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Abstract 

Background:  Osteosarcoma is the most common primary malignant tumour of bone occurring in children and 
young adolescents and is characterised by complex genetic and epigenetic changes. The miRNA miR-486-5p has 
been shown to be downregulated in osteosarcoma and in cancer in general.

Results:  To investigate if the mir-486 locus is epigenetically regulated, we integrated DNA methylation and miR-
486-5p expression data using cohorts of osteosarcoma cell lines and patient samples. A CpG island in the promoter 
of the ANK1 host gene of mir-486 was shown to be highly methylated in osteosarcoma cell lines as determined by 
methylation-specific PCR and direct bisulfite sequencing. High methylation levels were seen for osteosarcoma patient 
samples, xenografts and cell lines based on quantitative methylation-specific PCR. 5-Aza-2′-deoxycytidine treatment 
of osteosarcoma cell lines caused induction of miR-486-5p and ANK1, indicating common epigenetic regulation in 
osteosarcoma cell lines. When overexpressed, miR-486-5p affected cell morphology.

Conclusions:  miR-486-5p represents a highly cancer relevant, epigenetically regulated miRNA in osteosarcoma, and 
this knowledge contributes to the understanding of osteosarcoma biology.
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Introduction
High-grade osteosarcoma is the most prevalent primary 
malignant tumour of bone, affecting both children, ado-
lescents and, more rarely, elderly people. Following the 
introduction of multi-agent chemotherapy in the 1970s, 
the 5-year survival rate increased considerable reaching 
60–70% among patients with conventional high-grade 
osteosarcoma [1]. However, advances in treatment have 
stalled with no further improvement in the  survival 
[2], and also exhibit a collateral risk for adverse toxic-
ity events. Improved biological knowledge is required 

to develop new treatment opportunities and further 
improve the survival of osteosarcoma patients.

Osteosarcoma is characterized by considerable phe-
notypic and genomic heterogeneity, and few recurrent 
targetable genetic changes have been reported. Osteosar-
coma exhibits a complex karyotype with high genetic and 
chromosomal instability seen as multiple rearrangements 
across the genome, kataegis and chromothripsis [3–6]. 
The genetic markers identified have been associated with 
treatment response and prognosis, thus appearing as 
promising candidates for a translation to clinical practice 
[7, 8]. However, the limited extent of recurrent profiles 
identified indicates that a substantial regulation of the 
transcriptional programs in osteosarcoma may rather be 
caused by epigenetic programs [9–13], providing novel 
avenues for cancer therapy [14].
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Epigenetic mechanisms are fundamental drivers of 
tumour initiation, development and progression [15]. 
Several epigenetic alterations have been identified, 
including biomarkers for various diseases [16]. DNA 
methylation is the most commonly studied epigenetic 
alteration in cancer [17], comprising covalent addition of 
methyl groups to CpG sites. CpG islands (CGIs) are char-
acterized by regional enrichment of CpG sites and are 
present in approximately 70% of all human gene promot-
ers [18]. In normal cells, these CGIs are usually unmeth-
ylated. In cancer, however, CGI hypermethylation is 
frequently observed, accompanied by long-term silencing 
of gene expression [19].

MicroRNAs (miRNAs) are a key class of epigenetic 
regulators as they act to post-transcriptionally silence 
large numbers of genes without modifying the DNA 
[20]. miRNAs are frequently associated with CGIs and 
are themselves also found silenced through epigenetic 
mechanisms [21]. Dysregulated miRNA expression may 
result in aberrant expression of genes that play critical 
roles in osteosarcoma tumorigenesis and progression 
[22–25]. We have previously identified miR-486-5p to 
be among the most downregulated miRNAs in osteo-
sarcoma cell lines [24]. miR-486 has been shown to be 
downregulated in osteosarcoma patient samples com-
pared to normal samples [26]. However, the mecha-
nism of repression of miR-486-5p is still unknown 
in osteosarcoma. Given that epigenetic regulation 
of miR-486-5p has been described in other cancers 
like lung cancer [27], we hypothesized that this could 
be the mechanism of miR-486-5p regulation also in 
osteosarcoma.

In an effort to advance the understanding of osteosar-
coma biology, we aimed to investigate if the expression of 
miR-486-5p was epigenetically regulated through meth-
ylation of promoter regions. We analysed miR-486-5p 
expression and DNA methylation levels in a cohort of 
osteosarcoma cancer cell lines and patient samples. 
Qualitative and quantitative methylation analyses were 
performed, allowing us to characterize the mir-486 locus 
in detail. Finally, the in vitro effect of miR-486-5p over-
expression on cell morphology and proliferation was 
investigated.

