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Choice of pre-processing pipeline
influences clustering quality of scRNA-seq
datasets
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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) has quickly become one of the most dominant techniques
in modern transcriptome assessment. In particular, 10X Genomics’ Chromium system, with its high throughput
approach, turn key and thorough user guide made this cutting-edge technique accessible to many laboratories
using diverse animal models. However, standard pre-processing, including the alignment and cell filtering pipelines
might not be ideal for every organism or tissue. Here we applied an alternative strategy, based on the
pseudoaligner kallisto, on twenty-two publicly available single cell sequencing datasets from a wide range of tissues
of eight organisms and compared the results with the standard 10X Genomics’ Cell Ranger pipeline.

Results: In most of the tested samples, kallisto produced higher sequencing read alignment rates and total gene
detection rates in comparison to Cell Ranger. Although datasets processed with Cell Ranger had higher cell counts,
outside of human and mouse datasets, these additional cells were routinely of low quality, containing low gene
detection rates. Thorough downstream analysis of one kallisto processed dataset, obtained from the zebrafish
pineal gland, revealed clearer clustering, allowing the identification of an additional photoreceptor cell type that
previously went undetected. The finding of the new cluster suggests that the photoreceptive pineal gland is
essentially a bi-chromatic tissue containing both green and red cone-like photoreceptors and implies that the
alignment and pre-processing pipeline can affect the discovery of biologically-relevant cell types.

Conclusion: While Cell Ranger favors higher cell numbers, using kallisto results in datasets with higher median
gene detection per cell. We could demonstrate that cell type identification was not hampered by the lower cell
count, but in fact improved as a result of the high gene detection rate and the more stringent filtering. Depending
on the acquired dataset, it can be beneficial to favor high quality cells and accept a lower cell count, leading to an
improved classification of cell types.
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Background
Single-cell transcriptome sequencing (scRNA-seq) has
rapidly become one of the most popular tools for dissect-
ing the transcriptomic states of individual cells in a tissue
of interest. It can be applied to virtually any biological
sample as long as a reference genome is available. Among
the available scRNA-seq techniques, the Chromium (10X
Genomics) platform is probably the most widely used at
this point. Thanks to its user-friendly design and very
well-documented workflow, it has quickly emerged as the
top choice for many researchers and clinicians [1–8]. Its
droplet-based design and simple workflow make it the
ideal technique for surveying hundreds to thousands of
cells in a single experiment, without needing prior know-
ledge of the system [9, 10]. In addition to its hardware,
10X Genomics also provides a whole suite of tools called
Cell Ranger for processing sequencing reads (demultiplex-
ing, alignment, filtering, dimensionality reduction and
visualization of clusters) (10xgenomics.com). Within this
package, STAR [11] is applied to align the millions of
short reads, typically produced by Illumina sequencers.
This aligner has been shown to work accurately and reli-
ably and is widely used.
Besides STAR and other classic aligners like GSNAP

or TopHat2 [11–13], there have been recent advances in
the development of so called pseudoaligners. Instead of
trying to exactly evaluate the alignment of each base in a
given read, pseudoaligners only focus on the potential
identity of the target transcript [14]. Among the few
existing tools like salmon/alevin, sailfish or kallisto [14–
17], kallisto comes with a suite of complementary tools
for processing and filtering scRNA-seq reads, making it
as simple to use as Cell Ranger. Importantly, the compu-
tational resources required for kallisto are marginal in
comparison to Cell Ranger/STAR, with an entire
scRNA-seq run, can be aligned on a standard laptop
within tens of minutes [14, 18] instead of hours for Cell
Ranger/STAR. The alignment process is sped up by a
magnitude by splitting up the reads into k-mers and
matching them using hash tables, while the accuracy is
maintained by constructing a transcriptome de Bruijn
graph [14, 19]. Kallisto can also align reads coming from
bulk RNA-seq, and the introduction of the Barcode-
UMI-Set (BUS) format allows processing and compari-
son of scRNA-seq data originating from various sources
[19]. In addition to the alignment of the sequencing
reads by either STAR or kallisto, the transcripts have to
be associated with their respective cell barcodes and the
unique molecular identifiers (UMIs) have to be counted
[20]. As a last step, empty droplets are removed from
the dataset before one can proceed to downstream pro-
cessing [21, 22]. All these functions are conveniently in-
cluded in the Cell Ranger pipeline, but are usually not
obvious to the user.

