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Abstract 

Background:  Rubus is the largest genus of the family Rosaceae and is valued as medicinal, edible, and ornamental 
plants. Here, we sequenced and assembled eight chloroplast (cp) genomes of Rubus from the Dabie Mountains in 
Central China. Fifty-one Rubus species were comparatively analyzed for the cp genomes including the eight newly 
discovered genomes and forty-three previously reported in GenBank database (NCBI).

Results:  The eight newly obtained cp genomes had the same quadripartite structure as the other cp genomes 
in Rubus. The length of the eight plastomes ranged from 155,546 bp to 156,321 bp with similar GC content (37.0 
to 37.3%). The results indicated 133–134 genes were annotated for the Rubus plastomes, which contained 88 or 
89 protein coding genes (PCGs), 37 transfer RNA genes (tRNAs), and eight ribosomal RNA genes (rRNAs). Among 
them, 16 (or 18) of the genes were duplicated in the IR region. Structural comparative analysis results showed that 
the gene content and order were relatively preserved. Nucleotide variability analysis identified nine hotspot regions 
for genomic divergence and multiple simple sequences repeats (SSRs), which may be used as markers for genetic 
diversity and phylogenetic analysis. Phylogenetic relationships were highly supported within the family Rosaceae, as 
evidenced by sub-clade taxa cp genome sequences.

Conclusion:  Thus, the whole plastome may be used as a super-marker in phylogenetic studies of this genus.
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Background
Rubus is the largest genus in the family Rosaceae, with 
approximately 700 species. Plants are widely distributed 
in the temperate and sub-tropical regions of the North-
ern Hemisphere, with only a few species found in the 
Southern Hemisphere. There are more than 208 species 
found in China, 139 of which are endemic [1]. There is a 
growing interest in the abundance of regional taxonomic 

treatments, new species, and new accounts of the genus 
Rubus in China [2–12].

Rubus has been used in traditional Chinese medicine 
since ancient times. The fruits are well-known in Asia, 
Europe, and North America and have a long history of 
usefulness in these regions, especially in some European 
countries. Some natural species, such as R. corchorifo-
lius, are widely cultivated for their medicinal, edible, and 
ornamental value.

Rubus is well-known for its diversity, leaf shape, inflo-
rescence architecture, reproductive pattern, and other 
features. The plant is typically armed with bristles, prick-
les, or glandular hairs; the leaf exhibits simple, palmate, 
or pinnate shapes; flowers are pentamerous and mostly 
bisexual; achenes are drupelets or drupaceous and are 
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aggregated on a penduncle as semispherical, conical, 
or cylindrical fruits [1]. Rubus is one of the most diffi-
cult taxa of flowering plants to classify due to its highly 
variable morphologies, and its complicated apomixis, 
polyploidy, and hybridization [13, 14]. Therefore, it is 
essential to construct a phylogeny tree using molecular 
evidence to better understand the relationships between 
species and improve the development and utilization of 
wild germplasm resources.

The most widely-accepted taxonomic system of the 
genus Rubus was built by Focke [15–17]. According to 
Focke, Rubus was separated into 12 subgenera, the largest 
being Rubus (132 species), Idaeobatus (117 species), and 
Malachobatus (115 species). Rubus is found mainly in 
Europe and North America, according to Flora of China 
(FOC), while Malachobatus and Idaeobatus are typically 
found throughout Asia, especially China [1].

Several molecular phylogenetic studies have tried to 
resolve the genetic relationships of Rubus [13, 18–22]. 
Wang et  al. (2016) selected three chloroplasts (rbcL, 
rpl20-rps12, and trnG-trnS) and three nuclear genetic 
markers (nrITS, GBSSI-2, and PEPC) to resolve the phy-
logenetic relationships of 142 Chinese Rubus species, in 
which the phylogeny showed a certain degree of inade-
quacy between the chloroplast and nuclear markers.

There are few reports on the chloroplast genomes of 
Rubus to date [23–30]. Recently, a comparative analy-
sis of the characteristics of the Rubus cp genome was 
reported, and together with about other ten species was 
used to construct a phylogenetic tree, but the mainly spe-
cies was distributed in Taiwan [31]. Here, we sequenced 
and assembled eight cp genomes of Rubus and compara-
tively analyzed. And together with previously reported 
38 cp genomes downloaded from the organelle genome 
database at National Center for Biotechnology Informa-
tion (https://​www.​ncbi.​nlm.​nih.​gov) [32], phylogenetic 
analysis was also performed. Our results, including gene 
content, size, nucleotide variable sites, identified SSRs, 
and phylogeny analysis, may improve our understanding 
of the cp genomes structure of genus Rubus and provide 
resources for genetic diversity and phylogenetic analyses 
in future studies.

