on only 
sequencing two short regions (~ 70 bp) of the N gene 
[19]; similarly, Bloom et  al. developed SwabSeq which 
targets only a single, minimal region (26 bp) of the S gene 
of SARS-CoV-2 [20]. Aynaud et al. established the C19-
SPAR-Seq method for targeted sequencing of five regions 
across the viral genome, however, only one of them cor-
responds to the spike protein’s receptor binding domain 
(RBD) [16], where characteristic mutations associated 
with VoC are found [6]. While the diagnostic potential of 
these methods has been extensively explored, the mini-
mal amount of sequence-space captured excludes their 

use for genomic surveillance applications such as evolu-
tionary inference and VoC classification.

Here, we describe DeepSARS, a high-throughput 
platform that can simultaneously perform diagnostic 
detection and genomic surveillance of SARS-CoV-2. By 
combining patient sample-specific molecular barcoding, 
targeted and multiplexed amplicon deep sequencing and 
computational phylogenetics, DeepSARS provides highly 
sensitive and specific detection of virus, while also cap-
turing genomic diversity in highly variable regions of the 
SARS-CoV-2 genome. We initially developed and bench-
marked the diagnostic capability of DeepSARS using syn-
thetic RNA templates of SARS-CoV-2, which resulted 
in viral detection with as low as ten copies of virus per 
sample. Next, we applied DeepSARS on human samples, 
including both nasopharyngeal swabs and saliva sam-
ples from COVID-19-positive and -negative individuals, 
which demonstrated detection sensitivities and specifici-
ties similar to the current standard of PCR tests. Impor-
tantly, DeepSARS was also able to recover sequence 
information for approximately 20% of the full genome, 
which enabled the inference of phylodynamic parameters 
such as the effective reproductive number and temporal 
dynamics of local outbreaks. Finally, we demonstrated 
the ability to rapidly incorporate novel viral sites into the 
DeepSARS framework to classify VoCs, such as alpha, 
beta, gamma, and delta strains, and could further detect 
how individual mutations change over time on a popula-
tion level.

Results
Design of a molecular barcoding strategy to link 
patient‑specific information with deep sequencing
DeepSARS uses an integrated pipeline of experimental 
library preparation, deep sequencing and computational 
phylogenetic analysis for the simultaneous detection 
and genomic surveillance of SARS-CoV-2. The experi-
mental workflow is based on the stepwise incorpora-
tion of molecular barcodes for the tagging of RNA viral 
genes across multiple 96-well plates (Fig. 1A). Each well 
on a 96-well plate corresponds to a single patient sam-
ple and molecular barcodes (patientBC) are added dur-
ing the initial reverse-transcription (RT) step of the viral 
genome, thereby allowing sequence-based patient identi-
fication. The first 96 patientBC sequences were designed 
to be 10 base pairs (bp) in length; and in order to avoid 
patient misclassification, sequence diversity was designed 
to maximize the number of mutations between any two 
patientBCs on a given plate (Fig.  S1). Importantly, the 
addition of patientBCs during the RT step enables pool-
ing of all patient samples from a 96-well plate, whereby 
a second plate sequence-barcode (plateBC) is added by 
PCR via annealing to overhangs introduced during the 
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RT step. This pooling step simplifies the workflow and 
supports sample preparation and parallelization of many 
96-well plates. Moreover, the two sequence-barcodes 
ensure the unambiguous identification of both the origin 
well (patient) and 96-well plate. A multiplexed set of for-
ward primers targeting the viral regions of interest (and 
Illumina sequencing adaptors) enables PCR amplification 
of libraries for deep sequencing.

Enabling genomic surveillance of SARS‑CoV‑2 
by identifying regions for targeted deep sequencing
After designing patient- and plate-specific barcodes, 
we next determined which sites in the viral genome 
would maximize diagnostic and genomic information 
while maintaining sufficient coverage for each site. We 
optimized the sequencing workflow by selecting viral 
genomic regions ranging from 110 to 140 bp for compati-
bility with the Illumina MiSeq system (2 × 81 and 1 × 150 
cycle runs), which ensures a relatively short sequenc-
ing duration (< 10 h). The initial viral sites targeted by 
our protocol were determined by phylogenetic analy-
sis of 2825 full-length viral genomes from the GISAID 
repository (December 2019 and March 2020) (Additional 
file 2). After performing a multiple sequence alignment, 
we quantified sequence divergence between individ-
ual patients at each site in the ~ 30,000 base genome of 
SARS-CoV-2 (Fig.  1B), which revealed that certain viral 
sites contained more mutational diversity than others 
across the entire genomic landscape (Fig.  1B). We next 
quantified this mutational diversity using sliding regions 
to uncover the viral sites of 115 bp that maximized the 
mean sequence divergence across sites between patients. 
We selected the 13 regions with the most mutational 
diversity (site-13) and designed corresponding primers 
that included patientBCs (for nine patients) for evalua-
tion in the deep sequencing library preparation protocol. 
We furthermore included primers targeting the human 
RNAse P and human GAPDH genes, which serve as con-
trols and are used in qRT-PCR diagnostics [21, 22].

