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Abstract

Background: Recent studies have demonstrated the utility of scRNA-seq SNVs to distinguish tumor from normal
cells, characterize intra-tumoral heterogeneity, and define mutation-associated expression signatures. In addition to
cancer studies, SNVs from single cells have been useful in studies of transcriptional burst kinetics, allelic expression,
chromosome X inactivation, ploidy estimations, and haplotype inference.

Results: To aid these types of studies, we have developed a tool, SCReadCounts, for cell-level tabulation of the
sequencing read counts bearing SNV reference and variant alleles from barcoded scRNA-seq alignments. Provided
genomic loci and expected alleles, SCReadCounts generates cell-SNV matrices with the absolute variant- and
reference-harboring read counts, as well as cell-SNV matrices of expressed Variant Allele Fraction (VAFgya) suitable
for a variety of downstream applications. We demonstrate three different SCReadCounts applications on 59,884 cells
from seven neuroblastoma samples: (1) estimation of cell-level expression of known somatic mutations and RNA-
editing sites, (2) estimation of cell- level allele expression of biallelic SNVs, and (3) a discovery mode assessment of
the reference and each of the three alternative nucleotides at genomic positions of interest that does not require
prior SNV information. For the later, we applied SCReadCounts on the coding regions of KRAS, where it identified
known and novel somatic mutations in a low-to-moderate proportion of cells. The SCReadCounts read counts
module is benchmarked against the analogous modules of GATK and Samtools. SCReadCounts is freely available
(https://github.com/HorvathlLab/NGS) as 64-bit self-contained binary distributions for Linux and MacQOS, in addition
to Python source.

Conclusions: SCReadCounts supplies a fast and efficient solution for estimation of cell-level SNV expression from
scRNA-seq data. SCReadCounts enables distinguishing cells with monoallelic reference expression from those with
no gene expression and is applicable to assess SNVs present in only a small proportion of the cells, such as somatic
mutations in cancer.
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Background

Single cell RNA sequencing (scRNA-seq) brings major ad-
vantages over bulk RNA-seq analyses, especially the ability
to distinguish cell populations and to assess cell-type spe-
cific phenotypes [1]. Connecting these phenotypes to cell-
level genetic variants (such as Single Nucleotide Variants,
SNVs) is essential for phenotype interpretation. In cancer,
studies on cellular genetic heterogeneity have been instru-
mental in tracing lineages and resolving sub-clonal tumor
architecture [2—9] In addition to cancer studies, SNV ob-
servations from single cells have been useful in studies of
transcriptional burst kinetics, allelic expression, chromo-
some X inactivation, ploidy estimations, haplotype infer-
ence, and quantitative trait loci (QTL) [10-21].

To aid with the considerable data-analysis and data-
management demands of such studies, we have devel-
oped a tool, SCReadCounts, for cell-level quantitation
of SNV expression. Provided with barcoded scRNA-
seq alignments, list of barcodes and genomic loci and
alleles of interest, SCReadCounts tabulates, for each
cell, the reference and variant read counts (n, and
Ny, respectively), and expressed Variant Allele Frac-
tion (VAFRrnA = Nyar/(Dyar + Nper)). SCReadCounts gen-
erates a cell-SNV matrix with the absolute n,,, and
n.er counts, and a cell-SNV matrix with the VAFgna
estimated at a user-defined threshold of minimum
number of required sequencing reads (minR) (Fig. 1).
Particular strengths of SCReadCounts include its
named, explicit, flexible, and configurable read-
filtering and cell-barcode extraction capabilities; ac-
counting for all reads overlapping each locus, whether
counted or ignored; and straightforward input and
output formats — these features make SCReadCounts
easy to integrate in multi-tool analysis pipelines. The
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cell-SNV matrices then can be used for a wide range
of downstream analyses.

Unlike variant callers (i.e. GATK, Samtools [22, 23]),
SCReadCounts estimates the read counts per allele and
per cell, across all cells, including cells in which the pos-
ition of interest is covered with only reference reads.
This is particularly useful in scRNA-seq settings, where
it enables distinguishing cells with monoallelic reference
expression from those with no gene expression. The
later can be used to assess cell-level allele dynamics, and
to correlate variant expression to gene expression [24].