Results and discussion
General features of Rubus chloroplast genomes
For the eight newly sequenced species, Illumina PE 
sequencing generated 3,408,285,600 (R. innominatus) 
to 9,832,178,700 (R. trianthus) clean reads, with mean 
coverage from 831 (X) in R. innominatus to 1229 (X) in 
R. trianthus. The newly assembled plastome of the eight 
Rubus samples had a quadripartite structure forming 
a circular molecule ranging from 155,546 bp (R. trian-
thus) to 156,321 bp (R. lambertianus) in length (Table 1). 

The eight cp genomes comprised a large single copy 
(LSC) region (85,028–85,883 bp) and a small single copy 
(SSC) region (18,710–18,874 bp), divided by two cop-
ies of inverted repeats (IRs) (25,761–25,994 bp) (Fig.  1, 
Table 1). The guanine-cytosine (GC) content of the eight 
cp genomes differed slightly, from 37.0% (R. trianthus 
and R. innominatus) to 37.3% (R. coreanus, R. hirsutus 
and R. parvifolius) (Table 1). The GC content of the cod-
ing sequence (CDS) ranged from 37.8 to 38.0%. Same as 
previously reported GC content of Rubus in Taiwan, the 
GC content of IR regions (42.8–42.9%) was higher than 
LSC (34.8–35.2%) and SSC regions (30.9–31.4%) [31].

Totally, 134 genes were annotated in plastomes of 
Rubus tephrodes, R. coreanus, R. trianthus and R. hirsu-
tus, included 89 CDS, 37 transfer RNA genes (tRNAs), 
and eight ribosomal RNA (rRNAs). Because infA gene 
were not annotated, four other Rubus species (R. lamber-
tianus, R. parvifolius, R. innominatus and R. hunanensis) 
contained 133 genes, including 88 protein-coding genes, 
eight rRNAs, and 37 tRNAs. Among all, 16 or 18 genes 
had a double copy in the IR region: seven or five protein-
coding genes, seven tRNAs and four rRNAs (Table 1 and 
Table  2); 17 genes contained one intron (rps16, rpoC1, 
petB, petD, rpl16, rpl22, rpl2, ndhA, ndhB, and eight 
tRNA genes) and two genes had two introns (clpP and 
ycf3) (Table S1). The trnK-UUU gene had the longest 
intron of 2488–2518 bp in the eight Rubus plastomes.

IR contraction and expansion
Chloroplast genome structures, including the gene content 
and order, were compared, and analyzed among the eight 
Rubus species (Table 2 and Table S1). The results showed 
that the eight newly assembled chloroplasts was relatively 
conserved when concerned in four regions (LSC, SSC and 
two IRs) boundary (Fig.  2). The lengths of the IR region 
of the 46 Rubus ranged from 25,758–25,993 bp versus 
26,238 bp in Fragaria (Fig. S1). The LSC-IRb border was 
located between the genes rps19 and rpl2 for ten chroro-
plast genomes, within the rps19 gene for Rubus niveus, and 
between the genes trnH and rpl2 for R. leucanthus. Three 
types of SSC-IRa borders were detected among the twelve 
plastomes. In R. corchorifolius and R. boninensis the ycf1 
gene was situated in the IRa region, 191 bp and 2 bp apart 
from the SSC-IRa region, respectively. In R. tephrodes, R. 
niveus and R. coreanus, the ycf1 gene was found entirely in 
the SSC region and was 0–192 bp away from the SSC-IRa 
region. For the other seven plastomes, the SSC-IRa bor-
der located in the coding region of ycf1. The length of the 
ycf1 gene range from 4437 bp to 5750 bp and was typically 
found in the SSC region. The ndhF gene located in the SSC 
region at the SSC-IRb border for all but two species (R. 
takesimensis and Fragria chiloensis). The LSC-IRa border 
was between the rpl2 and trnH genes. The trnH gene was 

https://www.ncbi.nlm.nih.gov


Page 4 of 14Yu et al. BMC Genomics           (2022) 23:32 

found in the LSC region, which has also been reported in 
dicots [33, 34].