In light of the recent emergence of variants of concern 
(VoC), we designed an additional two primer sets that 
could distinguish the alpha variant (B.1.1.7) across 15 dif-
ferent sites (alpha-15) (Additional file 3) or more gener-
ally profile mutational diversity along 16 sites of the spike 
protein (spike-16) (Additional file  3). Visualizing the 
primer annealing sites along the full-length viral genome 
demonstrated the potential to capture sequence diver-
sity for 5517 bases (18.45%), including the 5′ untrans-
lated region (UTR), ORF1ab, S, ORF3, ORF8 and N genes 
(Fig. 1C).

Phylogenetic reconstruction of evolutionary 
and transmission histories via DeepSARS
Since DeepSARS generates sequencing data for targeted 
regions of SARS-CoV-2, it enables genomic surveillance, 
which includes inference of evolutionary parameters 
such as phylogenetic tree topology, mutation rates, and 
transmission rates (e.g., effective reproductive num-
ber, Re). We first questioned whether partial sampling 
(~ 20%) of the full-length genome would result in simi-
lar tree topologies and variant-specific clustering when 
compared with WGS. For these benchmarking compari-
sons, we used data from a recently published study that 
performed WGS on a localized SARS-CoV-2 outbreak 
in Austria [14]. This dataset included viral genomes that 
were originally classified according to their epidemiologi-
cal (sequence-based) cluster, thus we determined how 
using only the targeted genomic regions generated by 
DeepSARS would impact the tree topology and variant 
clustering compared to trees inferred from WGS. First, 
we extracted the targeted sequences (in silico) corre-
sponding to site-13, alpha-15 and spike-16 regions from 
100 samples containing variant clustering labels as deter-
mined by the original authors [14]; next, we inferred phy-
logenetic trees rooted by an early SARS-CoV-2 sequence 
(NCBI reference MN908947.2). This analysis revealed 
trees generated by the targeted genomic regions of 
DeepSARS could also lead to variant-specific clustering, 

(See figure on next page.)
Fig. 1  DeepSARS enables simultaneous diagnostic testing and genomic surveillance of SARS-CoV-2. A DeepSARS workflow consists of patient 
sample collection from nasopharyngeal swab or saliva (without RNA extraction) followed by targeted and multiplexed library preparation for deep 
sequencing. The multiplexing strategy uses well-specific primers to introduce a patient-barcode during reverse transcription. Samples are then 
pooled and multiplexed PCR is performed with a plate-specific barcode. Overview created using Biore​nder.​com. B SARS-CoV-2 sequence diversity 
for each nucleotide based on whole genome sequencing data from 2825 samples collected between December 2019 and March 2020. Red points 
indicate regions covered by the site-13 primer set in DeepSARS. C Colored lines represent sites of the SARS-CoV-2 genome targeted by the three 
primer sets of DeepSARS tested in this study: site-13, alpha-15 and spike-16. D Maximum likelihood trees generated on 100 samples from previous 
study that profiled an Austrian outbreak [14]; trees are inferred using either WGS or the sites targeted by DeepSARS. Color corresponds to variant 
classification (based on characteristic mutation profiles) and tip name corresponds to the individual sequence. Tree was rooted using a reference 
sequence recovered from Wuhan (NCBI: MN908947). E Phylodynamic estimates of the effective reproductive number (Re) using either WGS or the 
sites covered by DeepSARS. For each tree, 30 sequences were sampled from Italy at two different time points (prior to March 8, 2020) or at a later 
time point where the majority of sequences correspond to the alpha variant (between February 1, 2021 to March 15, 2021). Dotted line indicates 
the prior distribution. F Phylodynamic estimates using the same sequences in (E) but depicting the inferred origin date of the outbreak using WGS 
or sites covered by DeepSARS

http://biorender.com


Page 5 of 16Yermanos et al. BMC Genomics          (2022) 23:289 	

Fig. 1  (See legend on previous page.)
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although to a lesser extent than trees produced using 
WGS (Fig. 1D).

We next investigated how the targeted sites recov-
ered by DeepSARS could influence the performance of 
phylodynamic models, which are capable of integrating 
sampling dates with evolutionary inference. We there-
fore leveraged Bayesian phylogenetics to infer evolution-
ary features such the Re value and estimated the origin 
of the infection on datasets arising from either an early 
Italian outbreak (before March 2020) or more recently 
(Feb-Mar 2021); the latter contained a higher proportion 
of the alpha variant. Supplying either the sites recovered 
by DeepSARS (combined site-13, alpha-15, and spike-16 
primer sets) or WGS as input to a birth-death phylody-
namic model revealed comparable distributions of the Re 
value (Fig.  1E). While we observed that combining our 
three primer sets together resulted in the most compa-
rable Re estimates to WGS, for the alignment contain-
ing a high proportion of alpha variants, as expected, the 
alpha-15 primer set performed especially well (Figs.  1E, 
S2). As we randomly sampled 30 sequences for each of 
the presented phylodynamic analyses, we resampled new 
sequences from either time period and assessed how 
inference using DeepSARS compared to WGS (Fig. S2), 
which again demonstrated highly comparable Re estima-
tions for new sets of sampled sequences. DeepSARS also 
yielded similar distributions as WGS for estimation of 
the origin of the outbreak, which is another parameter of 
infection dynamics (Figs. 1F, S2).