Implementation
SCReadCounts is freely available (https://github.com/
HorvathLab/NGS) as a self-contained binary package for
64-bit Linux and MacOS (Darwin) systems, and as
Python source. The self-contained binary packages are
appropriate for most Linux and MacOS users. The
pythonic version requires pysam, numpy and scipy along
with other packages (detailed instructions at https://
github.com/HorvathLab/NGS#SCReadCounts).
Currently, SCReadCounts has three programs. The
program scReadCounts manages the sequential execu-
tion of programs readCounts and readCountsMatrix,
collects the necessary arguments for successful execu-
tion, and avoids unnecessary execution of the expensive
readCounts tool if possible. readCounts requires three
input files: a pooled single cell alignment, a list of cell-
barcodes, and a list of genomic positions of interest. Op-
tionally, readCounts can be user-configured for read fil-
tering. readCounts utilizes the barcode information from
the pooled single cell alignments and outputs the variant
and reference read counts (n,, and n.g respectively),
for each barcode (cell), in a tab separated text file. This
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file is then used as an input for the second program -
readCountsMatrix - which, upon providing an output
prefix, generates two outputs: (1) a cell-position matrix
with absolute ny,, and n, counts, and (2) a cell-position
matrix with the expressed VAFgyna. VAFRNa is estimated
at a user-defined threshold of minimum required se-
quencing reads (minR); default minR =5. readCounts-
Matrix is time-efficient and can be re-run multiple times
at various minR thresholds.

SCReadcounts provides explicit configuration for
alignments barcoded through STARsoloUMItools. Add-
itional cellular barcode extraction logic can be config-
ured for SCReadCounts software, based on BAM file
tags or RNA sequence name and delimited tokens or
regular expressions (see the “SCReadCounts Read
Grouping” documentation).

Performance

To assess SCReadCounts performance we compared the
variant and reference read counts tabulations of SCRead-
Counts with the analogous modules of the mpileup util-
ity of Samtools and the haplotype caller of GATK [22,
23]. SCReadCounts default options generate nearly iden-
tical values to mpileup and GATK (Fig. 2). SCRead-
Counts uses, by default, a very simple read-filtering
criteria, but it can also be readily configured to achieve
scenario-specific, ~ mpileup-consistent, or GATK-
consistent results, with optional explicit output of the
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number of reads discarded by each filtering rule. On our
system (2 x 14 core CPUs with 1.5TB RAM compute
node) processing of a file containing ~ 5000 cells,
~150mln reads, and ~80K SNVs, requires approxi-
mately 4 h for the tabulation of n,, and ,.¢ and up to 2
min for the generation of the cell-SNV matrices. The
later enables the users to quickly generate VAFpna
matrices at various minR.

Results

We have explored a variety of SCReadCounts applica-
tions on over 300,000 single cells from six different stud-
ies on normal and tumor human samples, including
adipose tissue, adrenal neuroblastoma, acute myeloid
leukemia, non-small lung cancer, prostate carcinoma,
and the MCF?7 cell line derived from breast adenocarcin-
oma [3-6, 25-27]. Here we demonstrate three different
SCReadCounts applications on 59,884 cells derived from
seven neuroblastoma samples [3]: (1) estimation of cell
level expression of known somatic mutations and RNA-
editing sites, (2) estimation of cell level allele expression
from biallelic positions as called in the pooled scRNA-
seq data, and (3) a discovery mode assessment of the ref-
erence and each of the three alternative nucleotides at
genomic positions of interest. The discovery mode does
not require prior knowledge on existing genetic variants
and is particularly convenient for a quick focused
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assessment of a gene or a group of genes or regions of
interest.

For all three applications the scRNA-seq data was
processed using publicly available tools. In the exem-
plified workflow (See Fig. 1), the raw sequencing
reads are aligned to the reference human genome
(GRCh38) using STARsolo (v.2.7.7a) which processes
the cellular barcodes, generates a list of error cor-
rected barcodes, and deduplicates the alignments,
retaining the reads with the highest mapping quality
using the unique molecular identifiers (UMI) [28]. In
addition to STARsolo, SCReadCounts accepts bar-
coded alignments and barcode lists generated by
UMI-tools [29, 30]. The alignments can be filtered
to correct for allele-mapping bias by removing reads
mapped ambiguously due to the variant nucleotide
(WASP); this filtering utilizes the same list of posi-
tions to be used as input for SCReadCounts [31].