Comparative Plastome sequence divergence and hotspots 
regions
Collinearity detection was carried out to analyze and 
compare the chloroplast genomes. Mauve aligment of 
plastomes showed that no gene rearrangements within 
the chloroplast genomes of the eight Rubus (Fig. 3). The 
eight newly assembled chloroplast genomes were com-
pared using the annotated R. tephrodes as the reference 
cp sequence (Fig.  4) to determine interspecific diver-
gence using mVISTA software. The results show that the 
inverted repeat regions were more stable than the sin-
gle copy region, and are consistent with those of other 
studies [25, 35, 36]. The most diverse regions were the 
intergenic spacers, including rps16-trnQ, trnL-trnT, and 
rpl32-trnL-ccsA.

The nucleotide variability (Pi) was calculated with 
the resulting average value of 0.008, and a range of 0 to 

0.0313. SSC and LSC were highly variable and IR was 
relatively conserved (Fig.  5). Nine intergenic regions 
(trnK-rps16, rps16-psbK, psbI-trnS-trnG, trnG-atpA, 
petN-psbM-trnD, trnE-psbD, rps4-trnL, petA-psbF, 
rpl16-rps3, ndhF, rpl32-trnL-ccsA and ycf1) were 
found to be higher variable with Pi values > 0.02, 
and the first nine fragments were located in the LSC 
region, while the rest two located in the SSC region. 
Only two highly variable trnS-trnG and ndhF region 
(other region used in reference: rpl16, trnL-trnF, rbcL, 
rpl20-rps12) has been used to reconstruct the phylog-
eny of genus Rubus to date [18, 19, 21, 22, 37–39]. The 
highly variable regions detected by comparing entire 
chloroplast genomes may be useful markers for fur-
ther phylogenetic study.

Synonymous (Ks) and nonsynonymous (Ka) substitution 
rate analysis
The ratios of nonsynonymous (Ka) vs synonymous (Ks) 
substitutions were calculated for shared unique protein 

Fig. 1  Gene maps of the complete cp genome of eight species of Rubus. Genes on the inside of the circle are transcribed clockwise, while that 
outside are transcribed counter clockwise. Genes were colored according to their functional groups. The darker gray in the inner circle corresponds 
to GC content, whereas the lighter gray corresponds to AT content
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coding genes (PCGs) in the eight Rubus cp genome, with 
R. tephrodes as the reference (Fig. 6, Table S2). Among 79 
shared genes, 31 genes could not be calculated because 
no variation for identical sequences or without nonsy-
onymous or synonymous nucleotide substitution. Most 
of the Ka/Ks ratios were less than one, except rpl22 in 
R. trianthus (1.1892), rpl16 in R. innominatus (1.27177), 
R. parvifolius (1.27177), R. lambertianus (1.27177) and 
R. hunanensis (1.27177). The results consisted with 
expected for common sense that the Ka/Ks ratio of most 
gene is less than one [40]. The above results also indi-
cated the two except genes (rpl16 and rpl22) are under-
going positive selection and some of mutation of the two 
genes in these species must be advantageous.

SSR polymorphisms and long repeat structure
MISA was used to detect the total number of simple 
sequence repeats (SSRs) in totally 46 Rubus plastomes 
(Fig. 7, Table S3). Totally, 2243 SSRs were found in the 46 
plastomes of Rubus, of which 3621 SSRs (83.55%) located 
in the LSC region, 671 SSRs (15.48%) were in the SSC 
region, and 42 SSRs (.097%) were in the IR region. The 
number of SSRs detected among the 46 species ranged 
from 38 (R. parvifolius) to 63 (R. trianthus) (Table S4). 
The mononucleotide repeat units were the most identi-
fied SSRs. A/T were the most abundant repeats, while 
AT/TA and AAT/TAA repeats were most found in the 
dinucleotide and trinucleotide types, respectively. The 
SSR results showed that A/T repeats were common in 

the cp genomes, and are consistent with the results of 
previous studies [35, 41–43]. The SSRs may be potential 
specific molecular markers to use in genetic diversity and 
phylogenetic studies for Rubus and its related species.