DeepSARS can detect and differentiate viral mutations 
on synthetic RNA controls of SARS‑CoV‑2
To evaluate the capacity of DeepSARS for detecting 
SARS-CoV-2, we performed initial validation using 
commercially available synthetic RNA controls based 
on genomic sequences recovered early in the COVID-
19 pandemic (NCBI MN908947.3). The initial proto-
col was performed on a mixture of synthetic viral RNA 
and human RNA (hRNA), and consisted of RT for addi-
tion of patientBCs, followed by PCR with the site-13 

pool of primers targeting SARS-CoV-2 and primers for 
human RNAP and GAPDH. Illumina deep sequenc-
ing (1 × 150 bp) resulted in a total of ~ 1 million reads, 
which were then quantified based on containing the cor-
rect patientBC and mapping to either the viral genome 
or human control genes (Fig. 2A). When viral RNA and 
hRNA were present, we were able to selectively amplify 
and sequence all 13 highly mutational sites, with an aver-
age of 781.5 reads per viral site; human gene regions were 
also detected. In contrast, samples containing either 
hRNA only or no RNA resulted in minimal background 
reads (< 10 reads) mapping to viral sites, confirming the 
virus-specific nature of the assay. Next, we determined 
the limit of detection (LoD) for each viral site by titrating 
the estimated number of synthetic RNA copies per RT 
reaction either with or without hRNA. Quantifying the 
number of mapped reads demonstrated that viral reads 
could be detected for some sites with as little as 10 cop-
ies of synthetic RNA, although the LoD was higher in RT 
reactions containing hRNA (Fig. 2B). Summarizing both 
the total number of viral reads and the ratio of viral to 
human reads further revealed the sensitivity to decreas-
ing viral copy numbers. Together, these data support the 
ability of DeepSARS to simultaneously amplify multiple 
sites in the SARS-CoV-2 genome in a single reaction and 
maintain a LoD (10–102 viral RNA copies) comparable to 
diagnostic PCR tests [22].

In order to further explore the consistency of the 
DeepSARS library preparation protocol, we performed 
a number of additional control experiments under vari-
ous conditions. For example, we pooled six samples aris-
ing from distinct RT reactions of different copy numbers 
of synthetic RNA and hRNA derived from three different 
cell lines (HEK293, Jurkat, and MCF-7) and performed a 
multiplex PCR, where each reaction received a single Illu-
mina sequencing adaptor (Fig. S3). Following sequencing 
(Nano MiSeq 1 × 150 cycles), read alignment, and quan-
tification, we observed individual patientBCs were sensi-
tive to the starting virus copy number, as we used a single 
patientBC for each copy number dilution (Fig.  2C). We 

Fig. 2  DeepSARS performs highly sensitive detection and identifies mutations from synthetic RNA of SARS-CoV-2. A Samples with synthetic 
RNA templates of SARS-CoV-2 are mixed with human RNA and subjected to the DeepSARS library preparation protocol using site-13 primer set. 
Controls include human RNA only and no RNA. Bar graphs show the number of reads mapping to either viral or human genes (GAPDH, RNAP). Each 
read contained the correct patient barcode. B Synthetic RNA templates are titrated at different copy numbers in the absence (top) and presence 
(bottom) of human RNA and subjected to the DeepSARS library preparation protocol using site-13 primer set. Heatmaps and bar graphs show 
reads mapping to viral or human genes and their ratio. C Heatmaps and bar graphs show mapping reads following DeepSARS workflow with 
site-13 primers on synthetic RNA mixed with human RNA, including pooling samples post reverse transcription (RT). Each column corresponds 
to a distinct RT reaction. All RT reactions of a given viral copy number used a single patient barcode but a different plate barcode. D Following 
DeepSARS workflow described as in C but arranged that identical patient barcodes were used for each viral copy number dilution; box plots and 
heatmaps show the number of viral and human reads. Each column represents an individual RT reaction. Lines separating columns delineate 
different viral copy number dilutions. E Consensus sequences obtained using the site-13 primer set of DeepSARS on two SARS-CoV-2 synthetic RNA 
variants with defined mutational diversity. All bases in red indicate expected and recovered mutational divergence. F The fraction of aligned reads 
containing variant-defining mutations of either synthetic RNA control 4 or synthetic RNA control 14

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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next determined if distinct patientBCs recovered reliable 
numbers of viral reads when using an identical concen-
tration of synthetic viral RNA (Fig.  S4). Using different 
patientBCs for each dilution, we performed parallel RT 
reactions across multiple concentrations of synthetic 
viral RNA and subsequently pooled nine samples for 
multiplex PCR, where each reaction received a single 
Illumina sequencing adaptor. We observed a robust num-
ber of reads mapping to a given viral site using different 
patientBCs, although some sites had more total reads 
than others (Fig. 2D).

