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Abstract

Background: Somatic variation is a valuable source of trait diversity in clonally propagated crops. In grapevine,
which has been clonally propagated worldwide for centuries, important phenotypes such as white berry colour are
the result of genetic changes caused by transposable elements. Additionally, epiallele formation may play a role in
determining geo-specific (‘terroir) differences in grapes and thus ultimately in wine. This genomic plasticity might
be co-opted for crop improvement via somatic embryogenesis, but that depends on a species-specific
understanding of the epigenetic regulation of transposable element (TE) expression and silencing in these cultures.
For this reason, we used whole-genome bisulphite sequencing, mRNA sequencing and small RNA sequencing to
study the epigenetic status and expression of TEs in embryogenic callus, in comparison with leaf tissue.

Results: We found that compared with leaf tissue, grapevine embryogenic callus cultures accumulate relatively
high genome-wide CHH methylation, particularly across heterochromatic regions. This de novo methylation is
associated with an abundance of transcripts from highly replicated TE families, as well as corresponding 24 nt
heterochromatic siRNAs. Methylation in the TE-specific CHG context was relatively low over TEs located within
genes, and the expression of TE loci within genes was highly correlated with the expression of those genes.

Conclusions: This multi-‘omics analysis of grapevine embryogenic callus in comparison with leaf tissues reveals a
high level of genome-wide transcription of TEs accompanied by RNA-dependent DNA methylation of these
sequences in trans. This provides insight into the genomic conditions underlying somaclonal variation and epiallele
formation in plants regenerated from embryogenic cultures, which is an important consideration when using these
tissues for plant propagation and genetic improvement.
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Background

Preferential or obligate outcrossing enables plants to
maintain genetic diversity in wild populations [1], and is
common among perennial plants, which employ a range
of physiological and genetic strategies to achieve self-
incompatibility [2]. As a result, the genomes of these
species are highly heterozygous. But efficient cultivation
of these species requires homogenous populations in
which preferential phenotypes are fixed. The centuries-
old solution to domesticating highly heterozygous spe-
cies is clonal propagation.

Modern grapevine (Vitis vinifera subsp. vinifera) is
presumed to have been derived from the wild European
grapevine (Vitis vinifera subsp. sylvestris) around 8,000
years ago [3]. The long history of grapevine cultivation
provides an unique example of vegetative propagation.
Pliny the Elder described the clonal cultivation of grape-
vine nearly two millennia ago in Natural History (AD
77). Today, the names of many centuries-old varieties
such a as ‘Pinot noir’ and ‘Chardonnay’ are well known
to wine consumers [4]. They provide signals of quality
by which wine is marketed, but can also represent an
obstacle to grapevine breeding efforts, which produce
new and unknown varieties [5, 6].

However, plant genomes are not invariable in the ab-
sence of sexual reproduction. Occasionally, mutations in
somatic tissues become fixed when material is collected
from chimeric plants for propagation. Where mutations
produce visible phenotypes, termed ‘bud sports’, they
can provide genetic variation from which to select valu-
able traits, thus providing an alternative route for crop
improvement. Seedless varieties such as ‘Sultana’ and
white-skinned varieties such as ‘Pinot blanc’ are exam-
ples of economically important traits that have become
established through the artificial selection and clonal
propagation of somatic mutations that would be under
negative selective pressure in the wild [7].

Sequence comparisons show that most variation
among grapevine clones is due to the activity of trans-
posable elements (TEs) [8]. These repeat sequences are
ubiquitous in eukaryote genomes and comprise the ma-
jority of the nuclear DNA in many plant species. They
are broadly categorised into Class I elements (retrotran-
sposons), which replicate via an RNA intermediate, and
Class II elements (DNA transposons), which mobilise via
the excision and re-insertion of a section of double-
stranded DNA within the host genome [9]. Because of
these differences in mobility, retrotransposons tend to
increase in abundance within the host genome and typ-
ically outnumber DNA transposons. Analyses of the
grapevine reference genome show that TEs account for
approximately half of the nuclear DNA including repre-
sentatives of eight out of the nine recognised TE super-
families (the exception being Tc1-Mariner) [10, 11].
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Because of their potential mutagenicity, host species
have evolved ways to repress TE activity by transcrip-
tional gene silencing (TGS) and post-transcriptional
gene silencing (PTGS) [12]. The large complement of si-
lenced TEs in plant genomes acts as a source of se-
quence homology by which active TEs can be recognised
and targeted for TGS, in a process known as RNA-
directed DNA methylation (RdADM). In the canonical
RADM pathway, the plant-specific RNA polymerase
RNA Pol IV transcribes heterochromatic TEs associated
with H3 histones methylated at lysine 9 (H3K9me). The
transcripts are converted to double-stranded RNA by
RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and
processed into 24-nt small interfering RNAs (siRNAs) by
DICER-LIKE 3 (DCL3). These so-called heterochromatic
siRNAs (het-siRNAs) direct ARGONAUTE 4 & 6
(AGO4 & AGO6) to nascent TE transcripts generated by
RNA Pol V in a homology-dependent way, where they
trigger the methylation of cytosine bases and ultimately
H3K9me. In cases where TEs escape TGS (either
through the introduction of new TEs for which no hom-
ology exists in the genome, or failure of the RADM path-
way), the host cell needs to both initiate PTGS to
remove TE transcripts, and establish de novo methyla-
tion of the TE locus. The PTGS and non-canonical
RdADM pathways depend on 21-22 nt siRNAs from a
variety of sources including Pol II TE transcripts con-
verted to dsRNA by RDR6 and subsequently processed
into 21-22 nt siRNAs by DCL2 & DCL4. These second-
ary siRNAs target TE transcripts for degradation via
RNA interference (RNAi) and guide homology-
dependent TE methylation in a non-canonical RADM
pathway known as RDR6-RADM [12, 13].