In total, 2300 long repeat structures were identified 
in the 46 plastomes (Fig.  8, Table S5), which including 
895 (38.91%) forward repeats, 907 (39.43%) palindro-
mic repeats, 457 (19.87%) reverse repeats and 41 (1.78%) 
complement repeats, respectively. Most of these repeats 
(1648, 71.65%) were distributed in the non-coding 
regions.

Phylogenetic analyses
Fifty-one Rubus chloroplast genome and other seven 
plastomes of Rosaceae were used to examine the usabil-
ity of the chloroplast genome in phylogeny analysis. The 
maximum likelihood (ML) tree constructed with RaxML 
and Bayesian inference (BI) tree contructed by MrBayes 
was topologically congruent and highly supported 
(Fig.  9). The relationship of the tribe below Rosaceae 
was congruent with previously reported results [25]. 
The tree also strongly supported the monophyly of the 
genus Rubus. The Rubus clade showed that some spe-
cies of Idaeobatus were likely the original taxa and the 
polyploidy group may have originated from those primi-
tive species. Other sections of the tree may have evolved 
from these taxa via different evolutionary events. The 
main objective of our study was to test the discrimina-
tory power of the chloroplast genome sequences in genus 

Table 2  Gene contents in the cp genomes of Rubus species

Note: * Gene contains one intron; ** gene contains two introns; (×2) indicates the number of the repeat unit is 2; (×3) indicates the number of the repeat unit is 3. infA 
were only annotated in Rubus tephrodes, R. coreanus, R. trianthus, R. hirsutus

No. Group of Genes Genes Names Amount

1 Photosystems I psaA, psaB, psaC, psaI, psaJ 5

2 Photosystems II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ, ycf3 ** 16

3 Cytochrome b/f complex petA, petB *, petD *, petG, petL, petN 6

4 ATP synthase atpA, atpB, atpE, atpF, atpH, atpI 6

5 NADH dehydrogenase ndhA *, ndhB *(×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 12

6 Rubisco large subunit rbcL 1

7 RNA polymerase rpoA, rpoB, rpoC1 *, rpoC2 4

8 Ribosomal proteins (SSU) rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12 (×3), rps14, rps15, rps16 *, rps18, rps19 15

9 Ribosomal proteins (LSU) rpl2 *(×2), rpl14, rpl16 *, rpl20, rpl22 *, rpl23(× 2), rpl32, rpl33, rpl36 11

10 Assembly/stability of photosystem I ycf4 1

11 Transfer RNAs 37 tRNAs (6contain an intron, 7 in the IRs) 37

12 Ribosomal RNAs rrn4.5(×2), rrn5(×2), rrn16(× 2), rrn23(× 2) 8

13 RNA processing matK 1

14 Carbon metabolism cemA 1

15 Cytochrome c synthesis ccsA 1

16 Proteins of unknown function ycf1 *, ycf2(×2), ycf15(× 2), ycf68 6

17 Other genes accD, clpP **, infA 3
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Fig. 2  The comparison of four regions (LSC, SSC and two IRs) among twelve cp genome. Numbers above or near the colored genes indicated 
distances between the gene and the edge of borders. The figure is not in scale for length

Fig. 3  Mauve alignment of eight Rubus cp genome revealing no interspecific rearrangements
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Rubus. Additional studies with broader sampling strate-
gies are needed to test the efficiency of the regions identi-
fied by our study to clarify the phylogeny of genus Rubus.

Materials and methods
Material sampling, DNA isolation, and sequencing
Here, eight species, Rubus tephrodes, R. coreanus, R. tri-
anthus, R. lambertianus, R. hirsutus, R. parvifolius, R. 
hunanensis and R. innominatus were chosen for sequenc-
ing based on their special taxonomic status, their absence 
or not well assembled in the NCBI. Young, disease-free 
leaves of wild seedlings were collected and quickly dried 
with silica gel (Table  3). Voucher specimens were col-
lected for each species and deposited in the herbarium 
of Huanggang Normal University (formerly, Herbarium 
of Biology Department of Huanggang Teachers College, 

HGTC). The specimens were identified by prof. Hongjin 
Dong (Huanggang Normal University) before deposited. 
The total genomic DNA was extracted from the leaf tis-
sues using the CTAB method [44] with minor modifi-
cations and stored at − 80 °C. The total genomic DNA 
were sheared into fragments of about 300 bp to con-
struct libraries according to manufacturer’s instructions 
(Illumina, Hayward, CACA, USA). Sequencing was per-
formed on the Illumina HiSeq 2500 Sequencing System 
at BGI-Wuhan.