While Cell Ranger is an all-in-one package, the kallisto
pipeline consists of three parts. Kallisto [14] aligns the
sequencing reads, while bustools [19] associates the
reads to the respective cell barcodes, collapses the UMIs,
counts the identified transcripts and creates the cell to
gene matrix. In the third part we use DropletUtils [23]
to rank barcodes according to detected UMI levels and
define the inflection point within the resulting knee-plot
as a threshold between droplets that are thought to con-
tain cells and empty droplets. The individual packages
are all open-source and the process can be inspected in
detail [14, 19, 23]. We refer to this entire pipeline as
“kallisto”.
Although based on the same principles, the underlying

approach of kallisto and Cell Ranger differ and so are
potentially the resulting datasets. Here we show that al-
ternative alignment strategies can indeed make a differ-
ence in the derived biological conclusions, especially
when working with organisms other than human or
mouse. Using kallisto we found a strong increase in
alignment rates (percent of reads aligned to reference
transcriptome) and consequent gene detection rates
within most of the tested Chromium v2/v3 datasets
(zebrafish, killifish, cavefish, drosophila, c. elegans, ciona,
mouse, human). Additionally, we show that the choice
of reference genome and differences in thresholding
empty droplet removal has strong effects on correct fil-
tering and resulting cell counts. Finally we demonstrate,
using a dataset obtained from the zebrafish pineal gland
[7], that alignment with kallisto and cell filtering with
DropletUtils [23] improve clustering quality and reveal
new cell types.

Results
To uncover whether the choice of alignment tool affects
the downstream results, we analyzed twenty-two pub-
lished single-cell sequencing datasets from eight differ-
ent organisms (Table 1). The first difference between the
two approaches was the overall higher alignment rates
of sequencing reads to the transcriptome for kallisto (on
average 7.2% increase) with the only exception of dros-
ophila dataset s1 (Fig. 1a). Furthermore, total gene de-
tection rates were increased in the kallisto samples in
comparison to Cell Ranger, with the exception of the C.
elegans datasets. Most of the identified genes were
shared between the two pipelines, but for teleost and
mammal samples, kallisto detected considerably more
genes than Cell Ranger (Fig. 1b and Additional file 1:
Fig. S1). When looking at the median gene count
(MGC) and median UMI count (MUC) per cell, we
found again increases in the majority of samples proc-
essed with kallisto, with one exception: mouse sample
mm-neuron-2 k-v2 (Fig. 1c, d). In contrast, cell counts
were lower for all samples processed with kallisto, except
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for the human samples and mouse sample mm-neuron-
1 k-v3 (Fig. 1e).
Both classic aligners as well as pseudoaligners require

an annotated reference transcriptome for alignment,
which is typically generated from a gene transfer format
(GTF) file and corresponding genomic resource. To as-
sess the influence of transcriptome reference choice on
alignment results, we ran our zebrafish samples also
along a recently improved zebrafish transcriptome anno-
tation (zta) v4.3.2 [24] (Fig. 2). In all the zebrafish data-
sets, zta v4.3.2 improved the alignment and gene
detection rates, while differences in cell counts were
minor (Fig. 2). Similar to results seen for the alignment
to the Ensembl reference (101), kallisto analyzed datasets
had higher MGC and MUC when aligned to zta 4.3.2 in
comparison to Cell Ranger. Unlike classic aligners, kal-
listo also allows alignment to a pure transcriptomic in-
put. This is an advantage for species, where a GTF file
and genomic resource are not available. So, in this case

we also included a reference extraction from Ensembl’s
BioMart. Although based on the same Ensembl version,
the reference constructed from BioMart contains more
transcript annotations. However, it only marginally im-
proved gene detection rates in comparison to the gen-
ome annotation (Fig. 2). This analysis shows that the
choice of reference can impact total gene detection,
MGC, MUC and cell count for both kallisto and Cell
Ranger, but regardless the reference choice, Cell Ranger
provided higher cell counts, while kallisto resulted in
higher total gene detection, MGC and MUC. Addition-
ally, the flexibility of kallisto enables a wider choice of
options of alignment references.
Next, we looked at the cellular distribution in relation

to their detected genes. Interestingly, all samples proc-
essed with Cell Ranger included a population of cells at
the lower end of MGCs, at around 300 to 500 genes per
cell (Fig. 3 and Additional file 1: Fig. S2 and S3). The
only exceptions here were the human samples (Fig. 3f

Table 1 Datasets and sources

sample ID organism common
name

tissue 10X
version

FACS
sorted

source reference ensembl
reference
version

dr-RGC-larva-s1 D. rerio zebrafish Retinal ganglion
cells (RGCs)

2 yes GSE152842 Koelsch et al.,
2020

101

dr-RGC-adult-s17 D. rerio zebrafish RGCs 2 yes GSE152842 Koelsch et al.,
2020

101

dr-pineal-s1 D. rerio zebrafish pineal gland 2 no SRR8315377/
SRR8315378

[7] 101

dr-pineal-s2 D. rerio zebrafish pineal gland 2 no SRR8315379/SRR8315380 [7] 101

nf-embryo-s1 N. furzeri killifish tail blastema 2 no SRR11886701 [8] 101

nf-embryo-s2 N. furzeri killifish tail blastema 2 no SRR11917464 [8] 101

am-hk-cave A. mexicanus mexican cavefish head kidney 3 yes GSE128306/L39134 [6] 100

am-hk-surf A. mexicanus mexican cavefish head kidney 3 yes GSE128306/L39132 [6] 100