Without maintenance, cytosine methylation that re-
presses TE transcription would be passively lost at each
replication cycle. To prevent this, cytosines in symmetrical
CG and CHG motifs (where H is C, A or T) are actively
copied to the newly synthesised DNA strand by METH-
YLTRANSFERASE 1 (MET1) & CHROMOMETHYLASE
3 (CMT3) respectively. Cytosine methylation in the asym-
metrical CHH context cannot be copied between strands.
Instead it is applied at each cellular generation by CMT2,
which methylates heterochromatic DNA, or through
RdADM via DRM?2 [14].

Mobilisation of TEs can alter genes and their expres-
sion in subtle and complex ways. Besides disrupting
open reading frames and protein recognition sequences,
transposition events can cause gene duplication, alterna-
tive splicing and create new regulatory networks [15,
16]. Host efforts to epigenetically repress TE expression
can affect nearby DNA, and indeed have been co-opted
for gene regulation in some cases [17, 18]. Similarly,
many TEs have accumulated stress-response regulatory
elements over time. As this upregulates their activity in
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response to environmental stress, such TEs may even
provide the host with a mechanism for increasing vari-
ation at times when it is most needed [19]. Therefore,
besides their role as genomic ‘parasites’, domesticated
TEs occasionally also provide a useful mechanism for
adaptation that can be co-opted for crop improvement
[20, 21].

Through judicious application of phytohormone re-
gimes during tissue culture, certain somatic plant tissues
can be converted to totipotent embryogenic callus (EC).
The de-differentiated cells of EC can then be either
propagated or allowed to differentiate into bipolar em-
bryos. Somatic embryogenesis has been used to study
the biological process of embryogenesis and to clonally
propagate certain crops, such as forestry species [22]. In
many species, including grape, embryogenic callus is also
a target tissue research involving gene discovery, trans-
genic techniques and gene editing using CRISPR/Cas-
based approaches, as it minimises chimerism in regener-
ated plants [23-25]. But tissue culture is known to exert
a mutagenic effect on plant cell lineages, leading to gen-
omic changes known collectively as somaclonal vari-
ation. Certain plant TEs are activated by cell culture,
and their mutagenic potential may be exacerbated by the
abiotic stresses and phytohormones that are part of the
process [26, 27]. Plants, including grapevine, regenerated
from EC have also been seen to harbour epigenetic
DNA changes [28-31]. Epiallele variation of this type
may be particularly relevant to vegetatively propagated
crops, though epialleles have also been seen to persist
for multiple seedling generations [32]. In fact, stable epi-
genetic variation has been used to differentiate grapevine
clones [33] and may be a key factor underlying the ‘ter-
roir’ differences observed between identical clones in dif-
ferent winegrowing regions [34, 35].

Somaclonal variation has certain advantages for peren-
nial crop improvement. Unlike hybrid varieties, novel
clones can be deployed by the industry with no effect on
varietal identity or the need for multi-generation back-
crossing. But for somaclonal mutation to be used effi-
ciently, a species-specific understanding of the types and
rates of genetic and epigenetic change induced by som-
atic embryogenesis is needed [36]. We aimed to study
the mechanisms of genetic and epigenic somaclonal vari-
ation in EC by comparing these cultures with leaf tissue,
which is terminally differentiated. To do this we used
whole-genome bisulphite sequencing to map the methy-
lomes of EC and leaf tissue at single base-pair resolution.
From these we analysed how the patterns of genome-
wide methylation in these tissues differ across genes and
TEs, and in particular at loci where these two feature
types overlap. To understand how the expression of TEs
and their genic context is related to their epigenetic
state, we then compared the differential expression of
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TEs and the genes with which they are co-located. Fi-
nally, we analysed the small RNA complement of each
tissue, since these molecules guide homology-dependent
TE silencing. This multi-‘omics approach provides a
snapshot of the activity and impact of TE expression and
silencing in EC, contrasted with leaf tissue, which is fre-
quently used to compare methylation between and
within plant species.

These results, and future work to understand the im-
pact of these events on regenerated plants, will have
practical implications for the use of EC for somaclonal
crop improvement. Furthermore, observations of the
genomic effects of this TE activity and host response in
totipotent cells in vitro may also help clarify the role of
developmental relaxation of TE silencing (DRTS) in
whole plants.