After demonstrating the ability of DeepSARS to 
detect the presence of SARS-CoV-2 with high sensitiv-
ity, we next determined whether the recovered sequenc-
ing data was sufficient to characterize defined genetic 
variation between different viral variants. Since the site-
13 primers were designed by targeting regions of high 
genomic diversity, they included four sites (sites 1, 10, 
12, 13) that contained point mutations that separated 
two distinct synthetic RNA control variants (Twist 4 
and Twist 14). We therefore performed the DeepSARS 
workflow and, after sequence read mapping, we could 
successfully differentiate the two viral control variants 
(Fig. 2E) and their corresponding point mutations with 
cross-contamination detected in less than 3.8% of reads 
(Figs. 2F, S5).

DeepSARS enables highly sensitive detection 
of SARS‑CoV‑2 from human nasopharyngeal swab 
and saliva samples
After performing initial validation of DeepSARS on 
synthetic viral RNA samples, we next assessed its per-
formance on human clinical specimens including naso-
pharyngeal swabs and saliva. Under standard PCR testing 
protocols, swab and saliva samples require RNA extrac-
tion procedures, most often requiring commercial RNA 
purification kits. We developed the DeepSARS protocol 
so that it could be performed on patient samples that 
were heat-inactivated in guanidinium chloride solution 
at 95 °C, and mixing with 40% Chelex 100 Resin, thereby 
avoiding the need to explicitly perform RNA extraction 
with purification kits (Rudolf, Petrillo manuscript in 
preparation).

We first started with matched samples consisting of 
six individuals that were previously determined to be 
COVID-19-positive or -negative based on PCR test-
ing (qRT-PCR). Initially, we performed RT reactions 
followed by PCR with a distinct combination of both 
patient- and plate-BCs (unpooled samples during multi-
plex PCR step). Using the site-13 viral primers and two 
human gene-specific primers (RNAP and GAPDH), we 
were able to amplify and recover sequencing reads for 
the majority of viral sites for both nasopharyngeal and 

saliva samples from the COVID-19-positive patients 
(Fig. 3A). Alternatively, in all of the COVID-19-negative 
patients, minimal to no reads were mapped to each viral 
site (< 20 reads total) for both swab and saliva samples 
(Fig.  3A). In order to further validate the sensitivity of 
DeepSARS, we pooled multiple patient samples (after 
RT and patientBC addition) within a single PCR (e.g., 
single plateBC). To this end, we pooled 45 COVID-
19-positive and 15 COVID-19-negative patient samples 
and again observed that DeepSARS could detect signifi-
cantly higher ratios of viral to hRNA (GAPDH+RNAP) 
reads in the COVID-19 patient samples (Figs.  3B, S6). 
The fraction of human-specific reads for negative patient 
samples was higher than that for positive patient sam-
ples (Fig. S7). Importantly, for nasopharyngeal samples, 
we observed a correlation (R2 = 0.56) between the Deep-
SARS-generated viral RNA:hRNA read ratio and the 
cycle threshold (Ct) value as determined by qRT-PCR 
(Fig.  3C). Although DeepSARS consistently recovered 
fewer reads for saliva samples, we nevertheless observed 
a correlation between the viral RNA:hRNA ratio and the 
qRT-PCR Ct values, further supporting the sensitivity of 
our assay. To better determine technical reproducibility 
of DeepSARS, we prepared sequencing libraries from 
both nasopharyngeal and saliva samples for a single indi-
vidual across multiple patient barcodes and sequencing 
runs (Patient 35,719), which demonstrated a consist-
ent reproducibility regarding the ratio of viral to human 
reads recovered.

Rapid addition of novel viral sites can detect emerging 
variants of SARS‑CoV‑2
DeepSARS was initially designed and experimentally 
validated using 13 sites in the SARS-CoV-2 genome 
that captured a high genomic sequence divergence 
at the early stages of the COVID-19 pandemic (April 
2020). However, the recent emergence of VoC, such 
as alpha, beta, gamma, and delta, which have higher 
transmission rates and are now widespread globally, 
shows the importance of rapid and diagnostic detec-
tion of SARS-CoV-2 variants. We therefore designed 
and validated the ability of two additional primer 
sets, one of which covered 15 sites characteristic of 
the alpha variant (alpha-15) and another targeting 16 
sites distributed along the spike protein (spike-16), 
including several sites present in the RBD (Fig.  1C), 
which possesses mutations that are closely associated 
with the classification of current VoC. Testing the 
sets alone on control, or COVID-19 patients with or 
without the alpha variant demonstrated the ability to 
recover genomic information for all sites containing 
the correct patient barcode for both nasopharyngeal 
and saliva samples using the alpha-15 set (Fig.  4A). 
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Combining alpha-15 and site-13 primer sets success-
fully recovered reads in most sites from COVID-19 
samples. Additionally, we were able to selectively pool 
the primers targeting the spike protein from the site-
13 and alpha-15 set with the entire spike-16, again 
demonstrating the modular ability to mix and match 
primer sets. Lastly, we combined all three of the primer 
sets on patient samples, which revealed that, although 

some sites appeared to be less covered than others, 
the DeepSARS workflow could be rapidly adapted to 
handle viral mutations (Fig.  4A). Closer inspection 
into the recovered sequencing reads demonstrated the 
ability to correctly identify seven mutations character-
istic to the alpha variant genome, in addition to detect-
ing patient-specific mutations not found in either the 
alpha and reference synthetic control (Fig. 4B).