dm-brain-s1 D. melanogaster drosophila brain 2 no SRR6327103 [2] 100

dm-brain-s2 D. melanogaster drosophila brain 2 no SRR6327104 [2] 100

ce-embryo-s1 C. elegans C. elegans embryo 2 no SRR8611991 [4] 100

ce-embryo-s2 C. elegans C. elegans embryo 2 no SRR8611992 [4] 100

ci-larva-s1 C. intestinalis ciona larva 2 no SRR9051005 [1] 100

ci-larva-s2 C. intestinalis ciona larva 2 no SRR9051006 [1] 100

hs-pbmc-4 k-v2 H. sapiens human pbmc 2 no * 10X Genomics 100

hs-pbmc-8 k-v2 H. sapiens human pbmc 2 no * 10X Genomics 100

mm-neuron-2 k-v2 M. musculus mouse neurons 2 no * 10X Genomics 100

mm-neuron-9 k-v2 M. musculus mouse neurons 2 no * 10X Genomics 100

hs-pbmc-10 k-v3 H. sapiens human pbmc 3 no * 10X Genomics 100

hs-pbmc-1 k-v3 H. sapiens human pbmc 3 no * 10X Genomics 100

mm-neuron-10 k-v3 M. musculus mouse neurons 3 no * 10X Genomics 100

mm-neuron-1 k-v3 M. musculus mouse neurons 3 no * 10X Genomics 100

* https://support.10xgenomics.com/single-
cell-gene-expression/datasets
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Fig. 1 Alignment results of all datasets (Table 1) run with either Cell Ranger or kallisto against Ensembl reference. a Percent alignment rates of
reads against the reference transcriptome. b Total gene detection. c Median gene counts over all cells per dataset. d Median UMI counts over all
cells per dataset. e Total cell counts of each dataset
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and Additional file 1: Fig. S2 and S3). This effect was
also less pronounced in the mouse datasets (Additional
file 1: Fig. S2 and S3). The kallisto pipeline on the other
hand excluded most to all of these low MGC cells (Fig.
3 and Additional file 1: Fig. S3).
What is considered a cell in scRNA-seq data is based

on finding an appropriate cutoff between what are
thought to be empty droplets and droplets containing a
cell. Since this is commonly measured only indirectly by

looking at transcript levels beyond a certain threshold in
the knee plots, the numbers of cells are heavily
dependent on the applied filter [21, 22]. Thus, in a next
step we wanted to test, whether the datasets processed
with the kallisto pipeline still contain cells with higher
MGCs, when the thresholds are set to the same levels as
Cell Ranger. Therefore, we did not identify the inflection
point automatically using DropletUtils, but forced kal-
listo to reach similar cell counts as Cell Ranger (‘kallisto

Fig. 2 Impact of reference choice and alignment pipeline on zebrafish scRNA-seq datasets. a Percent alignment rates of reads against the
reference transcriptome. b Total gene detection. c Median gene counts over all cells. d Median UMI counts over all cells. e Total cell counts of
each dataset
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forced’), which resulted in an overlap between the ma-
jority of the cell barcodes (Additional file 1: Fig. S4). The
very small number of cells, which are either detected by
kallisto or Cell Ranger are attributed to the different
alignment strategies and corresponding filtering
methods.
Kallisto forced still showed overall higher MGCs and

MUCs per sample, however less pronounced with one
more exception (dm-brain-s1) (Additional file 1: Fig. S5),
and the total gene detection slightly increased (Add-
itional file 1: Fig. S6). Interestingly, the population of
cells containing low gene count, that was previously only
detected within the Cell Ranger data, was now evident
(Additional file 1: Fig. S7). Hence, the differences appear
to stem from the filtering process taking care of the
empty droplet removal.
To test whether the noticeable differences in gene or

cell number detection between the two pipelines alter
the ability to characterize the cellular composition of the
tissue in the downstream analysis, we performed princi-
pal component analysis (PCA) and clustering of the zeb-
rafish pineal sample number two (dr-pineal-s2). The

pineal gland dataset was previously studied in high detail
by one of the authors [7], and thus represents the ideal
basis for comparative downstream analysis. We mainly
focus here on the larger dataset, dr-pineal-s2 over dr-
pineal-s1, (Fig. 1e), while the complete analysis of dr-
pineal-s1 can be found in Additional File 2. We refrained
from merging the two datasets, as this was not done in
the original publication, making it more comparable to
the current analysis.
In the previous analysis of this dataset [7], dr-pineal-s2

was aligned to the zebrafish GRCz10 genome assembly
(Ensembl release 90) with Cell Ranger version 2.0.2. A
total of 2266 cells were detected [7] and eight cell types,
including the pineal gland rod- and cone-like photore-
ceptors (PhR), five other pineal cell types (retinal pig-
ment epithelium-like, Müller-like glia, neurons,
macrophages/microglia and blood cells) as well as habe-
nula neurons [7].
In the current analysis, the dr_pineal_s2 dataset was

aligned with Cell Ranger version (v5) to Ensembl release
101, which resulted in more than double of the total
number of cells (6769) (Fig. 1e).