Results

TE methylation in Embryogenic callus

To compare the genome-wide DNA methylation profiles
of EC with those of leaf tissue, whole-genome bisulphite
sequencing was performed for both tissue types. Bisul-
phite conversion rates were 99.59 and 99.72 % for leaf
and EC libraries respectively, and global read coverage
after mapping was 36-fold for the leaf library and 32-
fold for the EC library (Suppl. Table S1).

Cytosine methylation in EC was found to be higher
than in leaf for each cytosine context (Fig. 1A). This is
consistent with previous reports that have shown
genome-wide dispersed hypermethylation in callus cul-
tures of Arabidopsis, maize and rice [37-39]. Most not-
able was the relatively high proportion (21.8 %) of CHH
methylation in EC, which was very low (1.7 %) in the leaf
tissue samples. To further study the genomic context of
DNA hypermethylation in EC, we analysed methylation
across TEs and genes separately. This required that we
first annotate repeat loci in the reference genome based
on sequence similarity with published Vitis vinifera re-
peat sequences, which yielded 222,411 annotations
(Suppl. Fig. S1; the annotation track is available for
download at DOI: https://doi.org/10.6084/m9.figshare.
14709816).

In both tissue types, genes were more highly methyl-
ated than adjacent DNA in the CG context but less
methylated than adjacent DNA in the CHG context
(Fig. 1B). In contrast, regardless of tissue type or cyto-
sine context, methylation across TEs was found to be
higher than that of adjacent DNA. For CG and CHG
contexts, methylation in EC was higher than that of leaf
tissue across annotated TEs, but not across genes, indi-
cating that the overall differences in global methylation
percentages were associated with hypermethylation of
TEs in the callus (Fig. 1B). The exception to this trend
was CHH methylation. Although CHH methylation in
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Fig. 1 Cytosine methylation differences between leaf and EC. A: Global methylation by cytosine context for both tissue types. B: Profiles of DNA methylation
across TE and gene feature types by cytosine context, with adjacent 1 kb flanking regions shown. Dashed lines indicate feature boundaries

EC was particularly high across TEs, CHH methylation
across genes was also higher in EC than in leaves. A po-
tential explanation for this is the presence of TEs con-
taining hypermethylated CHH sites situated within
genes. To determine whether this was indeed the case,
we further analysed TEs that are co-located with genes
(defined as those that overlapped gene annotations by at
least 1 bp), which we termed ‘genic TEs’, and ‘intergenic
TEs’ (those that do not overlap gene annotations) separ-
ately. By overlaying the TE and gene feature annotation
sets, we found that 49,257 (21.9%) of TEs overlapped
annotated genes. Of the 31,845 gene features in the V
2.1 annotation set, 11,311 (35.6 %) were co-located with
TEs. This indicates that in grapevine many TEs are dis-
persed through protein-coding regions of the genome.
Methylation in the CG context was found to be consti-
tutively high across both genic TEs and intergenic TEs
in leaf tissue and EC (Fig. 2A). However, while inter-
genic TEs generally had high GHC methylation in both
tissue types, genic TEs showed a bimodal distribution,
particularly in leaf tissue where TEs co-locating with
genes were either highly CHG methylated or relatively
unmethylated in this context. Interestingly, many genic

TEs that had high CHG methylation in leaf tissue
showed reduced methylation in EC. CHG methylation
acts as a functional signal for TE silencing in plants, and
loss of this signal can permit TE expression to disrupt
nearby genes. This has been seen in the case of the
MANTLED locus in oil palm, which is the site of a TE
insertion related to the Karma rice retrotransposon in
the intron of the homeotic gene DEFICIENS. Loss of
CHG methylation at this locus leads to alternative spli-
cing, resulting in a prematurely terminated gene
transcript [31]. While a proportion of genic TEs demon-
strated CHG hypomethylation in EC relative to leaves,
intergenic TEs tended to show slightly higher CHG
methylation in EC than in leaf tissue.

Asymmetric CHH methylation, which is indicative of
active de novo methylation, was largely absent in leaf tis-
sue. In contrast, TEs in EC displayed significant CHH
methylation, particularly across intergenic TEs (Fig. 2A).
To better visualise the degree to which TEs varied in
methylation between the two tissues, density plots were
generated for all TEs with at least 20 % methylation in
one tissue (Fig. 2B). While CG methylation of TEs ap-
peared to be independent of co-located genes, intergenic
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features with at least 20 % methylation in at least one tissue type are included. Dotted lines indicate the mean methylation difference; density is

in arbitrary units

TEs had higher CHG methylation in EC, whereas a large
proportion of genic TEs showed lower CHG methyla-
tion. As described above, CHH methylation of TEs was
higher in EC, with the effect greatest for intergenic TEs.