Results
Low expression of miR‑486‑5p in osteosarcoma
To follow up on our earlier observations of miR-486-5p 
in osteosarcoma [24], miR-486-5p expression level was 
examined in a panel of osteosarcoma patient samples 
(n = 9), osteosarcoma cell lines (n = 17) and normal 
bone samples (n = 6) by quantitative real-time reverse-
transcription PCR (qRT-PCR). The mean expression 

of miR-486-5p was reduced 3-fold in patient samples 
(p < 0.01) and 300-fold in cell lines (p < 0.0001) compared 
to normal bone (Fig. 1a). This confirms a low expression 
of miR-486-5p in osteosarcoma using both patient tissue 
samples and cell lines.

DNA methylation is associated with low expression 
of miR‑486‑5p in osteosarcoma cell lines
miRr-486-5p is encoded within the last intron of the 
Ankyrin 1 (ANK1) gene. Several transcript variants of 
human ANK1 exist, with multiple transcriptional start 
sites (TSS), promoter regions and CGIs. The ANK1 vari-
ants 1–4 represents medium-sized transcripts, ANK1 
variant 9 is a longer transcript while sANK1 represents 
the short variants 5, 7 and 10 (Additional file 1: Supple-
mentary Fig. S1). The methylation level of ANK1 was 
quantified in osteosarcoma cell lines (n = 19) and nor-
mal bone samples (n = 4) using Illumina HumanMeth-
ylation27 BeadChips. This microarray contains one CpG 
site in the CGI CpG79 (chr8:41654876–41,655,984) at 
the TSS (position chr8:41655140) of ANK1 (variant 1–4). 
The average difference of methylation in cell lines versus 
normal bone samples was 0.36 (DeltaBeta) for CpG79, 
providing a first evidence for methylation of the mir-486 
locus.

We next compared the expression and methylation 
level of miR-486-5p for the above sample cohort. The 
expression level of miR-486-5p was quantified using 
Agilent miRNA array v2. The mean expression of miR-
486-5p was significantly lower in cell lines than in bone 
(p < 0.0001) and the methylation was higher in cell lines 
than in bone (p < 0.01). Taken together, this indicated an 
association between low expression of miR-486-5p and 
CpG methylation of ANK1 (Fig. 1b).

Demethylation caused increased expression of miR‑486‑5p
We next examined the effect of changes in methyla-
tion on miR-486-5p expression. Osteosarcoma cell 
lines (n = 12) were treated with the demethylation 
agent 5-Aza-2′-deoxycytidine (5-Aza). After 72 h, the 
relative expression levels of miR-486-5p in untreated 
and treated cell lines were quantified by qRT-PCR. 
A significant difference between the cells before and 
after treatment was observed (p = 0.02). miR-486-5p 
showed at least a 1.3-fold (30%) induction in 8/12 
tested cell lines (Fig.  2a), indicating that the expres-
sion of miR-486-5p was affected by changes in DNA 
methylation.

To exclude that the expression level of mature miR-
486-5p was affected by post-transcriptional processing, 
the pri-miRNA hsa-mir-486-1 (pri-mir486) was quanti-
fied by qRT-PCR. pri-mirR486 showed at least 1.3 fold 
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(30%) induction in 9/12 cell lines after 5-Aza treatment, 
confirming the epigenetic effects seen on the mature 
miRNA (Fig. 2b). A high correlation with was observed 
between mature miR-486-5p and the pri-miRNA, with 
Pearson’s correlation r = 0.97 (p < 0.0001) before 5-Aza 
treatment and r = 0.92 (p < 0.0001) after treatment of the 
cell lines (Fig. 2c and d).

The genes within the mir‑486/ANK1 locus were observed 
to be co‑regulated
To address the relationship between expression of 
miR-486-5p and the different ANK1 transcript vari-
ants, transcript-specific qRT-PCR was performed. The 
human ANK1 variant 9 has the most upstream first exon, 
whereas an alternative exon 1 is used in variants 1–4. 