Fig. 3 Violin-plots showing comparison of gene detection per cell between kallisto and Cell Ranger across selected examples (a, b, c, d, e, f). Cell
Ranger datasets contain an additional cell population with lower gene detections, not present in the kallisto datasets (at and below dashed lines).
This observation was not seen for the human datasets (f). The remaining datasets can be found in Additional file 1: Fig. S2 and S3
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The dataset was filtered using similar parameters as in
the original publication (see Methods) and the observed
cell population with low gene detection in the Cell Ran-
ger object was still present (Additional file 1: S8a). These
cells clustered into 13 types (Fig. 4a, b and Additional
file 1: Fig. S9a, b and Additional file 3), which included
the previously identified clusters as well as two types of
habenula cells, erythrocytes, fibroblasts, vascular endo-
thelial cells, leukocytes and epithelial cells (Fig. 4a, b).
The additional types of cells, although not identified in
the previous study [7], are possibly a result of the higher
cell count and improved Cell Ranger version, and ex-
pected to reside in the pineal as well as in any other
brain tissue.
Analysis of the same dataset using kallisto, resulted in

a total number of 5810 cells (Fig. 1e), and the population

of cells with the low gene count was excluded (Add-
itional file 1: Fig. S8b). These cells clustered into 14
types (Fig. 4c, d and Additional file 1: Fig. S9e, f and
Additional file 3), which included all the types identified
by the Cell Ranger analysis, and an additional cone-like
PhR cluster (Fig. 4c, d). For both approaches, the num-
ber of cells comprising the cone-like photoreceptors are
very similar (121 for Cell Ranger & 119 for kallisto; full
list in Additional File 4) and thus the numbers alone are
most likely not the reason for the separation of the two
cone-like photoreceptors in the kallisto pre-processed
data. The two cone-like PhR clusters differed in the op-
sins they expressed, with one expressing opn1lw1 and
opn1lw2, the red opsins (long wavelength sensitive), and
the other expressing parietopsin, a green opsin. To fur-
ther explore the discrepancy of the cluster identification

Fig. 4 Downstream analysis of the dr_pineal_s2 dataset. a 2D visualization using UMAP of Cell Ranger analyzed clusters. Each point represents a
single cell, colored according to cell type. The cells were clustered into 13 distinct types, which were defined according to their unique
transcriptomes (Additional file 2). b Expression profile of marker genes according to cluster [7] of (a). Cone- and rod-like PhRs are defined
according to their transducin protein subunits (gnat1 and gngt1 in rods vs. gnat2 and gngt2a in cones [25]), as well as their unique opsins (exorh
in rod-like [26] and opn1lw1 and parietopsin in cone-like). c 2D visualization using UMAP of kallisto analyzed clusters. Each point represents a
single cell, colored according to cell type. The cells were clustered into 14 distinct types, which were defined according to their unique
transcriptomes (Additional file 2). d Expression profile of marker genes according to cluster [7] of (c). Two different populations of cone-like PhRs
are detected. Both express the cone unique transducin protein-subunits, but differ in the expressed opsin (opn1lw1 in red-cones, and parietopsin
in green-cones), demonstrating the bi-chromatic photoreception characteristic of the pineal gland. col14a1b was only detected in the kallisto
dataset and is the strongest DE marker within the red-cone cluster (c, d)
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between the pipelines, we checked for parietopsin ex-
pression in the Cell Ranger data (Fig. 4b). Although par-
ietopsin was identified within the cone-like PhRs, no
distinction between the red and the green cones is made
even after more than doubling Seurat’s FindClusters
resolution parameter (Additional file 1: Fig. S9c, d),
which can increase the number of clusters, while pre-
serving dimensional reduction. We refrained from chan-
ging any other standard parameter in order to maintain
similarity of the pipelines. Analysis of the top
differentially-expressed (DE) genes within the cone-like
PhRs, revealed that for the kallisto dataset, the gene
col14a1b (collagen, type XIV, alpha 1b) was the most DE
gene in the red cone-like PhRs (Fig. 4d and Additional
file 3). This gene was not detected at all by the Cell Ran-
ger alignment, and therefor did not exist as a DE gene
(Fig. 4b and Additional file 3).
Since the kallisto dataset contains a higher total gene

detection rate, we explored whether there is a general
trend of counted genes, such as col14a1b, that can result
in identification of additional clusters. To that end, we
compared the UMI counts of all genes identified with
kallisto or Cell Ranger and found that for both, there are
genes with comparatively higher UMI counts in one
pipeline and not the other (Additional File 5). In order
to see, whether those genes are detected as cluster-
specific markers and thus affecting the downstream ana-
lysis, we plotted those genes in heatmaps against the de-
tected clusters (Additional File 1: Figs. S10 &S11). For
both pipelines, those genes are spread out over most of
the clusters. In the case of kallisto, some genes with high
UMI counts, including col14a1b, are highly expressed in
the cone-like photoreceptor cluster in comparison to the
other clusters, suggesting that this led to the identifica-
tion of the respective cluster. For Cell Ranger, there are
also genes with different count ratios, which are differ-
ently expressed between clusters, but did not result in
new clusters.
A similar trend was also observed for the smaller pineal