Chloroplast genome assembly and annotation
Raw data with adapter sequences or low-quality 
sequences was filtered by SOAPnuke software devel-
oped by BGI [45]. Then, the high-quality PE reads were 
used for subsequent analyses. The chloroplast genome 

Fig. 4  Visualized alignment of the Rubus cp genome sequences with annotated R. tephorodes as reference, using mVISTA. The x-axis represents 
the base sequence of the alignment and the y-axis represents the pairwise percent identity within 50–100%. Grey arrows represent positions and 
directions of the genes
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Fig. 5  Sliding window analysis of the entire cp genome of eleven Rubus species (window length: 600 bp; step size: 200 bp). X-axis: position of the 
midpoint of a window; Y-axis: nucleotide diversity of each window

Fig. 6  Ka/Ks values of protein-coding genes of the seven comparative combinations. Ka, nonsynonymous; Ks, synonymous
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was de novo assembled in the GetOrganelle pipeline 
(http://​github.​com/​Kingg​erm/​GetOr​ganel​le; [46]). The 
output graphs file “gfa” was checked in Bandage v. 0.8.1 
[47] and the finally sequence paths were selected when 
the minimum depth of contigs above 100 × and the 
minimum length > 300 bp. To validate the assembled cp 
sequence error, raw sequencing reads were mapped to 
the assembled plastomes using the Bowite2 [48] plug-
in in Geneious ver 8.0.2 [48]. The assembled cp genome 
sequence of the eight Rubus samples was annotated 
using Perl script of PGA [49]. The annotated results 
were summarized and the final annotations were manu-
ally checked using Geneious ver.8.0.2 [48]. The assembly 

and annotation were completed by mapping the reported 
plastomes of other well-annotated Rubus species. The 
whole cp sequence with annotated information was sub-
mitted to GenBank with accession numbers MT478113-
MT478115 and OK127882- OK127886. The physical map 
of the annotated cp genomes was drawn using the online 
program OGDRAW [50].

Comparative Plastome sequence divergence analysis
Gene order comparison of newly-assembled Rubus 
plastomes were performed using the Mauve v.1.0.0 [51] 
plugin in Geneious v.8.0.2 [48]. We compared the com-
pleted plastomes of the eight Rubus using mVISTA in 

Fig. 7  Number and type of simple sequence repeats in the 46 Rubus cp genome. A, Total number of SSRs detected in each species. B, Frequencies 
of identified SSRs in the large single-copy (LSC), small single-copy (SSC), and inverted repeat (IR) regions. C, Numbers and types of SSRs detected in 
each species

http://github.com/Kinggerm/GetOrganelle;
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Shuffle-LAGAN mode [52] with R. tephrodes as the refer-
ence. In order to compare the inverted repeated region 
(IR) contraction or expansion, the detailed information 
of the boundaries between IR and single copy region 
(SC) regions were manually obtained in Geneious [48]. 
The chloroplast genome sequence data sets used for 
final analysis were aligned using the Windows version 
of MAFFT [53]. The output data matrix was visualized 
and manually edited using Geneious [48] or BioEdit [54]. 
The nucleotide diversity (Pi) of the plastome sequence 
was calculated using DnaSP v. 6.10 [55], with respect to 

the whole cp genomes. We used a step size of 200 bp and 
window length of 800 bp for sliding window analysis.

Gene selective pressure analysis of eight Rubus cp PCGs
To analysis variation in the evolutionary rates of chloro-
plast genes, the the Ka_Ks Calculator program Caculator 
2.0 was used to calculate the nonsynonymous substitu-
tion rates (Ka), synonymous rates (Ks), and their ratios 
(Ka/Ks). Before calculating, the shared unique protein 
coding gene sequences (PCGs) was aligned in MEGA 
[56] (version 10.1.6) by mode of MUSCLE (codons). 