Fig. 1  miR-486-5p expression and methylation in osteosarcoma cell lines and patient samples. A. miR-486-5p expression level in normal bone 
(n = 6), cell lines (n = 17) and patient samples (n = 9) using qRT-PCR. The expression level was quantified for the groups of samples. The values are 
shown relative to mean expression of bone. B. DNA methylation and miRNA expression levels in normal bone samples (n = 4) and osteosarcoma 
cell lines (n = 19) using arrays. The expression level of miRNAs (log2) and DNA methylation level (Beta, probe cg00176210) were obtained using 
Agilent miRNA array v2 and Illumina Infinium Methylation27 BeadChip technology, respectively. Values are given as mean (SD) with whiskers from 
min to max. P-values * < 0.01 and ** < 0.0001
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sANK1 represents the short variants 5, 7 and 10, with an 
alternative exon 1, while exons 41 and 42 are in common 
with the other transcript variants (Additional file 1: Sup-
plementary Fig. S1).

In osteosarcoma cell lines, ANK1 variants 1–4 were 
found to be moderately expressed in 8/12 lines. The 
sANK1 variant was only weakly detected in 3/12 cell 
lines, while variant 9 was undetected (Additional file  1: 
Supplementary Fig. S2). Comparing expression levels 
of miR-486-5p and ANK1, no similarity was observed 
between miR-486-5p and sANK1 or ANK1 variant 9. 
For miR-486-5p and ANK1 variants 1–4, a high corre-
lation (Pearson’s correlation r = 0.93, p < 0.0001) could 
be observed across the cell line panel if one of the cell 
lines, MG-63, was omitted (Fig. 3a). Similar observations 
were done for pri-miR486 (Pearson’s correlation r = 0.92, 

p < 0.0002). The cell line MG-63 showed very high expres-
sion levels of ANK1 variants 1–4, however as the sample 
seems to be a biological and not a technical outlier, it was 
not removed from the dataset.
ANK1 variant 1–4 expression was induced in 8/12 

cell lines upon 5-Aza treatment (Additional file  1: Sup-
plementary Fig. S2). Comparing the effect of 5-Aza 
treatment on the mRNA level and miRNA level, it was 
observed that all 7 cell lines with increased expression of 
miR-486-5p also had increased expression of ANK1 vari-
ant 1–4. The level of induction was similar for ANK1 and 
miR-486-5p, and a high correlation (Pearson’s Correla-
tion r = 0.93, p < 0.0001) could be seen between the fold 
change observed for ANK1 and the fold change observed 
for miR-486-5p upon Aza treatment across all 12 cell 
lines (Fig.  3b). No correlation between miR-486-5p and 

Fig. 2  Expression and correlation of miR-486-5p and hsa-mir-486-1 (pri-mir486) in osteosarcoma cell lines upon 5-Aza-2′-deoxycytidine treatment. 
Relative expression level A. miR-485-5p and B. pri-mir486 after 72 h of 5-Aza treatment. The values are shown relative to treated cell lines (set to 1, 
horizontal line). Induction of > 30% shown as dotted line. Values are given as mean (SD). Correlation between expresion level of miR-485-5p and 
pri-mir486 in C. untreated and D. 5-Aza treated cell lines. The expression levels are quantified using qRT-PCR, and normalized against RNU44 for 
miR-486-5p and GAPDH for pri-mir486
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ANK1 induction was observed for the other ANK1 vari-
ants. The sANK1 variant was only induced in four cell 
lines and no variant 9 transcripts could be detected upon 
5-Aza treatment (Additional file  1: Supplementary Fig. 
S2). These observations support a co-regulation between 
miRNA and mRNA genes in the miR-486/ANK1 locus.

Genome‑wide methylation profiling revealed 
hypermethylation of a CGI upstream of mir‑486 
in osteosarcoma patient samples
To investigate the methylation level of the whole mir-
486 locus, we performed high-resolution Infinium 450 k 
methylation array analysis on a set of 10 osteosarcoma 
patient samples and four normal bones. For the mir-486/
ANK1 locus, methylation data from 96 CpG sites across 
all CGIs were determined. The CpG sites located in non-
CGI regions were in general hypermethylated in both 
groups of samples, with a higher level for bone. Higher 
methylation levels for osteosarcoma patient samples 
compared to bone were only observed in the CGI CpG79 
(Fig.  4a), showing different levels of methylation within 
the patient cohort. The bone samples show a similar 
pattern of methylation across the CGIs, but with lower 
level of methylation with only partially methylated and 
unmethylated sites (Fig. 4b).