dataset (dr-pineal-s1). The additional cone-like cluster
could also only be identified using the kallisto pipeline.
However, Cell Ranger detected two additional clusters,
which are not part of the pineal gland (a type of pigment
cells representing a “contamination” of the tissue dissec-
tion, and hematopoietic cells) (Additional File 2).
To test whether the higher total gene detection rate in

the kallisto dataset was the sole cause for identification
of the new cluster, or whether the population of cells
with the low gene count in the Cell Ranger data ham-
pered its detection, we also performed downstream ana-
lysis of the kallisto forced dataset (Additional file 1: Fig.
S8c). This data combines the total gene detection rate of
kallisto, as well as the population of cells with the low
gene count of Cell Ranger. We did not detect the new

cluster of the green cone-like PhR in the kallisto forced
at the beginning (Additional file 1: Fig. S9e, f). However,
increasing the clustering resolution from 0.9 to 1.2 re-
vealed the new cluster (Additional file 1: Fig. S9g, h).
With this resolution, the gene col14a1b was the most
DE gene in the red cone-like PhR for the kallisto forced
as well (Additional file 1: Fig. S9h). These findings sug-
gest that not only the additional genes affected the iden-
tification of the new cluster, but that the population of
cells with low gene count was detrimental to the cell
type detection and required a higher resolution to reach
the same results.

Discussion
We compared two scRNA-seq read alignment and filter-
ing pipelines; Cell Ranger, the standard tool and part of
the 10x Genomics package and the lightweight pseudoa-
ligner, kallisto, on a diverse range of scRNA-seq datasets
across the animal phylum. We specifically focused on
the latest and most used Chromium chemistries (v2/v3)
and compared over a range of different species. Further-
more, we aimed to compare directly with the standard
parameters of the Cell Ranger pipeline, as this is the
most common way to prepare Chromium scRNA-seq
data.
Recent publications comparing STAR and kallisto [27,

28] showed that applying STAR [11] results in better
gene detection than kallisto, depending on the applied
scRNA-seq technology and reference. On the other
hand, a direct comparison between Cell Ranger and kal-
listo show overall comparable results concerning MGC
& MUC and clustering analysis [18]. In another instance,
kallisto was reported to detect high cell numbers and
cells with low gene content when applied on human and
mouse samples [29]. Here we compare kallisto to Cell
Ranger, while focusing in more detail on the effects of
the pre-processing on the biological relevance of the
clustering results. We demonstrate that both differences
in the gene detection rate and filtering between the pre-
processing pipelines can result in identification of new
cell types and improve the overall understanding of tis-
sue composition.
For most of the datasets explored here, kallisto re-

sulted in overall increased alignment rates of the reads
to the transcriptome, total gene detection rates, MGC &
MUC, in comparison to the standard Cell Ranger pipe-
line. When looking at cell counts after thresholding out
empty droplets, the numbers were higher for most of
the samples when run with Cell Ranger. As mentioned
before, the number of cells is defined by a threshold
drawn between potentially empty and cell containing
droplets [21, 22]. This process is quite different between
Cell Ranger and kallisto. The cut-off in Cell Ranger was
generally much higher, favoring higher cell counts, but
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with the potential integration of cells with low gene de-
tection rates (Fig. 3), as seen consistently in all the non-
mammalian datasets (Additional file 1: Fig. S2). A similar
observation was also made with kallisto [29]. However,
this result could simply be derived from different filter-
ing parameters and do resemble our kallisto forced data-
sets, in which the cutoff in the knee plot was shifted
towards higher cell numbers and thus included also cells
with lower MGCs. Due to the underlying technology
and the lack of ground truth about the exact number of
intact cells passing the droplet formation and library
preparation, it is difficult to test, whether these are real
cells or cells of lower quality [30]. The number of these
cells were reduced or not present in the mouse and hu-
man samples. One of the reasons could be that the
standard parameters of Cell Ranger work better for
mouse and human datasets or that these samples were
of higher quality to begin with (Fig. 3).
To find out whether the cell population with low gene

detection rates impacts the scientific conclusions of
underlying biology, we performed clustering analysis of
the zebrafish pineal dataset (dr-pineal-s2; Fig. 4). The
pineal cellular composition in non-mammalian verte-
brates shows similarities to the retina. It is a photorecep-
tive tissue that regulates circadian rhythms and seasonal
changes and therefore contains rod-like and cone-like
PhRs [31, 32]. Using kallisto, we were able to further dif-
ferentiate the cone-like PhRs into two clusters with one
distinguished by red opsins (long wavelength sensitive)
and the other by green opsins (Fig. 4). This finding sug-
gests that the pineal gland could be a bi-chromatic
photoreceptive tissue, containing cones sensitive to dif-
ferent wavelengths. Mutual exclusive expression of
opn1lw1 and parietopsin in the pineal cone-like PhRs
was recently demonstrated [33], and thus, the additional
cluster found with kallisto reflects a true biological find-
ing, previously undetected when using the Cell Ranger
platform with the standard parameters. In contrast to
the Cell Ranger data, the additional cluster was detected
with kallisto forced but only when increasing the cluster-
ing resolution (Additional file 1: Fig. S9). Merely due to
the increased overall gene detection, it became possible
to identify the additional cluster, while it was the altered
filtering of the kallisto pipeline that reduced the noisi-
ness in the data and improved cell type detection. Ana-
lysis of the additional pineal dataset (dr-pineal-s1),
revealed a very similar trend. The additional cone-like
photoreceptors could only be found when pre-
processing the dataset with kallisto, while two additional
clusters, which are not part of the pineal itself, were only
detected with Cell Ranger (Additional File 2). These are
small clusters that seem to result from cells that were
mostly filtered out in the kallisto pre-processing steps.
This can also represent a case, where the pre-processing