SCReadCounts on known variant loci
SCReadCounts can be applied to assess known genetic
variation loci such as somatic mutational hotspots or
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RNA-editing sites. We first asked if we could assess
known somatic mutations in the set of seven neuroblast-
oma scRNA-seq samples (S_Table 1). Known somatic
mutations (118,401 loci) were extracted from COSMIC
by selecting loci from the Cancer Census Genes posi-
tioned outside repetitive regions (to exclude alignment
bias) and not present in dbSNP (to ensure germline vari-
ants are excluded (dbSNPv.154) [32]. The resulting list
of COSMIC somatic mutations (S_Table 2) was provided
to SCReadCounts. A minimum of 3 sequencing reads
(Nyar + Nper>= 3, minR = 3) was required for loci to be
considered for further analysis. SCReadCounts identified
450 distinct COSMIC mutations expressed in at least 4
individual cells in one or more of the 7 neuroblastoma
samples (S_Table 3). Examples include COSV99055840
in CENPF, COSV55220443 in STMN2, COSV85221362
in TXNIP, COSV10111219 in SYNJ2BP,
COSV101287113 in PRAME, COSV100451465 in
MRPS24, and COSV104673712 in SERPINA1 (Fig. 3).
To assess the consistency between SCReadCounts and
the variant callers across all cells, we split the alignments
based on cell barcodes [33] and performed variant call
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Fig. 3 Two-dimensional UMAP clusters of samples SRR10156295 and SRR10156296 showing cells classified by type (left) and visualizing cell-level
expression of somatic mutations (right): COSV99055840 in CENPF, COSV55220443 in STMN2, COSV85221362 in TXNIP, COSV10111219 in SYNJ2BP,
COSV101287113 in PRAME, COSV100451465 in MRPS24, and COSV104673712 in SERPINAT. Each pair of panels shows VAFgua, (top) where the
intensity of the red color corresponds to the relative expression of the somatic mutation and the green color indicates that all the reads (minR=
3) covering the position in the cell carried the reference nucleotide, compared to variant call (bottom), where the black color indicates presence
of the mutation, and grey indicates either lack of variant or lack of gene expression. Hence, SCReadCounts allows to distinguish cells with only
reference reads from cells with low or no expression of the SNV-harboring gene
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on all the individual cell alignments using GATK in
samples SRR10156295, SRR10156296, SRR10156299 and
SRR10156300. GATK called all the SNVs for which 2 or
more reads bearing the variant nucleotide were tabulated
by scReadCounts (relaxed filtering, See 1) in the corre-
sponding cells (See Fig. 3). Importantly, because
SCReadCounts excludes loci not covered with required
number of reads (minR), it allows to distinguish cells
with only reference reads from cells with low or no ex-
pression of the SNV-harboring gene (See Fig. 3). Ac-
cordingly, based on the relative expression of variant
reads and the SNV locus, SCReadCounts can discern dif-
ferent gene-SNV-expression patterns. For example, some
genes and their harbored SNV are expressed primarily
in one cell type (i.e. COSV99055840 in CENPF in eryth-
rocytes, COSV101287113 in PRAME in neurons, and
COSV104673712 in SERPINAI in monocytes, See Fig.
3). Other SNVs are expressed primarily in one cell type
even when the gene is expressed across different cell
types (e COSV55220443 in STMN2 and
COSV10111219 in SYNJ2BP in neurons, see Fig. 3).

Next, we demonstrate that SCReadCounts can quan-
tify cell-specific RNA-editing in the same neuroblastoma
samples. For this analysis we used the previously de-
scribed single nucleotide RNA-editing events catalogued
in the REDI database [34], after excluding genomic posi-
tions in repetitive regions or that coincide with a poten-
tial germline variant. A total of 107,053 distinct RNA-
editing sites were provided to SCReadCounts (S_Table 4)
along with the corresponding scRNA-seq alignments. At
minR =5, SCReadCounts identified 72 positions which
were edited in at least 2 cells in one or more of the 7
neuroblastoma samples (S_Table 5). We investigated the
A > G RNA-editing event at 14:100846310 in the cancer-
implicated lincRNA MEGS3; this position was edited in 6
of the 7 samples. Cells with MEG3 RNA-editing were
predominantly clustered in neurons, where the propor-
tion of edited RNA molecules (as reflected through the
VAFrna), suggested variable degrees of RNA editing (S_
Figure 2).