The patients samples were classified as unmethyl-
ated or methylated based on methylation level of one 
of the CpG sites that had the most evident methylation 
in CGI CpG79. In general, miR-486-5p was observed to 
be low expressed in highly methylated osteosarcoma 
samples and higher expressed in unmethylated samples 
with p = 0.03. The bone samples showed the same level 
of expression as unmethylated osteosarcoma samples 

(Fig.  4c). This suggests that methylation of an upstream 
regulatory region affects miR-486-5p expression in oste-
osarcoma patients.

Qualitative and quantitative methylation analysis confirms 
hypermethylation of mir‑486 in osteosarcoma
Qualitative methylation-specific polymerase chain 
reaction (MSP) analysis was done for CGI CpG79 and 
CpG171, both located upstream of mir-486. The CGI 
CpG79 was hypermethylated in 20/21 cell lines (Fig. 5). 
Interestingly, this CGI was unmethylated in the IOR/
OS14 cell line, previously shown to be globally hypo-
methylated [10]. The CGI CpG171 was only found to be 
hemimethylated in one cell line, and unmethylated in 
all the others (Additional file 1: Supplementary Fig. S3). 
Thus, further focus was done on the CGI CpG79.

Direct bisulfite sequencing was performed on osteo-
sarcoma cell lines. The analysis was done on an extended 
region of the CGI CpG79, covering a total of 34 CpGs 
including the region for the MSP on CpG79 (Fig. 5). The 
resulting data confirmed the methylation status previ-
ously determined by MSP.

The methylation of a region of CpG79 of mir-486 was 
analysed quantitatively by quantitative methylation-
specific polymerase chain reaction (qMSP) in a larger 
cohort of samples, including osteosarcoma cell lines 
(n = 20), xenografts (n = 41), patient samples (n = 14) 
and bone (n = 5). Methylated percent of methylated 
reference (PMR) was set to > 5.2. High qMSP methyla-
tion pattern was only observed in cancer samples, com-
prising both cell lines, xenografts and patient samples 
(Fig.  6). Mann–Whitney U test was used to compare 
the PMR values of the candidate regions in the different 

Fig. 3  Expression and correlation of miR-486-5p and ANK1 before and after 5-Aza-2′-deoxycytidine treatment in osteosarcoma cell lines. A. 
Quantification of expression of miR-486-5p and ANK1 versions 1–4 in untreated cells. B. The induction of miR-486-5p and ANK1 versions 1–4 after 
5-Aza treatment. The induction fold change is calculated as the ratio between expression of untreated and 5-Aza treated transcripts as quantified 
by qRT-PCR. The expression is normalized against RNU44 for miR-486-5p and GAPDH for ANK1. Pearson’s Correlation r is calculated with and without 
the outlier sample MG-63
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tissues, showing only significant differences between 
bone and cell lines (p = 0.005). For the cell lines, 17/20 
(85%) showed increased methylation (>2x) compared to 
the  bone average. However, increased methylation was 

also observed for 8/14 (60%) of the patient’s samples and 
17/41 (40%) of the xenografts. Together, these observa-
tions suggest that the CGI CpG79 is highly methylated in 
osteosarcoma.

Fig. 4  Genome-wide methylation profile of the mir-486/ANK1 locus and miR-486-5p expression levels in osteosarcoma patient samples. A. 
Representation of average methylation profile across the mir-486/ANK1 locus in osteosarcoma patient samples (n = 10) and bone (n = 4). 
Methylation level (Beta) is shown for the individual CpG sites (ticks on horizontal axis) from the HumanMethylation450 BeadChips. The probes 
are ordered along the locus and intervals are not in scale. CGIs are shown as grey boxes with number refering to CpG count (from UCSC Genome 
Browser NCBI, GRCh37/hg19 assembly). Horizontal lines below plot show representative transcript variants of the respective mRNA genes (RefSeq) 
with exons as vertical bars, not in scale. Shaded vertical box: CGI shown in detail in B. Black, osteosarcomas; Grey, bone. B. Probe level methylation 
for CGI CpG79 in osteosarcoma patient samples and bone. Methylation levels as determined by Infinium 450 k arrays are given in Beta values for 
the individual CpG sites (cg). The selected CpGs within CGI CpG79 are highlighted with a shaded vertical box in A. Methylated: Beta 0.7–1.0; partially 
methylated: Beta 0.3–0.7; unmethylated: Beta< 0.3. C. Expression level of miR-486-5p in osteosarcoma patient samples and bone based on qRT-PCR. 
The osteosarcoma samples are grouped based on methylation status for probe cg08194989 on Infinium 450 k arrays, while the bone samples are 
shown as one group. Horizontal line: mean value
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Fig. 5  Cell line methylation status of CGI CpG79 located upstream of mir-486 as assessed by methylation specific PCR and direct bisulfite 
sequencing. The upper part is a schematic presentation of the CpG sites (vertical bars) amplified by the bisulfite sequencing primers. The 
transcription start site (+ 1) refers to the start of ANK1 (transcript variants 1–4). Arrows indicate location of MSP and qMSP primers, * represents the 
CpGs covered by the Infinium 450 k methylation array (cg08194989, cg26326633, cg00176210, respectively). For the lower part of the panel, black 
circles represent methylated CpGs (> 80% cytosine); grey circles represent partially methylated sites (20–80% cytosine) and white circles represent 
unmethylated sites (< 20% cytosine). The column to the right lists the methylation status of the respective cell lines as assessed by MSP analyses