Fig. 8  Number and type of long repeat sequences in the 46 Rubus cp genome. A, Numbers and types of longer repeats in each species. B, 
Frequency of each repeat type. C, Presence of longer repeats in coding regions and non-coding regions
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Fig. 9  The maximum likelihood (ML) and Bayesian inference (BI) phylogenetic tree based on whole chloroplast genome data. The support values 
(bootstrap value [BS]/posterior probability [PP]) are indicated at the branches. BS and PP of 100% are indicated by an asterisk

Table 3  Sampled species and their voucher specimens used in this study

Species Voucher Specimen Coordinate Location

Rubus tephrodes Hance HGTC​
HGNU-0024

E 115°47′55.77″,
N 31°05′32.68″

China, Hubei, Yingshan

R. coreanus Miq. HGTC​
HGNU-0194

E 114°47′05.06″,
N 29°58′58.17″

China, Hubei, Daye

R. trianthus Focke HGTC​
HGNU-0301

E 115°51′09.30″,
N 30°14′10.36″

China, Hubei, Huangmei

R. lambertianus Ser. HGTC​
HJD1379

E 115°48′59.05″,
N 31°6′54.67″

China, Hubei, Yingshan

R. hirsutus Thunb. HGTC​
HJD1113

E 114°36′51.64″,
N 31°34′16.25”

China, Hubei, Hong’an

R. parvifolius L. HGTC​
HJD1006

E 115°4′52.01″,
N 30°29′46.26”

China, Hubei, Xishui

R. hunanensis Hand. - Mazz. HGTC​
HJD1069

E 116°1′7.42″,
N 30°57′51.44”

China, Hubei, Yingshan

R. innominatus S. Moore HGTC​
HJD1054

E 116°2′52.85″,
N 30°58′20.62”

China, Hubei, Yingshan
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The gene data matrix was then saved as Clustal (.aln) or 
Phylip (.phy) format.

Simple sequence repeats and repeat structure analysis
The Perl script MISA [57] was used to identify micros-
atellites (mono-, di-, tri-, tetra-, penta-, hexanucleotide 
repeats), with the following parameters (unit size, min 
repeats): 10 for mononucleotide, 5 for dinucleotide, 4 
for trinucleotide, and 3 for tetra-, penta-, and hexanu-
cleotide. The online REPuter program was used to detect 
four types of long repeat sequences (forward, reverse, 
palindromic and complement) in Rubus plastomes with 
a hamming distance of 3 and a minimum repeat size of 
30 bp [58].

Phylogenetic analyses
The newly assembled cp genome of Rubus and rela-
tive taxa were downloaded from NCBI and then 
aligned with MAFFT for phylogenetic analysis [53]. 
Finally, fifty-eight plastomes were used to construct 
the phylogeny tree (Table S3). RAxML (Version 8 
for Windows) was used to run maximum likelihood 
(ML) analysis [59] with a bootstrap value of 1000. The 
general time-reversible (GTR) model with a gamma 
model was used at normal settings to determine the 
rate of heterogeneity. The Bayesian inference (BI) 
tree was generated in MrBayes version 3.2 [60] as 
implemented on the Cyberinfrastructure for Phylo-
genetic Research (CIPRES) Science Gateway (http://​
www.​phylo.​org/, [61]) using the default settings. The 
best model was determined for each sequence parti-
tion, after comparisons among 24 models of nucleo-
tide substitution using jModeltest v.2.1.10 [62]. 
Figtree v1.4 [63] was used to visualize and adjust the 
ML trees. The graph generated from Figtree was fur-
ther revised with Adobe Illustrator (Adobe Systems, 
Mountain View, CA, USA).

Conclusions
The complete chloroplast sequences of Rubus tephro-
des, R. coreanus, and R. trianthus, R. lambertianus, R. 
hirsutus, R. parvifolius, R. hunanensis and R. innomi-
natus of the section Lampobatus, and Idaeobatus 
were reported in this study. The comparison analysis 
of fouty-six Rubus plastomes indicated that the struc-
ture was relatively conserved. However, the SSC-IR 
and LSC-IR edges were variable among the chloroplast 
genomes and the IR region was less varied than the 
SC region. We identified the location of the SSR sites 
and highly changeable regions, which may be used as 
markers in future studies of the Rubus species. The 
ML and BI phylogenetic tree constructed from whole 

chloroplast sequences illustrated the phylogenetic rela-
tionship and was consistent with the results of previous 
studies. Our results indicate that the whole plastome 
may be used as a reliable marker in phylogenetic stud-
ies of this genus.
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