steps affect the clustering analysis, though by cells fil-
tered out and not by gene detection.
Although all the processing was performed using

standard conditions in order to ensure the best compari-
son between datasets as possible, several steps in the
pipelines can be tuned further, which can result in the
detection of additional genes and clusters. Thus, we can-
not rule out the detection of the green cone-like PhRs
with Cell Ranger under non-standard analysis parame-
ters. For instance, one could work with the unfiltered
output of Cell Ranger and change the filtering threshold
to the knee point instead of the inflection point or use
tools like EmptyDrops [21] for this step. Additionally,
other parameters in the downstream analysis can be ad-
justed such as the normalization method, number of
variable genes, number of principal components or clus-
tering algorithm. This however might not be applicable
for the routine use of scRNA-seq, which is becoming in-
creasingly popular, and also requires an advanced
knowledge.
Furthermore, if a certain cell type is expected or if

some particular cluster comprises enough cells, one can
also isolate those and re-run the analysis to further dif-
ferentiate the cluster. This requires prior knowledge of
the composition of cell types and the underlying biology,
and is usually not the case when applying scRNA-seq to
characterize a tissue. It is thus beneficial to work with an
optimized entry point of the analysis for both the unex-
perienced user as well as when working with previously
unstudied tissue. Looking at the here tested diverse data-
sets, kallisto potentially provides a better entry point to
analyze scRNA-seq data, resulting in increased data
quality and clustering quality. Another big advantage is
its flexibility concerning the reference input. It only
needs a transcriptomic reference as a starting point,
which for some organisms might be the only available
option or the better annotated version. In addition, kal-
listo is extremely fast and light weight and can be exe-
cuted on standard machines [14, 18, 19]. It is under
constant maintenance and allows the simple integration
of various scRNA-seq platforms, making it extremely
versatile [18, 19]. Furthermore, we find it as easy to use
as Cell Ranger and can be easily integrated into a cus-
tom workflow (see Methods section).
The faster processing time of kallisto also comes with

a few disadvantages. One of those is that kallisto does
not correct potential sequencing errors in the UMIs,
which could lead to incorrect gene detection and expres-
sion levels. However, it was recently demonstrated that
only little improvement is achieved when UMI sequen-
cing errors are corrected, and therefore it can be consid-
ered as a negligible feature [18].
Another potential disadvantage is that reads crossing

splice junctions are not filtered out by kallisto. In
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contrast, STAR is a splice aware aligner and is thus bet-
ter suited to deal with such cases. This situation has
been addressed in a recent publication and found to be
true, but rather rare [18]. Although this could potentially
lead to higher, but biased gene detection, for the pineal
dataset the additional detected genes were important for
the detection of a biologically validated cluster. This sug-
gests that the increased detection rate cannot be attrib-
uted entirely to spurious alignment.
Regardless to the number of genes detected, there are

strong differences in the UMI counts for some of the de-
tected genes, between kallisto and Cell Ranger (Add-
itional File 1: Fig. S10 & S11 & Additional Files 3 & 5).
While for both pipelines, those genes are mainly distrib-
uted over all clusters, some with higher UMI counts in
the kallisto data can be found in the red cone-like
photoreceptor cluster, and most likely led to its identifi-
cation as a separate cluster. For the particular case of
the pineal data, the genes with higher UMI counts in the
kallisto data were also cluster markers, but this situation
can be different for other datasets.
Another feature that affects the genes detected and the

UMI counts is the handling of multi-mapped reads. Cur-
rently, both Cell Ranger and kallisto discard reads that
map to multiple genes [18]. This feature could increase
gene detection rates and quality especially in species
with a high degree of paralogous genes [34], like teleost
species, due to their shared whole genome duplication
event [35]. One of the most popular approaches to cor-
rectly count multi-mapped reads is using an expectation
maximization (EM) algorithm, which has been integrated
into the latest version of STARsolo [36] and alevin [17].
Although we have focused here on the comparison be-
tween Cell Ranger and kallisto,
both STARsolo and alevin are also excellent scRNA-

seq pre-processing alternatives and produce very similar
results [18, 29].

Conclusions
Comparison of the alignment results between Cell Ran-
ger, the standard 10X Genomics-based tool, and the al-
ternative pipeline kallisto, across a wide spectrum of
tissues and organisms, revealed higher read alignment
and gene detection rates with kallisto across almost all
samples. Cell Ranger on the other hand consistently fa-
vored higher cell numbers, which mostly included cells
with lower median gene counts. Thorough analysis of
one of the datasets revealed that clustering analysis is
more accurate and biologically meaningful, when kallisto
is applied. In order to achieve accurate clustering, it is
better to have high quality datasets with high gene de-
tection rates, even if this results in fewer total cells. De-
pending on the origin of the dataset, we suggest to run
alternative pipelines side by side and judge on an

individual basis. High gene detection and stringent filter-
ing positively impacts on cell type classification, which is
the primary goal for most of the scRNA-seq experi-
ments. Thus, choosing the best possible option is
crucial.