Fig. 6  Methylation distributions in osteosarcoma assessed by quantitative methylation-specific PCR. The methylation was measured for the groups 
of normal bones and osteosarcoma cell lines, xenografts and patient samples. PMR, percent of methylated reference. Horizontal black line: mean 
values
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Overexpression of miR‑486‑5p induces morphological 
changes in osteosarcoma cell lines
To investigate the in vitro effect of miR-486-5p overex-
pression, we transiently transfected the osteosarcoma 
cell lines OSA, OHS and U-2 OS with miR-486-5p 
synthetic miRNA mimics. These cell lines showed the 
highest level of induction upon 5-Aza treatment. The 
iIntroduction of miR-486-5p caused a reduced growth 
rate in OSA and U-2 OS at 48 h, although the changes 
were not statistically significant (p = 0.2). However, 
a clear change in cell morphology was observed in all 
three cell lines where cells became flatter, rounder and 
smaller (Fig.  7). Thus, changes in miR-486-5p levels 
seem to affect the osteosarcoma cell phenotype.

Discussion
Epigenetic mechanisms such as DNA methylation play 
crucial roles in controlling miRNA gene expression. 
Based on our previous observations of a strong, cancer-
specific downregulation of miR-486-5p in osteosar-
coma cell lines [24], recently confirmed in osteosarcoma 
patients [26], we set out to investigate the epigenetic reg-
ulation of miR-486-5p in osteosarcoma.

In this study, we have shown that the expression of 
miR-486-5p is differently regulated in osteosarcoma 
compared to normal bone. A heterogeneity was seen 
among the patient cohort regarding methylation status. 
The patients seem to be divided in two groups, one group 
highly methylated with low expression and a second 

Fig. 7  Introduction of miR-486-5p in osteosarcoma cell lines. Osteosarcoma cells (OSA, OHS and U-2 OS) were transiently transfected with synthetic 
miR-486-5p mimics or a negative control. Cellular proliferation rates were determined by live cell imaging for 48 h using the IncuCyte, measuring 
cell confluence over time. One representative experiment of three is shown (n = 3). Error bars represent the standard error of means of values for 
replicate wells (n ≥ =5)
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group with an opposite pattern of low methylation and 
high expression. One might speculate that the miRNA 
regulation can be associated with disease aggressiveness, 
but extensive clinical data was not available for all of the 
patients in the cohort.
mir-486 is located intragenic within the last intron of 

ANK1, which encodes ankyrin-1. The mir-486/ANK1 
locus is complex, and contains multiple promoter regions 
and CGIs. Alternative splicing and distinct use of pro-
moters give rise to different isoforms of ANK1 [28, 29]. 
The methylation of the CGI covering the TSS of ANK1 
variants 1–4 indicates that the mir-486 locus is under 
control of the ANK1 gene promoter in this region. This 
CGI was the only CGI in this locus that was hypermeth-
ylated in a high-resolution analysis, and cancer-specific 
methylation was verified in cancer cell lines, xenografts 
and clinical samples. In many cases, intragenic miRNAs 
are co-expressed with their host genes, suggesting that 
they depend on the same regulatory mechanisms [30, 31]. 
The similar expression patterns between the pri-miRNA, 
the mature miR-486-5p and ANK1 variants 1–4 indicate 
that the miRNA and mRNA of the mir-486/ANK1 locus 
is transcribed together. Upon demethylation treatment, 
the expression levels of pri/mature miR-486 and ANK1 
changed at similar levels across the osteosarcoma cell line 
panel, supporting a common epigenetic regulation from 
the ANK1 variant 1–4 gene promoter.