High TE expression in EC

Since methylation in plants is functionally important for
silencing TEs, we wanted to see if the observed genome-
wide changes to TE methylation were associated with a
corresponding difference in TE expression. To do this,

we performed sequencing on triplicate RNA libraries
from each tissue type. The two genes with the highest
read counts in leaf tissue were VIT_21350019g0263
(mean 63,259 reads per million mapped) and VIT_
207s0031g03000 (mean 8,480 reads per million mapped).
Closer inspection revealed sequence homology with
chloroplast genes psbA (photosystem II D1 protein) and
rbcL (RuBISCO large subunit). This is likely due to over-
assembly of the reference genome, as has been reported
elsewhere [40]. Read counts for these two genes were
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removed from count tables prior to normalisation, in
order to compare the expression of nuclear genes be-
tween the two tissues.

We found that the proportion of reads mapping to
TEs was significantly higher (p <0.001) in RNA libraries
of EC (9,278 +508 reads per million), compared with
those from leaf (3,820 + 735 reads per million). Differen-
tial expression analysis identified 14,229 differentially
expressed (DE) genes, with 8,210 more highly expressed
in leaf and 6,019 more highly expressed in EC (Fig. 3A;
Suppl. Table S2). Of the 105 differentially expressed TE
families identified, 85 were more highly expressed in EC
(Fig. 3B C; Suppl. Table S3). Each of the transposon
superfamilies, with the exception of LINEs, included TE
families more highly expressed in EC compared with leaf
tissue (Fig. 3C & D). Although differential expression of
LINE elements did not cross the threshold for signifi-
cance, all LINE families had higher mean expression
among EC replicates compared with leaf replicates
(Suppl. Table S3).

Genes more highly expressed in EC were summarised
into 12 ontological categories by enrichment analysis.
These categories showed an overall upregulation of
genes associated with the functions of DNA replication
and cell division (Fig. 3E). Grouped within the second
most enriched category, ‘DNA Methylation’ (GO:
0006306), were 8 other significantly enriched GO terms
associated with epigenetic activity (Fig. 3E, inset) These
ontologies cover the breadth of small-RNA driven chro-
matin modification and DNA methylation described
above, including RADM. Genes more highly expressed in
leaf grouped into 36 ontological categories, including
terpenoid production, defence response and photosyn-
thesis (Suppl. Fig. S2). To further determine how the ob-
served hypermethylation of DNA in EC relative to leaf
might relate to gene expression, we compared the ex-
pression of DNA methyltransferase genes previously de-
scribed in grapevine [41]. Of these, DDMI1, CMTI,
CMT2 and METI were found to be more highly
expressed in EC, while DRM2 and CMT3 showed no
significant difference (Fig. 3F).

Since TEs exist as multiple copies in individual ge-
nomes, short sequencing reads frequently map to mul-
tiple genic loci. In order to quantify TE transcript
abundance, bioinformatic tools such as TEtranscripts
count ambiguously mapped reads to compare the ex-
pression of TEs at the family level, rather than individual
insertions. Given the significant differences between the
methylation profiles of genic and intergenic TEs, we
wanted to know whether there was any relationship be-
tween the expression of specific TE loci and the tran-
scription of co-located genes. To determine this, DE
analysis was subsequently performed using only uniquely
mapping reads. Of the 2,278 discrete genic TE loci (TE
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loci overlapping annotated genes) that passed the signifi-
cance threshold for differential expression using this ap-
proach, 1,576 (69 %) were co-located with genes also
passing the threshold for significant DE. Expression of
TEs was closely correlated with that of co-located genes,
providing evidence that in general the transcription
levels of individual TEs are linked to the level of tran-
scription of the genes within which they are located
(Fig. 3G).

Heterochromatic siRNAs accumulate in EC
Sequence-specific recognition of TEs for RdADM and
PTGS depends on the presence of small RNAs to guide
protein complexes to their targets. Our comparison of
the DNA methylation profile and transcriptome of
grapevine EC with leaf tissue demonstrated a marked
difference with regards to TE silencing across the gen-
ome. To interrogate the dynamics of the host cell’'s TE
repression in these tissues we decided to sequence the
sRNA complement present.

After adapter trimming and quality and fragment
length filtering, 85 and 69 % of the reads remained for
the leaf and EC small sequencing libraries respectively
(Suppl. Table S4). Micro RNAs (miRNAs) accounted for
2,040,584 reads in the leaf library (25.9 % of total reads),
but only 27,896 reads (0.4 %) of the EC library. Of the
miRNA expressed in leaf tissue, 33.3 % were from a sin-
gle miRNA family, miR166, as previously reported [42].
To compare the abundance of siRNAs apart from this
difference in miRNA expression, siRNA were normalised
to the size of read libraries after miRNA removal.

After removing miRNAs, 21 nt siRNAs, which are as-
sociated with both non-canonical RADM (TGS) and
RNAi (PTGS), were found to be higher in leaf tissue
(Fig. 4A). In contrast, 24 nt het-siRNAs, which initiate
canonical RdADM, were higher in EC. The mapped
siRNA were clustered by ShortStack into a total of
89,597 DicerCall clusters in leaf and 227,847 DicerCall
clusters in EC. To determine the location bias of the
clusters, GAT was used to asses enrichment across three
feature types: genes, promotors (regions 2 kb upstream
of genes) and TEs. In leaf tissue, 21 nt siRNA clusters
were found to be enriched in genes and depleted in TEs,
whereas 23 and 24 nt siRNA clusters were depleted in
genes and enriched in promoters and TEs (Fig. 4B). EC
showed depletion of siRNA clusters of all sizes except 21
nt in genes and their promoters but an enrichment for
clusters of all siRNA sizes in TEs, with 24 nt siRNAs
most enriched.