SCReadCounts after variant call

SCReadCounts can be applied in conjunction with vari-
ant callers to estimate the cell-specific allele expression
of germline or somatic SNVs. To explore this applica-
tion, we called variants from the pooled alignments
using GATK (v4.1.7.0, [22]), and filtered the calls retain-
ing high quality biallelic positions for which both the
variant and the reference allele were supported by a
minimum of 50 sequencing reads, as we have previously
described [24, 26]. The variant lists were then provided
to SCReadCounts together with the corresponding align-
ments and the STARsolo generated list of error cor-
rected barcodes. The resulting VAFyy estimates can be
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used to explore a variety of cell-level allelic features. For
example, the distribution of the VAFgya at minR =5
across the cells for each of the seven neuroblastoma
samples is plotted on S_Figure 3, which shows that
many of the SNVs have skewed or mono-allelic ex-
pression. VAFpya estimates for positions covered by
at least 10 total reads (minR =10) in 20 and more
cells per sample are summarized in S_Table 6. A
systematic analysis of the distribution VAFpys of
heterozygous SNVs at different minR is analyzed in
our recent work [26]. In addition, VAFyna estimates
can be used to explore correlations between allele-
and gene-expression in single cells using scReQTL.
Our previous research applying scReQTL on normal
adipose datasets has shown that scReQTLs are sub-
stantially enriched in GWAS-significant SNVs and in
known gene-gene interactions [24].

SCReadCounts in discovery mode

As mentioned earlier, SCReadCounts can be applied in a
discovery mode which does not require any prior know-
ledge of SNVs. In this use-case, SCReadCounts considers
positions of interest where the reference nucleotide is
substituted with each of the three alternative nucleo-
tides. Such SCReadCounts inputs can be generated for a
gene, region or a group of genes/regions of interest, ei-
ther manually, or using a script (provided at https://
github.com/HorvathLab/NGS#SCReadCounts). Herein,
we demonstrate this approach using an enumeration of
each position in the coding region of KRAS (S_Table 7),
mutations in which have been implicated in neuroblast-
oma. Across the seven samples, SCReadCounts identi-
fied a total of 30 distinct SNVs that do not coincide with
known germline variants in the coding sequence of
KRAS (S_Table 8). The SNVs included missense, non-
sense and synonymous substitutions in up to 15 individ-
ual cells per sample. Eight of the 30 SNVs were seen in
more than one sample; for example, the synonymous
substation 12:25227293 G > A (Gly77Gly, Fig. 4) was
seen in 4 out of the 7 samples. Seven of the 30 muta-
tions were previously catalogued in the COSMIC data-
base — the remaining 23 substitutions represent novel
KRAS variants. To assess the consistency of SCRead-
Counts with variant calls, we applied the above-
described strategy of GATK variant call on barcode-split
individual cell alignments. Similarly to the COSMIC mu-
tations, GATK called all the SNVs for which 2 or more
reads bearing the variant nucleotide were tabulated by
scReadCounts in the corresponding cells (See Fig. 4). In
addition, we examined the IGV visualization of the
alignments from 12:25227293_G > A positive cells; align-
ments from cells with different proportion of variant
reads are shown on S_Figure 4.
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level expression ofthe novel somatic mutation Gly77Gly (12:25227293_G > A) in the gene KRAS (middle panel) in comparison with results from
variant call in barcode-split individual alignments (12:25227293_G > A - positive cells are indicated in black).

Discussion

SCReadCounts joins the handful of currently emerging
approaches for analysis of genetic variation from
scRNA-seq data [7, 8, 16, 35-37].