It has been shown that alternative promoters give indi-
vidualized regulation of transcripts with distinct first 
exons, providing an expression pattern with a strong 
tissue preference [32]. The regulation of the mir-486/
ANK1 locus may depend on the specific cellular con-
text. The putative host gene ANK1 is a prototype of the 
ankyrin membrane proteins, linking integral membrane 
proteins to the underlying spectrin network in erythroid 
cells [33], and has also been found in brain and muscles 
[28, 34]. The diversity of the ankyrins suggests that the 
isoforms might serve different roles in various cell types. 
The ANK1 variant 1–4, observed to be co-expressed 
with miR-486-5p in our study, has previously been 
shown to be relevant for miR-486-5p expression in leu-
kaemia. In myeloid leukaemia with an erythroid pheno-
type, miR-486-5p was regulated through GATA1 binding 
to the promoter region of ANK1 variant 1–4 [35]. An 
early study showed that mir-486-5p can be controlled 
by an alternative, muscle-specific promoter within 
intron 40 of the sANK1 variant [36]. The sANK1 isoform 
could only be detected for a few of the osteosarcoma 
cell lines in our study and was only induced in a subset 
of the cell lines. An extensive study of miR-486-5p was 
recently performed in non-small cell lung cancer, show-
ing that miR-486-5p was co-expressed with ANK1 vari-
ant 9 in lung cancer and lung epithelial cells. Aberrant 

methylation of the CGI covering the TSS of ANK1 vari-
ant 9 (termed ANK1B promoter) repressed both ANK1 
and miR-486-5p [27], and was specific for adenocarci-
noma. In our study, this CGI was unmethylated in all the 
osteosarcoma cell lines and the transcript levels were not 
induced upon 5-Aza treatment.

The induction of miR-486-5p expression in osteosar-
coma cells resulted in a change in cell morphology, as 
well as a pattern of reduced cell proliferation in 2 out of 
3 cell lines tested. A morphological change in MG-63 
cells following overexpression of miR-486-5p has been 
described  previously, possibly related to an EMT-like 
phenotype [37]. Through in  vitro experiments, it has 
been shown that miR-486 can reduce proliferation, pro-
mote apoptosis and inhibit metastasis through regula-
tion of the PKC-δ pathway in osteosarcoma cells [26]. 
miR-486 also promotes pro-osteogenic activity through 
induction of myofibroblastic differentiation through 
the PTEN–AKT pathway [38]. Following our and oth-
ers observations of a low expression level of miR-485-5p 
in cancer, miR-486-5p has been described as a tumour 
suppressor in breast carcinoma, colorectal cancer, 
oesophagal cancer hepatocellular carcinoma, lung cancer, 
gastric carcinoma, myxoid liposarcoma, colorectal can-
cer, oesophagal cancer and lately leukemia [27, 39–46]. 
The functions of miR-486-5p in cancer cells are contro-
versial, and other reports show that miR-486-5p rather 
play a causative, oncogenic role, as in other solid tumours 
like gliomas, prostate and cervical cancer, through nega-
tive regulation of multiple tumour suppressor pathways 
[47–49].

There were a couple limitations to our study. The 
sample size of the normal samples is smaller than the 
included osteosarcoma samples. Furthermore, the man-
uscripts only showed that the hypermethylation in the 
differentially methylated region correlated with down-
regulation of miR-486-5p expression. Although a direct 
effect is not proven, an inverse pattern between methyla-
tion and gene expression is shown and the other results 
performed support the observation that the miRNA is 
epigenetic regulated. Further investigations regarding the 
epigenetic regulation of mir-486 in various tissue types 
would be highly interesting.

In conclusion, the present study of miR-486-5p shows 
that the low expression observed in osteosarcoma is 
caused by cancer-specific methylation of the upstream 
promoter region of ANK1 variant 1–4. This implies a 
tumor suppressive role of miR-486-5p in osteosarcoma, 
and the findings may lead to clarify the tissue/disease-
specific regulation of the miR-486-5p expression. The 
main effect of miR-486-5p overexpression was morpho-
logical changes in osteosarcoma cells. The epigenetic 
regulation should be further correlated with clinical 
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characteristics, and the functional role needs to be fur-
ther validated in extended model systems.