For 21-22 nt siRNAs, which include secondary and
phased small RNAs, the relatively higher abundance in
leaf was due to sequences associated with gene exons
(Fig. 4C). However, the increase in 24 nt siRNAs in EC
was particularly associated with TEs, mostly in
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(See figure on previous page.)

Fig. 3 Transcription of TEs in grapevine EC, compared with leaf. Volcano plot of gene differential expression analysis for A: Genes and B: TEs. Features
significantly DE (p < 0.05) with |Log2 Fold Change (EC/Leaf)| > 2 are highlighted in red. C: Counts of TE families with relatively higher expression levels
in each tissue type. D: m-a plot of TE families differing significantly in expression between leaf & EC tissue, coloured by TE superfamily. E: GO terms
enriched among DE genes highly expressed in EC relative to leaf, grouped by similarity. Enriched terms grouping under “DNA methylation” are shown
in the expansion to the right. F: m-a plot of gene expression (expression in EC / expression in leaf ). Genes not passing the significance threshold
(adjusted p < 0.05) are shown in grey. DNA methyltransferase genes are highlighted in red where significantly DE and in orange where no significant
difference is observed. G: Relative expression of DE TEs between tissue types, compared with the relative expression of co-located DE genes

intergenic space. As in the case of the mRNA transcript
libraries, the relative abundance of 24 nt sSRNAs was not
limited to individual TE superfamilies. Rather, the in-
crease in het-siRNAs was associated with Gypsy, Copia,
LINE, CACTA & MULE superfamilies, with those map-
ping to Gypsy elements accounting for 56.2% of the

difference in 24 nt siRNAs between the two tissue types
(Fig. 4D).

Integrating all three datasets showed that in EC the in-
creased TE expression, siRNA abundance and CHH
methylation relative to leaf are associated with the same
TE families (Fig. 5). Furthermore, the TE families that
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were more abundant in the grapevine genome appeared
to be those for which the expression and de novo silen-
cing responses were highest.

Discussion

Tissue culture, including somatic embryogenesis, has
long been recognised to have a mutagenic effect on plant
genomes that is mediated by TE activity [43-46]. This
fact can frustrate efforts to recover specific genotypes
following tissue culture [47, 48]. Tang and colleagues,
for example, found that somaclonal mutations were far
more abundant than off-target mutations in genome-
edited rice lines [49]. But TE-derived somaclonal vari-
ation has the potential to provide valuable diversity [50].
In rice the Copia-type retrotransposon Tosl7, which is
stimulated by prolonged tissue culture and has been
shown to preferentially insert into gene-rich regions, has
been used to produce a population of over 47,000 inser-
tion mutants [51]. Similarly, tissue culture induced
transposition of LOREI has been used for saturation

mutagenesis in Lotus japonicus [52]. This diversity is
particularly attractive as a source material from which to
make selections when other crop improvement tech-
niques are limited. In the case of grapevine, for example,
the fact that varietal identity is a premium indicator of
wine quality means that support for breeding approaches
is limited for commercial reasons.

Since Barbara McClintock’s discovery of “dissociation”
(Ds) elements in maize [53], most studies investigating
the role of transposition in somatic mutagenesis have fo-
cussed on individual TE families. This is because most
active transposons were identified and characterised fol-
lowing the observation of an atypical phenotype. How-
ever, the advent of massively-parallel sequencing
techniques, together with publicly available reference
genome assemblies, enable the expression and silencing
of the entire mobilome (mobile portion of the genome)
to be studied simultaneously. To do this, we used three
sequencing approaches to characterise the methylation,
transcription and small RNA-targeting of TEs in EC
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cultures. We compared these with leaf tissue, a termin-
ally differentiated tissue frequently used as a reference
for studies comparing the methylation of different plant
tissues and species [39, 54—57].

The genome-wide methylation levels observed in leaf
samples were comparable to those that have been previ-
ously reported for Vitis vinifera [55]. The most distinct-
ive difference between the epigenetic state of EC and
leaf tissue was the relative abundance of CHH methyla-
tion in EC cells, which was almost absent in leave tissue.
Increased CHH methylation has been previously re-
ported in totipotent cell cultures of rice (Oryza sativa)
[37] and sugar beet (Beta vulgaris) [54], Arabidopsis em-
bryos [58] and soybean (Glycine max) seeds [57], al-
though at lower levels than reported here (17 %, 14 %, 5
and 9 % respectively). Elevation in CHH methylation ap-
pears to accompany dedifferentiation in plant cells,
though the high levels are not typically retained in plants
regenerated from these tissues [58].