Methods
Datasets
A list of all the used datasets and accession numbers can
be found in Table 1. The fastq files were directly used
for the alignments with no extra trimming of the reads.
We stick to the most standard parameters and transcrip-
tomic references (Ensembl genomes & annotations) for
Cell Ranger and kallisto to simulate standard usage of
these pipelines.

Alignment with Cell Ranger
All datasets were aligned on a cluster node with Cell
Ranger version 5.0. The respective genome references
and gene transfer format (GTF) files were obtained from
Ensembl version 100/101 and prepared with Cell
Ranger’s mkref function. The alignment was run with
standard parameters as described on 10xgenomics.com.

Alignment with kallisto
The index files for the kallisto workflow were generated
using either “kb ref” (kb-python 0.24.4; standard param-
eters (https://github.com/pachterlab/kb_python) to cre-
ate the index from the same genome and gtf files
(Ensembl version 100/101) as for the Cell Ranger refer-
ences. For creating the index files of just transcriptomic
input, “kallisto index --make-unique” was used (https://
pachterlab.github.io/kallisto/). The alignment was then
performed with “kb count” of the kb-python package.
This package conveniently wraps kallisto and bustools
into one. For downstream analysis (e.g. Seurat) it is more
convenient to work with gene names instead of gene
IDs. In order to conveniently change this, we created a
helper script to modify the final matrix accordingly. This
python script also enables batch processing of several
datasets from a sample sheet in an easy to handle
command-line interface (CLI). The helper script reads a
tsv-file with all the datasets to be aligned, including the
respective index files and scRNA-seq library preparation
technology. The tool has also the option to create a cus-
tom index file, when provided with a fasta-file from Bio-
Mart (https://www.ensembl.org/biomart) instead of
creating it from a genomic source using “kb ref”. See
https://github.com/mstemmer/kb-helper for detailed ex-
planation of its usage.

Empty droplet filtering
While Cell Ranger takes care of the empty droplet filter-
ing, the kallisto datasets were imported into R with
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busparse 1.3.0, their UMI counts were ranked using
DropletUtils 1.9.0 and the empty droplets were removed
by defining the inflection point on the resulting knee
plot (lower cutoff = 500). The Cell Ranger matrices were
loaded from their standard filtered output. We provide
the corresponding R scripts with our kb-helper tool
(https://github.com/mstemmer/kb-helper).

Downstream processing with seurat
The matrices were converted into objects for seurat v4.0,
applying the standard filtering options (min.cells = 3;
min.features = 200). Total cell & gene detection, median
gene counts & median UMI counts were then extracted
from the seurat objects. For better visualization pur-
poses, the cell distribution plots were roughly filtered
(nFeature_RNA < 6000 & nCount_RNA < 25,000). The
dataset dr-pineal-s2 was chosen for downstream analysis
of the data. Therefore, the dataset was further filtered
(nFeature_RNA > 200 & nCount_RNA < 15,000 & per-
cent_mito < 30) (Additional file 1: Fig. S8), similar to the
original publication [7], with the exception of percent_
mito that was not used originally. The data was then log
normalized and scaled (using Seurat’s default parame-
ters). Variable features were detected (Seurat’s default
parameters) and used for principal component analysis.
PCs 1–20 were used as dimensions of reduction to com-
pute the k.param nearest neighbors (Seurat’s FindNeigh-
bors function). Clustering analysis was performed with
resolution of 0.9 or 1.2 (Seurat’s FindClusters function).
UMAP was used to visualize the datasets in 2D, with the
same input PCs as the clustering analysis (Seurat RunU-
MAP function). The top markers for each cluster were
computed (Seurat’s FindAllMarkers functions) and used
for cluster identifications (Fig. 4, Additional file 1: Fig.
S9 & Additional file 3). The markers were compared to
the original publication [7], while newly detected clusters
were identified by comparing their marker genes to what
is known in literature. The clustering analysis resulted in
sub-clusters of the known pineal clusters (rod-like PhRs,
RPE-like and Müller glia-like) as well as the habenula
kiss1 neurons and the leukocytes. The sub-clusters
which had similar markers, varying only in expression
levels, were merged to simplify the visualization. The
sub-clusters before merging, and their respective
markers, are illustrated in (Additional file 1: Fig. S9).
The R script with all the relevant commands applied in
the downstream analysis can be found in Additional File 6
and a full analysis of dr-pineal-s1 can be found in Add-
itional File 2 (see also https://github.com/ishainer/
Shainer-and-Stemmer_2021).