Materials and methods
Osteosarcoma cell lines, xenografts, patient samples 
and normal controls
A panel of human osteosarcoma cell lines (n = 21) com-
posed of 143B, CAL-72, G-292, HAL, HOS, IOR/MOS, 
IOR/OS9, IOR/OS10, IOR/OS14, IOR/OS15, IOR/
OS18, IOR/SARG, KPD, MG-63, MHM, MNNG/HOS, 
OHS, OSA, Saos-2, U-2 OS and ZK-58 were obtained 
from ATCC (www.​lgcst​andar​ds-​atcc.​org), DSMZ (http://​
www.​dsmz.​de/) or research partners in the EU funded 
EuroBoNeT project [50]. These cell lines have been exten-
sively characterised at the molecular and phenotypic 
level [10, 51] and authenticated through STR testing.

The xenograft cohort comprised osteosarcoma xeno-
grafts established at the Norwegian Radium Hospital 
(n = 19) and at the University of Valencia (n = 22) [52, 
53]. In short, human tumours were implanted subcutane-
ously in nude mice and passed successively. These xeno-
grafts have previously shown to be good representative 
models for osteosarcoma, showing gene expression pro-
files similar to their original tumour [54].

The osteosarcoma patient sample panel comprised 
fresh-frozen tissue from 14 high-grade osteosarcoma 
samples collected at the Norwegian Radium Hospital. 
The tumours were diagnosed by an osteosarcoma pathol-
ogist, according to the current World Health Organiza-
tion classification [55].

Six bone samples were used as normal controls. Nor-
mal bones were purchased from Capital Biosciences 
(Capital Biosciences, MD, USA) (n = 2) or obtained from 
amputations of cancer patients at the Norwegian Radium 
Hospital (n = 4), where bone samples were collected dis-
tant from the tumour margin. DNA copy number analy-
sis of the latter four samples (Bone 1–4) showed normal 
diploid karyotype [10].

miRNA expression profiling
Total RNA from osteosarcoma cell lines and bones was 
extracted and quality controlled as previously described 
[24]. miRNA expression profiling was performed using 
the Agilent miRNA Complete Labeling and Hyb Kit Ver-
sion 2.0, and Agilent Human miRNA Microarrays (ver-
sion 2, 799 human miRNAs). miRNA data was imported 
into GeneSpring GX10 (Agilent Technologies Inc., CA, 
USA), and the intensity values were log2 transformed 
and quantile normalized. MIAME (minimum informa-
tion about a microarray experiment) compliant data can 
be downloaded from the GEO repository (www.​ncbi.​nlm.​
nih.​gov/​geo/), accession number GSE28425.

DNA methylation profiling
DNA was isolated using the Wizard Genomic DNA Puri-
fication Kit (Promega, WI, USA). For the initial analyses, 
DNA methylation profiling of 19 cell lines and four bone 
samples was performed using the Illumina HumanMeth-
ylation27 BeadChip (Illumina Inc., California, USA), cov-
ering 27,000 CpG sites across the genome [10]. For an 
extended validation, DNA methylation profiling was per-
formed on 10 additional patient samples and four bone 
samples using the Infinium HumanMethylation450 Bead-
Chip from Illumina, covering 485,000 CpG sites across the 
genome. Data extraction and initial quality control of the 
bead summary raw data were performed using GenomeS-
tudio V2011.1 and the Methylation module v1.9.0, both 
provided by Illumina. For each sample, Beta values for 
each probe (average ratio of signal from methylated probe 
relative to the sum of both methylated and unmethylated 
probes) were exported for downstream analysis.

Integration of miRNA and methylation data
The association between CpG methylation and miRNA 
expression data in osteosarcomas and normal samples 
was calculated using Pearson’s Correlation between miR-
486-5p expression and methylation level (Beta) using the 
Methylation module v1.9.0 of GenomeStudio. DeltaBeta 
values for the groups of samples were calculated (Beta for 
cell lines minus Beta for normal samples).

Quantitative real‑time reverse‑transcription PCR
qRT-PCR was performed using the ABI PRISM 7500 
DNA Sequence Detection System (Life Technologies, CA, 
USA). TaqMan MicroRNA Reverse Transcription Kit and 
TaqMan MiRNA Assays (Life Technologies) were used to 
generate cDNA and to quantitatively detect the expression 
of mature miR-486-5p. For pri-miRNA hsa-mir-486-1 and 
ANK1 expression quantification, the Fast Cells-to-Ct rea-
gents (Life Technologies) were used to generate cDNA. 
Transcript-specific TaqMan Gene Expression Assays 
(Life Technologies) were used for quantitative PCR. Gene 
expression was normalized towards RNU44 for miRNA 
quantification and glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) for pri-miRNA hsa-mir-486-1 and 
ALK1 quantification. Overview of TaqMan assays are 
found in Additional file  1: Supplementary Table  S1. The 
relative expression levels were determined using the com-
parative CT method.