SCReadCounts supports several use-cases specific to
scRNA-seq. First, and perhaps most importantly,
SCReadCounts can detect and quantify SNVs present
in a low proportion of cells, such as somatic and
mosaic SNVs. SNVs present in a low proportion of
cells are known to be frequently missed by variant
calls carried out on pooled scRNA-seq alignments
[35, 36, 38]. Indeed, the majority of the somatic mu-
tations detected by SCReadCounts were not called on
the pooled scRNA-seq data by GATK at its default
setting but were called after extracting individual cell
alignments by barcode (See S_Tables 3, 8). Splitting
alignments by barcodes and calling variants from
thousands of individual cells however is computation-
ally expensive [39]. The statistical significance of
novel cell-level somatic mutations can be readily
assessed by tools such as SCmut [35] from SCRead-
Counts matrices, when the experimental design and
availability of bulk sequencing data permit. However,
even without such sophisticated approaches, SCRead-
Counts minR criteria provides some measure of con-
trol over false positives in discovery mode, and
surfaces read counts for cells with only reference
reads. Thereby SCReadCounts enables exploration of
gene-SNV expression patterns and outlining SNVs
specific for a cell type for cell-specific or ubiquitously
expressed genes (See Fig. 3).

In the herein presented analysis, SCReadCounts de-
tected novel somatic mutations occurring in individual
cells or in a small number of cells in one or more of the
neuroblastoma samples. Second, SCReadCounts provides
per cell quantitation of absolute and relative number of
variant reads across all cells, including those where the
position is covered with only reference reads, allowing
the identification of cells with preferential expression of
the variant or the reference allele. Furthermore, the flex-
ible VAFpya minR enables tuning of SCReadCounts to
the particular application and depth of sequencing. Here,
a major consideration is the balance between inclusivity
(low minR) and higher-confidence VAFrys estimates
(high minR). In our analyses we use different minR de-
pending on the application [24, 26]. For example, to
confidently estimate allele expression of germline vari-
ants in highly transcribed genes, high minR is needed. In
contrast, assessments of somatic mutations would bene-
fit from high inclusivity using low minR. Finally,
SCReadCounts generates cell-SNV matrices that are
analogous to the cell-gene matrices generated by popular
scRNA-seq tools, which streamlines down- stream appli-
cations combining SNV and gene expression.

Conclusions

In conclusion, we believe that SCReadCounts supplies a
fast and efficient solution for estimation of scRNA-seq
genetic variation. Importantly, SCReadCounts enables dis-
tinguishing cells with monoallelic reference expression
from those with no gene expression and is applicable to
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assess SNVs present in only a small proportion of the
cells, such as somatic mutations in cancer.

Materials and methods

Sequencing datasets

The sequencing datasets were freely available from the
NCBI Sequence Read Archive (SRA) under the accession
numbers SRR10156295, SRR10156296, SRR10156297,
SRR10156299, SRR10156300, SRR10156302, and
SRR10156303. The patients demographics, neuroblast-
oma (NB) phenotype, obtaining of the samples, and the
specifics of the 10x Genomics sequencing protocol are
described in details in the original study [3]. Briefly, all
the samples were processed using 10x Genomics 3-UTR
v2 workflow, and the produced libraries were sequenced
to a 150nt sequencing length on NovaSeq 6000
(Ilumina) at a depth of approximately 400 M reads per
sample.

Data processing

For alignment of the scRNA sequencing reads, read-to-
gene assignment, cell barcode demultiplexing, error cor-
rection, and unique molecular identifier (UMI) collaps-
ing, we used the STARsolo module of STAR v.2.7.7a
with transcript annotations from the assembly
GRCh38.79 [28] as previously described [24]. To gener-
ate individual cell alignments we adopted a publicly
available python script which splits the pooled scRNA-
seq alignments based on cellular barcode [40].

Variant call

SNV were called using the HaplotypeCaller module of
GATK v.4.2.0.0 [22], filtered using bcftools v.1.10.2 [23]
and annotated using SeattleSeq v.16.00 (dbSNP build
154), as previously described [24]. When calling SNVs
from the individual alignments, no filtering was applied
on the SNV calls in order to retain calls where the vari-
ant nucleotide is present in a single read.

Gene expression estimation from scRNA-seq data

Gene expression was estimated from raw read count
matrices output by STARsolo, and normalized and
scaled using the SCTransform function of Seurat v.3.0
[41, 42], as previously described [24, 43]. Based on
the cells’ and features’ distribution, we have filtered
out: (1) cells with mitochondrial gene expression over
between 7.5 and 15%, (2) cells with less than between
500 and 1000 genes, and (3) cells with more than be-
tween 2600 and 4500 detected genes (to remove po-
tential doublets, examples on S_Figure 5). Batch
effects and cell cycle effects were removed as previ-
ously described [24].
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Cell type assessments

Likely cell types were assigned to cell clusters using
SingleR v.1.0.5 [44] as previously described [24]; exam-
ples are shown on S_Figure 6.