Fig. 3  DeepSARS enables diagnostic detection of SARS-CoV-2 from nasopharyngeal and saliva samples. A Nasopharyngeal (swab) and saliva 
samples of COVID-19 positive and negative patients are subjected to the DeepSARS library preparation protocol using site-13 primer set. Reads 
mapping to the SARS-CoV-2 genome from three COVID-19 patients and three healthy controls are quantified. Sites 1–13 represent a region in 
the SARS-CoV-2 genome targeted by the site-13 primer set of DeepSARS. B The ratio of viral to human reads (mean ± SEM) for COVID-19 patients 
and healthy controls for both swab and saliva samples. Ratio is calculated by summing the reads containing the correct patient barcode across 
all sites and dividing by the number of reads containing the correct patient barcode mapping to either human GAPDH or human RNAP. Paired 
t-test, p < 0.05. C Correlation of CT values determined by qPCR and the ratio of viral to human reads recovered using DeepSARS. Red points (35719) 
correspond to the same patient included in three independent sequencing runs using different patient barcodes each time



Page 10 of 16Yermanos et al. BMC Genomics          (2022) 23:289 

DeepSARS detection of variants over time 
and across geographic locations
After having experimentally validated the ability of 
DeepSARS to accurately detect and recover SARS-
CoV-2 genomic information from COVID-19 patients, 

we next determined the extent to which it could be 
harnessed for classification of VoC and for identify-
ing individual mutations of interest. We first inves-
tigated how thoroughly DeepSARS would cover 
variant-specific mutations located in the spike protein. 

Fig. 4  DeepSARS can be rapidly and modularly adapted to perform genomic surveillance by targeting new regions of interest in the SARS-CoV-2 
genome. A Nasopharyngeal (swab) samples of COVID-19 positive and negative patients are subjected to the DeepSARS library preparation 
protocol using primers from site-13, alpha-15, and spike-16 primer sets using one distinct patient barcode and 16 distinct plate barcodes (one per 
sample per primer set). The number of recovered reads mapping to different regions targeted by DeepSARS on synthetic RNA (control) and three 
nasopharyngeal patient samples are quantified. Two of the patients had been deemed SARS-CoV-2 positive and one was negative by qPCR. Of the 
two patients, whole genome sequencing (WGS) had confirmed only one of the two positive cases had the alpha SARS-CoV-2 variant. B Consensus 
sequences following DeepSARS for the samples in A for the sites targeting the mutations defining the alpha SARS-CoV-2 variant. Deletions are 
indicated as red dashes. Only reads containing the expected patient barcode were included
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Cross-referencing the experimentally validated regions 
revealed that DeepSARS recovered 31 of the 36 defin-
ing mutations of alpha, beta, gamma, and delta variants 
(as determined by US CDC (cdc.​gov/​coron​avirus/​2019-​
ncov/​varia​nts/​varia​nt-​info.​html)) (Fig.  5A). To confirm 
that DeepSARS could sufficiently detect population-
level dynamics for VoC, we downloaded WGS data 
from the United Kingdom, South America, and Africa 
between March 2020 and June 2021 from GISAID 
[23]. Since the GISAID database provides information 
regarding the amount and location of mutations, we 
first quantified the proportion of annotated mutations 
that we were able to cover using all three of the cur-
rent DeepSARS primer sets corresponding to the spike 
region. Each extracted sequence was then classified into 
viral lineages, including the VoCs, which revealed that 
DeepSARS was able to detect viral lineage population 
dynamics at almost the same level as WGS (Fig.  5B). 
Comparing the DeepSARS in silico variant classifica-
tion to the variant annotations for thousands of spike 
protein sequences sampled at different time points and 
locations demonstrated the ability to perform genomic 
surveillance, as the emergence and dominance of cer-
tain VoCs in specific locations was accurately identified 
over time (e.g., alpha and delta in the United Kingdom, 
gamma in South America, and beta in Africa) (Fig. 5B). 
Quantifying the fraction of annotated spike mutations 
revealed that DeepSARS could recover sequence infor-
mation for the majority of annotated amino acid muta-
tions for each full-length spike protein sequence across 
different locations and time points throughout the 
pandemic (Fig. 5C), highlighting the potential to cover 
emerging variants and future VoCs. We finally demon-
strated that DeepSARS could accurately quantify the 
dynamic proportion of specific point mutations segre-
gated by geographic location, which was previously pro-
filed using well-annotated WGS and demonstrated to 
have spread throughout Europe in 2020 [15] (Fig. 5D).