In plants, asymmetric CHH methylation is catalysed by
heterochromatin-targeting CMT2 and by the 24 nt
siRNA-guided Pol IV-RADM pathway. In this study we
found that CMT2 was more highly expressed in EC than
leaf and that TEs in intergenic regions carried higher
CHH methylation than those within genes (Fig. 2A). The
relatively long 24 nt siRNAs were also found to be most
abundant in EC (Fig. 4A), and these het-siRNA were
enriched around TE features (Fig. 4B). These findings sug-
gest both CMT2 and RADM contribute to high CHH
methylation in EC. While TE-specific CHG methylation
was higher overall in EC than in leaf (Fig. 1 A), no differ-
ence was seen in the expression of CMT3, which main-
tains CHG methylation following DNA replication.
Interestingly, TE methylation in this context was
dependent on the genomic context of the TEs. The major-
ity of genic TEs had lower methylation in EC, but TEs in
intergenic regions generally had higher CHG methylation
(Fig. 2B). These results suggest that in EC cultures, the
context of TEs with regard to genes is an important factor
in determining whether they are silenced, which led us to
analyse whether transcription of TEs depends on the tran-
scription of co-located genes. Transcript libraries obtained
from EC contained approximately twice the proportion of
TE-mapping reads as those from leaf tissue. The relative
abundance of TE transcripts was not due to high copy
numbers of a few TE families. Rather, most TE families
(85 out of 122) were significantly more highly expressed in
EC. Analysing only unique-mapping transcript reads re-
vealed that the majority of DE TEs were indeed co-located
with DE genes.

By integrating the three data types, we suggest a descrip-
tive model for the epigenetic state of TEs in grapevine EC.
In these cultures, a diverse set of genic TEs are co-
transcribed with the genes in which they lie. This appears
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to be associated with a reduction in CHG methylation
across these elements. The increase in TE transcript abun-
dance triggers a response in the form of het-siRNAs with
sequence-specificity for the transcribed TEs. Conse-
quently, the genome experiences a burst of CHH methyla-
tion via Pol IV-RdDM, leading intergenic TEs across the
genome to be silenced in trans (Fig. 6). The genic context
of TEs is key to understanding the finding that TEs in EC
are both more methylated and more highly transcribed
than in leaves. This finding seems at odds with the general
belief that a primary function of epigenetic modifications
(particularly CHG methylation, in the case of plants) is to
silence TEs. However as discussed above, genic TEs in EC
were relatively hypomethylated, but since there are far
more intergenic TE copies which are hypermethylated,
the total, aggregated methylation of TEs in EC was higher
than in leaf. The reason that EC has reduced CHG methy-
lation at genic TEs is not known, but a similar observation
has previously reported in the case of the Bad Karma al-
lele in oil palm [31]. The cause does not appear to be a de-
crease in CMT3 expression. It is notable the EC cells
contained lower 21-22 nt siRNA abundance than leaf,
and that the enrichment of 21 nt siRNA clusters across
genes that was seen in leaf was almost absent in EC.

In plants, a general increase in TE expression is
known to occur during DRTS, a tissue-specific
phenomenon in which genome-wide loss of epigenetic
silencing is accompanied by high rates of TE transcrip-
tion and transposition [59]. DRTS has been observed in
differentiated tissues adjacent to rapidly-multiplying
pluripotent cells, including the pollen vegetative nu-
cleus and endosperm in Arabidopsis and maturing
leaves in maize [60—62]. It has been proposed that one
function of DRTS may be to trigger the production of
21-22 nt small RNAs that are able to migrate into adja-
cent germline or meristematic tissues where they
reinforce TE silencing via RNAi and RDR6-dependent
RdADM [59, 62]. Despite the similar accumulation of TE
transcripts from multiple families, the situation in
grapevine EC differs in certain regards to canonical ex-
amples of DRTS. In Arabidopsis, heterochromatin loss
is caused by reduced expression of the chromatin re-
modeller DDM1, allowing TE transcription [61]. In
contrast, grapevine EC showed comparably high ex-
pression of DDM1 and DNA methyltransferases, while
21-22 nt siRNA levels were lower than in leaf tissue.
Instead, 24 nt het-siRNAs, which target TEs for asym-
metric CHH methylation, were most abundant. Rather
than an example of DRTS, the case of grapevine EC
may instead be analogous to an embryo lacking an adja-
cent endosperm. In this scenario, TEs co-located with
expressed genes are transcribed and, without a source
from which to import secondary siRNAs to guide
RNAI, their transcripts accumulate.
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If EC is indeed analogous to naturally-occurring dedif-
ferentiated tissues, it could provide a useful system in
which to test current hypotheses about the evolutionary
function of DRTS in plants. Most pertinent among these
is the hypothesis that without secondary siRNAs
imported from nearby tissue, TE transcripts in dediffer-
entiated cells would overwhelm the PTGS system and
exceed the cells’” ability to prevent transposition. Further
work is needed to establish whether the high rates of
transposition events observed in totipotent plant cell
cultures can directly be attributed to a lack of imported
secondary siRNAs. In this study, the transcription of
TEs in EC was associated with a burst of de novo CHH
methylation. Similarly, it remains to be seen whether this
strand-specific methylation results in stable epigenetic
changes in plants regenerated from these cultures, and if
so, whether new epialleles affect the expression of
nearby genes. In other species, increased CHH methyla-
tion is not typically seen in regenerated plants [58].
However, plants regenerated from tissue culture do fre-
quently (though not consistently) demonstrate epigen-
etic variation, including in grapevine [28, 30, 39].