Abbreviations
scRNA-seq: Single-cell RNA sequencing; UMI: Unique molecular identifier;
MGC: Median gene count; MUC: Median UMI count; gtf: Gene transfer
format; zta: Improved zebrafish transcriptome annotation v4.3.2 (Lawson

et al., 2020); PhR: photoreceptor; UMAP: Uniform manifold approximation
and projection
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Additional file 1: Fig. S1 Total gene detection of all datasets compared
after processing with either kallisto or Cell Ranger. The Venn diagrams
show commonly detected number of genes by both pipelines and
uniquely detected genes. Fig. S2 Violin-plots showing distribution of
gene and UMI detection per cell of all the analyzed datasets (Table 1) run
with the Cell Ranger pipeline. Fig. S3 Violin-plots showing distribution of
gene and UMI detection per cell of all the analyzed datasets (Table 1) run
with the kallisto pipeline. Fig. S4 Cell counts of all datasets compared
after processing with either kallisto forced or Cell Ranger. The Venn dia-
grams show commonly detected cell barcodes by both pipelines and
uniquely detected cell barcodes. Fig. S5 Alignment results of all datasets
(Table 1) run with either Cell Ranger or kallisto forced against Ensembl
reference. a Percent alignment rates of all reads against the reference
transcriptome. b Total gene detection. c Median gene counts over all
cells per dataset. d Median UMI counts over all cells per dataset. e Total
cell counts of each dataset. Fig. S6 Total gene detection of all datasets
compared after processing with either kallisto forced or Cell Ranger. The
Venn diagrams show commonly detected number of genes by both
pipelines and uniquely detected genes. Fig. S7 Violin-plots showing dis-
tribution of gene and UMI detection per cell of all the analyzed datasets
(Table 1) run with the kallisto forced pipeline. Fig. S8 Violin-plots show-
ing distribution of gene and UMI detection per cell of the dr_pineal_s2
dataset after additional filtering for downstream analysis. Run with either
Cell Ranger (a), kallisto (b) or kallisto forced (c). Fig. S9 Downstream ana-
lysis of dr_pineal_s2 before cluster merging. a 2D visualization using
UMAP of Cell Ranger analyzed clusters before merging, with resolution
equal to 0.9. Each point represents a single cell, colored according to cell
type. The cells were clustered into 21 types. b Expression profile of
marker genes according to cluster [7] of (a). Clusters 0, 1, 8 and 18 are all
rod-like PhRs subclusters. They expressed rod-like PhR markers (exorh,
gant1, gngt1), but the expression levels differed and resulted in their sep-
aration. For simplicity, they were merged and referred as a single rod-like
PhRs cluster in the main text. Similarly, cluster 7 and 12 were merged into
a single Müller-glia like cluster, clusters 2, 5, 16 were merged into a single
RPE-like cluster, clusters 3 and 10 were merged into a single habenula
kiss1 cluster and cluster 11 and 19 were merged into a single leukocytes
cluster. c. 2D visualization using UMAP of Cell Ranger analyzed clusters,
with resolution equal to 2. The cells were clustered into 31 types. How-
ever, the two different cone-like PhR cell types are still not distinguished
from one another. d Expression profile of marker genes according to
cluster of (c). e 2D visualization using UMAP of kallisto analyzed dr_pi-
neal_s2 clusters before merging, with resolution equal to 0.9. The cells
were clustered into 24 types. f Expression profile of marker genes accord-
ing to cluster of (c). Similar to the descried above, clusters 1, 2, 3, 7 and
21 were merged into a single rod-like PhRs cluster, clusters 0, 9, 17 were
merged into a single RPE-like cluster, clusters 11 and 12 were merged
into a single Müller-glia like cluster, clusters 4, 5 and 20 were merged into
a single habenula kiss1 cluster and clusters 13 and 22 were merged into
a single leukocytes cluster. g 2D visualization using UMAP of kallisto
forced analyzed dr_pineal_s2 clusters, with resolution equal to 1.2. The
cells were clustered into 27 types. h Expression profile of marker genes
according to cluster of (g). The col14a1b gene was only detected in the
kallisto and kallisto forced datasets and is the strongest DE marker within
the red cone-like cluster (f, h). Fig. S10 Heatmap of genes with higher
counts in kallisto pre-processed pineal data. All the UMI counts for both
kallisto and Cell Ranger were summed, and the diff_ratio value was calcu-
lated (kallistocounts−CellRangercountskallistocountsþ CellRangercounts) for
each gene (Additional file 1: Fig. 10). The top 80 diff_ratio genes, as well
as the top 20 genes uniquely identified in kallisto were plotted according
to the average scaled expression per cluster. Fig. S11 Heatmap of genes
with higher counts in Cell Ranger pre-processed pineal data. All the UMI
counts for both kallisto and Cell Ranger were summed, and the diff_ratio
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value was calculated
(kallistocounts−CellRangercountskallistocountsþ CellRangercounts) for each
gene (Additional file 1: Fig. S11). The top 80 diff_ratio genes, as well as
the top 20 genes uniquely identified in Cell Ranger were plotted accord-
ing to the average scaled expression per cluster.

Additional file 2.

Additional file 3.

Additional file 4.

Additional file 5.

Additional file 6.
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