Statistical analyses

Statistical assessments were performed using the statis-
tical modules implemented in the used software pack-
ages [41, 44], with built-in multiple testing corrections,
where p-value of 0.05 was considered significant.
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Additional file 1: Supplementary Fig. 1. CCND1. Two-dimensional
UMAP clusters of samples SRR10156296, SRR10156297 and SRR10156299
showing cells classified by type (left) and visualizing COSV57121427 in
CCND1, which was seen primarily in neurons in all three samples. The in-
tensity of the red color corresponds to the proportion variant reads) of
the VAFgna of the indicated somatic mutations in the corresponding cells
of the neuroblastoma samples; green color indicates that all the reads
(minR = 3) covering the position in the cell carried the reference
nucleotide.

Additional file 2: Supplementary Fig. 2. RNA-editing. Two-
dimensional UMAP clusters of samples SRR10156297 and SRR10156299
showing cells classified by type (left) and visualizing RNA-editing levels
(right) in the gene MEG3, where the intensity of the red color corre-
sponds to the proportion of edited reads, and the green color indicates
that all the reads (minR = 3) covering the position in the cell carried the
reference nucleotide.

Additional file 3: Supplementary Fig. 3. scVAFgy, distribution.
sCVAFrua estimated at genomic positions covered by a minimum of 5
sequencing reads (minR =5) at the sites with bi-allelic calls (GATK) in the
7 neuroblastoma samples; the positions are sorted by VAFRNA (y-axis).
For the majority of positions, VAFgya showed predominantly mono-allelic
expression, with a substantial proportion of the scVAFgya estimations in
the intervals 0-0.2 (orange) and 0.8-1.0 (purple). The percentage of cells
with the corresponding VAFgya is displayed on the x-axis.

Additional file 4: Supplementary Fig. 4. KRAS. IGV visualization of
variable scVAFgya of the novel somatic mutation Gly77Gly
(12:25227293_G > A) in the gene KRAS in three individual cells of sample
SRR10156295.

Additional file 5: Supplementary Fig. 5. Before and after filtering
features distribution. Examples of density plots showing the distribution
of cells based on proportion of transcripts of mitochondrial origin and
number of genes, plotted against the counts of sequencing reads before
(top) and after (bottom) filtering. The selected QC thresholds are:
mitochondrial gene expression above between 6 and 15%, and number
of genes below between 800 and 1000. To remove potential doublets/
multiples we also filtered out signals with more than between 2600 and
4500 genes.

Additional file 6: Supplementary Fig. 6. SingleR Heatmaps. Heatmaps
of SingleR scores for top correlated cell types from each of Seurat
generated clusters. SingleR uses expression data to regenerate the
clusters, and for each cluster, calculates the Spearman coefficient for the
genes in the reference dataset. Then, it uses multiple correlation
coefficient to collect a single value per cell type per cluster.
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Additional file 7: Supplementary Table 1. Samples. Samples used in
this study.

Additional file 8: Supplementary Table 2. COSMIC input. List COSMIC
somatic mutations used as input to SCReadCounts.

Additional file 9: Supplementary Table 3. COSMIC output. 450
distinct COSMIC mutations found by SCReadCounts to be expressed in at
least 4 individual cells in one or more of the 7 neuroblastoma samples.

Additional file 10: Supplementary Table 4. RED! input. 107,053
distinct RNA-editing sites provided as input to SCReadCounts.

Additional file 11: Supplementary Table 5. REDI output. 72 positions
found by SCReadCounts to be edited in at least 2 cells in one or more of
the 7 neuroblastoma samples.

Additional file 12: Supplementary Table 6. scVAFyy, estimates.
sCVAFgna estimates for positions covered by at least 10 total reads
(minR =10) in 20 and more cells per sample.

Additional file 13: Supplementary Table 7. KRAS input in Discovery
mode. Genomic positions used as a discovery mode input for
scReadCounts.

Additional file 14: Supplementary Table 8. KRAS output in Discovery
mode. 30 distinct SNVs that do not coincide with known germline

variants in the coding sequence of KRAS.
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