Discussion
Here we have developed DeepSARS, a rapid and scal-
able approach based on molecular barcoding, targeted 
deep sequencing and computational phylogenetics, thus 
augmenting basic diagnostic testing with simultaneous 
genomic surveillance of SARS-CoV-2, which therefore 

enables detection of VoCs and real-time monitoring of 
viral evolution and emergence of new variants. We have 
demonstrated that DeepSARS has excellent sensitiv-
ity and specificity on detection SARS-CoV-2 RNA in 
extraction-free nasopharyngeal swabs, and correlates 
with Ct values determined by qRT-PCR (Fig. 3C). Mean-
while, detection and sequence recovery of DeepSARS 
was maintained when applied to extraction-free saliva 
samples, despite saliva samples corresponding to a lower 
sensitivity for both our method and the traditional RT-
qPCR (Fig. 3C). Although the thorough sensitivity anal-
ysis was restricted to a single panel of initial primers 
determined by early genomic divergence of SARS-CoV-2, 
we could to highlight that adding new sites and prim-
ers to the panel can occur rapidly and in a responsive 
fashion to new variants that emerge. Any future clinical 
implementation of new sites would require full sensitiv-
ity and specificity analysis, as the additional panels were 
presented here as a proof-of-concept. While this ratio 
can be used to distinguish the positive and negative sam-
ples, it is potentially sensitive to RNA extraction process-
ing, freeze-thaw cycles, and storage conditions. Previous 
work has also observed a similar phenomenon, where the 
detection of human RNA was reduced upon storage but 
the detection of virus RNA was less impacted [16]. Lower 
human reads may lead to higher DeepSARS-generated 
viral RNA:hRNA ratio in negative samples, and therefore, 
could increase false-positives. Future iterations of Deep-
SARS can increase sensitivity and accuracy by design-
ing other means to classify diagnosis status. While we 
investigated the relationship between the total number of 
viral and human reads, in line with previous publications 
[24], computational strategies incorporating site-specific 
information generated by DeepSARS (i.e., how many of 
the total sites returned reads) or incorporating machine 
learning methods (i.e., supervised classifier models) may 
help further improve accuracy and specificity. Moreover, 
we have demonstrated the possibility to combine all three 
of the primer sets on patient samples (Fig. 4A), although 
some sites appeared to be less covered than others. This 
is a common challenge for multiplexing PCR reactions, 
as different targets in the reaction can compete with each 
other for resources such that highly abundant templates 
are preferentially detected, and less abundant ones fade 
into the background [25]. This can be improved in future 

(See figure on next page.)
Fig. 5  DeepSARS enables variant classification and the quantification of emerging mutations in the spike protein and receptor binding domain 
(RBD). A Depiction of SARS-CoV-2 spike protein regions targeted by the site-13, alpha-15 and spike-16 primer sets of DeepSARS. Red regions 
indicate primers present in either the site-13, alpha-15 or spike-16 primer set. Green regions represent those variant-defining mutations not 
currently targeted by DeepSARS. B Spike-based variant classification for publicly available whole genome sequencing data from GISAID at different 
time points during the pandemic. Spike protein variants were quantified using either sites covered by DeepSARS or all sites from whole genome 
sequencing data. C The fraction of mutations covered per spike protein using DeepSARS relative to whole genome sequencing. Error bars indicate 
standard error of mean. D The fraction of sequences containing one of three previously reported mutations of interest captured by DeepSARS

http://cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
http://cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
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Fig. 5  (See legend on previous page.)
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iterations by adjusting the ratio of primer for different 
targets or additional optimization on the PCR condition.

Here we show as a proof-of-concept, DeepSARS per-
formed on a small subset of patient samples, relying 
on relatively fast but lower read count deep sequenc-
ing runs (Illumina MiSeq Reagent Kit v2 Nano, up to 
one million reads per run). However, DeepSARS can 
be scaled up and applied to hundreds to thousands of 
patients in parallel by parallelizing the workflow (num-
ber of plates) and increasing sequencing depth. For 
example, ~ 4800 patient samples (~ 50 plates) could 
be prepared by molecular barcoding and sequenced 
using a single Illumina MiSeq run (2 × 150 kit, 15 mil-
lion reads). Additional advancements to other sequenc-
ing strategies (e.g., NovaSeq with ~ 10 billion reads), 
incorporating automated workflows for library prepa-
ration, and using multiple machines in parallel would 
further improve testing capacity. While the theoreti-
cal throughput would be comparable to other targeted 
deep sequencing-based diagnostics (e.g., SARS-Seq, 
SwabSeq, C19-SPAR-Seq) [16, 19, 20], the increased 
genomic and sequence space coverage provided by 
DeepSARS enables genomic surveillance. Deep-
SARS provides genomic surveillance by recovering 
sequencing information for approximately 20% of the 
SARS-CoV-2 genome. While DeepSARS resulted in 
comparable phylodynamic estimates relative to WGS 
(Fig.  1E), we observed that tree topologies diverged 
from those inferred using WGS (Fig. 1D). Accurate esti-
mation of Re will continue to play a critical role in pub-
lic health policies, as some VoCs have higher Re values 
and are associated with higher transmission (e.g., alpha 
and delta variant) [26, 27]. There remains the poten-
tial to further optimize the library preparation proto-
col to allow for increased coverage of the viral genome, 
which could further improve tree topology estimates. 
Correctly balancing this trade-off between throughput 
(multiple patients within a single Illumina sequencing 
index) and viral coverage (number of targeted genomic 
regions) holds the potential to balance the inability of 
qPCR to recover genomic information with the scal-
ability issues of WGS (Table 1).