5‑Aza‑2′‑deoxycytidine treatment
Osteosarcoma cells were cultured in the presence of 
1 μM 5-Aza (Sigma-Aldrich MO, USA), as previously 

http://www.lgcstandards-atcc.org
http://www.dsmz.de/
http://www.dsmz.de/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Page 11 of 13Namløs et al. BMC Genomics          (2022) 23:142 	

described [10]. The cells were harvested after 72 h and 
total RNA was isolated using the miRNeasy Mini Kit 
(Qiagen, Germany).

DNA extraction and bisulfite conversion
Genomic DNA from tumour and normal samples was 
isolated by standard phenol chloroform extraction or 
using the Wizard Genomic DNA Purification Kit (Pro-
mega). DNA (1.3 μg) was bisulfite treated using the 
EpiTect Bisulfite Kit (Qiagen) and purified using the 
QIAcube (Qiagen).

Qualitative methylation‑specific polymerase chain reaction
Primers for MSP were designed using Methyl Primer 
Express 1.0 (Life Technologies) (Additional file  1: Sup-
plementary Table  S2). The MSP was carried out using 
approximately 24 ng of bisulfite treated DNA and per-
formed as previously described [56]. All results were 
verified with a second round of MSP and scored indepen-
dently by two of the authors.

Direct DNA bisulfite sequencing
A subset of the osteosarcoma cell lines was subjected 
to direct bisulfite sequencing as previously described 
[57], allowing for a semi-quantitative visualization of 
5-methylcytosines. The mir-486 primers were designed 
using the Methyl Primer Express 1.0 (Life Technologies) 
and flanked the MSP amplicons (Additional file  1: Sup-
plementary Table S2). The approximate degree of meth-
ylation at each CpG site was calculated by comparing the 
peak height of the cytosine signal to the sum of cytosine 
and thymine peak height signals as previously described 
[58]. CpG sites with ratios between 0 and 0.2 were clas-
sified as unmethylated, CpG sites with ratios in the range 
of 0.21–0.8 were classified as partially methylated, and 
CpG sites with ratios from 0.81–1.0 were classified as 
hypermethylated.

Quantitative methylation‑specific polymerase chain 
reaction
A quantitative qMSP analysis was carried out using approx-
imately 30 ng of bisulfite-treated DNA and performed as 
previously described [56]. Commercially available fully 
methylated DNA (CpGenome Universal Methylated DNA, 
MA, USA), unconverted and bisulfite-treated normal 
DNA were included as controls. Primers and probes were 
designed using Primer Express Software 3.0 (Life Tech-
nologies) (Additional file 1: Supplementary Table S2). The 
ALU-C4 repetitive element was used as an internal refer-
ence, and the values were calculated as percent of methyl-
ated reference, PMR [59]. The median gene: Alu ratio of 
each gene was divided by the median gene: Alu ratio of 

the positive control and multiplied by 100. To ensure high 
specificity for each qMSP assay, the thresholds for scoring 
the osteosarcoma samples as methylated were set accord-
ing to the highest PMR value across the test series of nor-
mal bone. Samples with PMR values equal to or above the 
scoring threshold were considered to be methylated.

Transfection with synthetic miRNAs and live cell imaging
Cells were seeded at a density of 1250–2500 cells per well 
in 96-well plates the day before transfection. Synthetic 
miR-486-5p mimics and Negative Control #1 (PM10546 
and AM17110, respectively, Life Technologies) were 
transiently transfected into osteosarcoma cells at a final 
concentration of 15 nM using the INTERFERin siRNA 
transfection reagent (Polyplus-transfection SA, France). 
The cellular growth after transfection was measured 
every 3 h, by a live-cell imaging system, IncuCyte ZOOM 
(Essen Bioscience, UK) and the percent of cells conflu-
ence was calculated with the corresponding software 
application (version 2013BRev1).

Statistics
Analyses were performed with the GraphPad Prism 9 
software. Non-parametric Mann-Whitney U test was 
applied to compare groups of samples. p-values were 
derived from two-sided tests using a significance level of 
0.05. Similarities between samples were calculated using 
Pearson’s correlation (r). Statistical differences between 
the group of cell lines before and after 5-Aza treatment 
were calculated using a paired t-test.
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