Conclusions

In grapevine, transcription of almost all known TE
superfamilies is higher in dedifferentiated EC cells of
grapevine than in leaf tissue. This appears to be due to a
the loss of CHG methylation across TEs within genes

and the transcription of those genes. The accumulating
TE transcripts are accompanied by a genome-wide epi-
genetic response involving an increase in het-siRNAs
and de novo methylation of TE DNA in trans. It remains
to be seen whether the burst of TE transcription and as-
sociated epigenetic response persists as somaclonal gen-
etic or epigenetic variation in vines regenerated from
these cultures.

These results add insight into the epigenetic regulation
of transposition, particularly in embryogenic cell cul-
tures. Understanding these factors is important given
their use in studying embryogenesis and for crop im-
provement. Better control of transposition and epiallele
formation will improve outcomes for producing new
somaclonal variation, gene discovery and targeted gene
editing, homogenous propagation of elite genotypes, and
managing chimerism in plants regenerated from cell
culture.

Methods

TE annotation

Transposable elements in the V. vinifera PN40024 12X
reference genome [63] were annotated with RepeatMas-
ker (v4.1.0; RRID:SCR_012954) [64]. Query sequences
included V. vinifera repeat sequences from Repbase
(RRID:SCR_021169) [65] supplemented with V. vinifera
repeat sequences collected from published literature
[11]. TE annotations were assigned a custom
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nomenclature that included class, superfamily, family
and locus, for downstream analysis and sorting. Feature
overlaps were identified by comparing annotated TEs
with gene features from the V. vinifera V2.1 structural
annotation [66], using the intersect function of the BED-
tools toolkit (v2.29.2; RRID:SCR_006646) [67].

Plant material

Anther tissue was selected for EC initiation, due to the
broad applicability of this technique across multiple
grapevine varieties. Embryogenic cell cultures were
established using the protocol of Perrin and colleagues
[68] from anthers of immature inflorescences harvested
from V. vinifera cv ‘Chardonnay’, grown at the Lincoln
University research vineyard (Canterbury, New Zealand).
Established cultures were grown on solid C;P media at
26+ 1 °C in the dark [69]. After three months, healthy
white EC masses were transferred to fresh C;P media,
leaving behind brown dark brown callus and anthers
that showed no callus formation. Four months after ini-
tial callus formation, samples of these proliferating EC
cultures from three Petri dishes were pooled per sample
and harvested directly into liquid N,. For leaf tissue
samples, young leaves (<30 mm in diameter) were se-
lected, which yield high quality DNA and RNA in grape-
vine. Samples were collected from the same vines
described above (five leaves per sample) and harvested
directly into liquid N,. Samples were stored at -80°C
until used for DNA and RNA purification.

DNA methylation analysis

Genomic DNA was extracted from 50 mg aliquots of
young leaf and embryogenic callus samples ground in li-
quid Nj, using the NucleoMag® Plant DNA kit
(Macherey-Nagel GmbH) according to the manufac-
turer’s instructions. Isolated DNA was stabilised using
DNAstable (Biomatrica) and shipped to Macrogen
(Seoul, Rep. of Korea) for library preparation and se-
quencing. Methylation-specific sequencing libraries were
prepared using the TruSeq DNA Methylation kit (Illu-
mina, Inc.) according to the manufacturer’s specifica-
tions. Leaf and embryogenic callus libraries were
multiplexed and sequenced on two lanes of a HiSeq
2000 flow cell using 100 bp paired-end sequencing.

Read pairs were mapped to the 12X PN40024 grape-
vine reference genome using BS-Seeker2 (v2.1.8; RRID:
SCR_020948) [70] with the parameters ‘-X 1000 -m
0.04’. Methylation calling and global methylation statis-
tics were generated with the ‘bam2cgmap’ tool from the
cgmaptools programme package [71]. Methylation
across features and methylation per feature were calcu-
lated using the ‘mfg’ and ‘mtr’ functions from the same
package, respectively. Only features which had a methy-
lation effective coverage greater than 20 in both samples
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were included in the analysis of methylation across fea-
tures. Data visualisation was performed in R (v4.0.2;
RRID:SCR_001905). Bisulphite conversion efficiency was
calculated by calculating methylation levels of all reads
mapping to the non-methylated chloroplast genome
(NCBI reference sequence: NC_007957.1).

Transcriptome analysis

RNA was purified from triplicate EC and leaf tissue sam-
ples using the Spectrum™ Plant Total RNA kit (Sigma-
Aldrich). Isolated RNA was quality checked using an
Bioanalyzer 2100 with the RNA 6000 nano kit (Agilent
Technologies, Inc.) according to manufacturer’s instruc-
tions and ODygg/059 ratios determined with a DS-11
spectrophotometer (DeNovix, Inc.). Quantification of
RNA samples was done using a Qubit fluorometer
(Thermo Fisher Scientific) and the samples were stabi-
lised using RNAStable (Biomatrica, Inc.) prior to ship-
ping to Macrogen for sequencing.