A major advantage of DeepSARS is the ability to rap-
idly adapt the protocol by introducing new primers that 

cover emerging variants. We have demonstrated three 
different parameters to which primers could be designed 
and implemented in DeepSARS, namely by i) mutational 
divergence from WGS, ii) targeting a specific VoC (e.g., 
alpha), and iii) targeting viral regions most often associ-
ated with VoC (spike protein and RBD). Despite design-
ing and validating these primer sets before the emergence 
of certain VoCs (e.g., delta and gamma) the viral regions 
currently recovered by DeepSARS remained relevant and 
capable of classification of such novel variants (Fig.  5A, 
B). Therefore, DeepSARS may enable earlier detection of 
future variants that may go on to become VoC.

Methods
Primer design
Primers based on mutational diversity were designed 
using 2825 full-length genome sequences (Additional 
file 2) from the GISAID (April 2020) by calculating the 
relative number of mutations between whole genome 
sequences using sliding windows of 150 base pairs. Fol-
lowing identification of viral regions of interest, primers 
were designed using Geneious (version 10.1.3) to ensure 
comparable melting temperatures and to avoid disruptive 
secondary structures. The primer set targeting mutations 
specific to the alpha (B.1.1.7) variant was designed to 
first cover the characteristic deletions, followed by those 
regions in the spike protein, followed by random selec-
tion of CDC-classified mutations for remaining regions. 
The primer set targeting the spike protein prioritized 
regions within the RBD and then the remaining sites 
were selected randomly in Geneious, again with compa-
rable melting temperatures and lacking predicted sec-
ondary structures.

For the initial reverse transcription step, each patient 
sample received a patient-specific primer that contains a 
barcode of at least 10 nucleotides in length. We designed 
96 barcodes (one patient barcode per well, 96 wells per 
plate) that have been computationally optimized to maxi-
mize the distance between all barcodes within the set 
using a genetic algorithm with elitist selection and a ran-
dom offspring algorithm ensured an average distance of 
7.5 mutations for all barcodes, with a minimum distance 
of 4 mutations between patient barcodes (Fig.  S1). We 
additionally tested randomly selected barcodes used in 

Table 1  Comparison of common testing methods

Time to 
Perform 
Assay

Number of 
tests per 
Assay

Cost per test Limit of 
Detection (Viral 
Copies)

Ability to Detect 
Presence of Variant 
Strains

Ability to Provide 
Sequencing Data

RT-qPCR(John et al. 2021) [28] 4–6 h 48–384 $10.00 1–100 No No

DeepSARS 1 day 960–4800 $10.00 10–100 Yes Yes

WGS (Rachiglio et al. 2021) [29] 45 h ~ 3657 $33.80 > 20 Yes Yes
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single-cell sequencing (CAG​TTG​TAGA and AAG​TGC​
CAT) and computationally determined barcodes using 
edittag [30] and observed no difference in assay sensi-
tivity. Heatmaps displaying barcode distance were per-
formed using the pheatmap R package [31].

Phylogenetic analysis
Maximum likelihood trees were generated using 
sequences from an early outbreak in Austria for which 
viral clades had been previously defined [14]. One hun-
dred sequences were randomly sampled from the 418 
sequences to better visualize the clustering of clades, as 
previously performed. Maximum likelihood trees were 
inferred using the Randomized Axelerated Maximum 
Likelihood (RAxML) tree construction tool in Geneious 
(v2020.03) by supplying either the full-length viral 
genome or just the sites recovered by the three primer 
sets validated by DeepSARS as input. Trees were then 
read into R (v.4.0.4) using the “read.tree” function from 
the R package ape [32] and a sequence recovered from 
Wuhan (MN908947) was set as the outgroup for both 
trees using the “reroot” function from the phytools R 
package [33].

We assembled five datasets of 30 SARS-CoV-2 genetic 
sequences with exposure in Italy obtained from publicly 
available data on GISAID [23] (accessed on May 2021). 
For the first two datasets, we randomly selected samples 
from January 2020 to 8 March 2020 to analyze the early 
cases documented in Italy. The other three datasets con-
tain samples from February 2021 to 15 March 2021 to 
describe a later Italian outbreak. We selected sequences 
for this later outbreak from either i) all lineages, ii) B.1.1.7 
lineage (the most frequent lineage at that time in GISAID 
sequences) and iii) B.1.177 lineage (the second most 
frequent). Sequences with incomplete collection date, 
less than 27,000 bases in length or with more than 3000 
unknown bases were omitted. The sequences are aligned 
with MAFFT under default parameters [34]. The begin-
ning and the end of the alignment are masked respec-
tively by 100 and 50 sequences as well as sites 13,402, 
24,389 and 24,390, identified by Nextstrain as prone to 
sequencing errors [35]. From the sequence alignments, 
we generate five different alignments by selecting all 
the sites, the sites included in the primer sets (site-13, 
alpha-15, or spike-16) and the three primer sets pooled 
together, thereby producing a total of 25 alignments.