Library synthesis and sequencing was carried out by
Macrogen (Seoul, Rep. of Korea). Briefly, libraries were
prepared using a TruSeq Stranded Total RNA kit (Illu-
mina, Inc.) with ribosomal RNA removed using the
Ribo-Zero Plant (leaf) kit (Illumina, Inc.). Prepared li-
braries were multiplexed and sequenced on a single lane
of a HiSeq2000 DNA sequencer (Illumina, Inc.) to yield
100 bp paired-end reads.

Adapter clipping and quality trimming of reads was
carried out using FastQC (v0.11.9; RRID:SCR_014583)
[72] and fastq-mcf [73] with default parameters except
for a minimum read length of 36. Reads were mapped to
tRNA and rRNA references sequences downloaded from
the rfam database (v12.0; RRID:SCR_007891) [74] and V.
Vinifera tRNA sequences downloaded from GtRNAdb
(v18.1; RRID:SCR_006939) [75] using HISAT2 (v2.2.1;
RRID:SCR_015530) [76]. Reads that mapped to tRNA
and rRNA sequences were excluded. Reads were then
mapped to the V. vinifera PN40024 12X reference gen-
ome [63] using HISAT2 with the parameter -k 100’ to
allow multi-mapping. Gene and TE transcripts were
counted simultaneously with TEtranscripts (v2.2.1) [77],
using the V2.1 gene and TE annotation tracks described
above.

Read counts for two genes demonstrating evidence of
genome over-assembly (VIT_213s0019g0263 and VIT_
207s0031g03000) were removed from raw count tables
prior differential expression (DE) analysis using DEseq2
(v1.28.1; RRID:SCR_015687) [78]. Genes showing DE
(Benjamini-Hochberg adjusted p-value <0.05) and a 2x
change between tissues were considered to be differen-
tially expressed genes (DEGs). Gene ontology (GO) terms
associated with DEGs were retrieved from the CRIBI data-
base (http://genomes.cribi.unipd.it/DATA/V2/annotation/
bl2go.annot.txt), and enrichment analysis was performed
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using the fatiGO algorithm of the Babelomics software
package (v5; RRID:SCR_002969) [79]. GO terms with
FDR-adjusted p-values<0.01 were then passed to
REVIGO (RRID:SCR_005825) for grouping [80].

To compare the expression of TEs with co-located
genes, only reads uniquely mapping to the genome were
used. Reads mapping to exons and TEs (exons excluded)
were counted separately using featureCounts (v2.0.0;
RRID:SCR_012919) [81]. Count tables for both feature
types were concatenated and analysed for DE using
DEseq2 per Macchietto et al. [82].

All libraries were also mapped to the V. Vinifera cv.
‘Chardonnay’ reference genome [83] Although mapping
reads to the Chardonnay reference resulted in a higher
proportion of mapped reads, the majority of these were
not properly paired and would therefore not be included
in the downstream analysis pipeline (Suppl. Table S5).
Instead, alignments to the more commonly used
PN40024 reference genome, which showed high map-
ping rates as well as high proportions of properly paired
reads, were used for further analysis.

Small RNA analysis

Small RNA (<200 nt) was purified from 50 mg each of
embryogenic cell cultures and young leaf tissue de-
scribed above, using the Plant microRNA Purification
Kit (Norgen BioTek Corp.) according to manufacturer’s
instructions. RNA samples were sent to New Zealand
Genomics Ltd. (Auckland, New Zealand), where a 18-35
nt fraction of the each RNA sample was isolated by poly-
acrylamide gel electrophoresis and sequencing libraries
were prepared using the TruSeq Small RNA library
Preparation kit (Illumina, Inc.). The two libraries were
sequenced on a single flow cell on a MiSeq DNA se-
quencer (Illumina, Inc.) using a 50 bp single-end se-
quencing protocol.

Adapter trimming and size filtering of sequence reads
was performed in the UEA small RNA Workbench (v4.5;
RRID:SCR_020947) [84]. Reads that mapped to V. vinif-
era tRNA and rRNA sequences, as described above, were
removed using PatMaN (v1.2.2; RRID:SCR_011821) [85].
Identification of miRNA and their removal has been de-
scribed elsewhere [42]. After removal of miRNAs, small
RNAs were mapped to the reference genome using
ShortStack (v3.8.5; RRID:SCR_010834) [86], which se-
lects unique mapping sites for multi-mapping reads
based on the location of unique-mapping reads. Short-
Stack was also used to perform siRNA cluster discovery
and assign DicerCalls, based on the predominant frag-
ment size for each cluster. Enrichment of 20 to 24 nt
cluster sizes across three genomic feature types: genes,
promoters (defined as regions 2 kb upstream of genes)
and TEs, was assessed using Genomic Association Tester
(v1.3.6; RRID:SCR_020949) [87].
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