Phylodynamic analysis
A Bayesian phylodynamic analysis using the BDSKY 
package [36] of BEAST 2 [37] was run for each alignment. 
The phylogenetic tree was assumed to be produced by a 
birth-death process with reproductive number Re, sam-
pling proportions (s) and becoming uninfectious rate. 

The sampling proportion for the outbreak was assumed 
to be zero before the first included sample for that out-
break. We use a LogNormal (0.8, 0.5) prior distribution 
for Re. The value of the becoming uninfectious rate was 
fixed to 36.5, equivalent to an expected time until becom-
ing uninfectious for each individual of 10 days. We used 
the HKY substitution model with a strict clock rate fixed 
to 8 × 10− 4 substitutions/site/year [35]. Further, the sam-
pling proportion followed a uniform distribution (0, 0.05), 
the origin a LogNormal (− 2, 0.8), the Kappa (HKY) a 
LogNormal (1.0, 1.25), the gamma shape (site model) an 
exponential (0.5), and the gamma category count (site 
model) was set to 4 (following [36]). We ran one Markov 
Chain Monte Carlo chain of length 107 iterations for each 
analysis to approximate the posterior distribution of the 
model parameters. The chains were assessed for conver-
gence using Tracer v.1.7.1 after discarding the first 10% of 
samples as burn-in. We ensured that the effective sample 
size (ESS) was greater than 200 for all parameters. Finally, 
the posterior probabilities inferred for the parameters of 
the birth-death process are compared for the alignments 
with different selected sites for the same set of sequences.

Patient samples and RT‑qPCR
Nasopharyngeal swabs and saliva samples were collected, 
heat-inactivated at 95 °C in 3 M guanidinium chloride, 
and subsequently mixed with 40% Chelex 100 Resin at 
1:5 ratio. We then assessed 5 μL of patient samples by 
performing RT-qPCR of a virus specific amplicon (N1) 
with the GoTaq® Probe 1- Step RT-qPCR System (Pro-
mega, A6121) based on methods from CDC.

DeepSARS sequencing library preparation
RT was performed using 1 μL of synthetic RNA con-
trol (Twist Biosciences, variants #2, 4, or, 14) or 5 μL 
of patient samples as a template. Multiplex RT prim-
ers (100 μM each) and dNTP (10 mM) were added 
to the RNA template with a concentration of 5 μM 
and 0.5 mM, respectively, and incubated for 20 min at 
70 °C. In the case that human RNA was added to syn-
thetic controls, RNA was extracted from HEK293 cell 
lines and supplied 50 ng. Following incubation, GoS-
cript™ reverse transcriptase and RT buffer (Promega, 
A5001) were added, incubated at 42 °C for 30 min fol-
lowed by 30 min at 50 °C, and inactivated at 70 °C for 
15 min. For the result shown in Fig. 2, Maxima reverse 
transcriptase (Thermo, EP0742) was used instead. 
Size-selection was performed using SPRI beads at 1X 
according to the manufacturer’s protocol to remove 
RT primers. Where indicated, equal volumes of cDNA 
were pooled together for a single PCR reaction using a 
multiplex forward primer set, each of which contained 
the Illumina TruSeq adaptor sequence and a reverse 
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primer containing an Ilumina index used for demulti-
plexing (Additional data file 4). PCR was performed 
using KAPA HiFi DNA polymerase (Roche, KK2602) 
with touchdown PCR. The initial annealing tempera-
ture is 67 °C and annealing temperature is gradually 
reduced (1.1 °C /every cycle) for 25 cycles. Amplifica-
tion is then continued using 58 °C for extra 20 cycles. 
An additional size selection cleanup was performed 
using SPRI beads at 1.2X according to the manufac-
turer’s protocol. Library QC was done using a Frag-
ment Analyzer (Agilent Technologies) and libraries 
were pooled at equimolar concentrations. Final con-
centration of the pool was measured with the Quant-iT 
PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific) 
followed by sequencing using an Illumina MiSeq Rea-
gent Nano Kit v2 (300-cycles) with an additional 20% 
PhiX (Illumina) spike-in.

Bioinformatic analysis and data visualization
A reference genome was created by appending human 
GAPDH (NM_002046), human RNAP (AL590622), 
and the full-length reference SARS-CoV-2 genome 
(MN908947) using Geneious (version 10.1.3). Raw 
sequencing files were split according to patient specific 
barcodes allowing for at most one mismatch across the 
ten nucleotides. Barcode-containing reads were aligned 
to the reference genome in R using the buildindex func-
tion in the Rsubread package [38]. Alignment files were 
exported as bam files and read into R using the loadBam 
function in the Rsamtools package [39]. Those reads 
mapping into expected windows based on forward and 
reverse annealing locations were retained in the analysis. 
Graphical abstract was created using BioRe​nder.​com.
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the experiment depicted in Fig. 2D. Figure S5. Logo plots depicting the 
per-base heterogeneity for the consensus sequences recovered from all 

reads in the experiment depicted in Fig. 2E. Boxes indicate those sites 
with defined mutations separating Twist synthetic RNA Controls 4 and 
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