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Abstract

Background: Genetic improvement for disease resilience is anticipated to be a practical method to improve efficiency
and profitability of the pig industry, as resilient pigs maintain a relatively undepressed level of performance in the face
of infection. However, multiple biological functions are known to be involved in disease resilience and this complexity
means that the genetic architecture of disease resilience remains largely unknown. Here, we conducted genome-wide
association studies (GWAS) of 465,910 autosomal SNPs for complete blood count (CBC) traits that are important in an
animal’s disease response. The aim was to identify the genetic control of disease resilience.

Results: Univariate and multivariate single-step GWAS were performed on 15 CBC traits measured from the blood
samples of 2743 crossbred (Landrace × Yorkshire) barrows drawn at 2-weeks before, and at 2 and 6-weeks after
exposure to a polymicrobial infectious challenge. Overall, at a genome-wise false discovery rate of 0.05, five genomic
regions located on Sus scrofa chromosome (SSC) 2, SSC4, SSC9, SSC10, and SSC12, were significantly associated with
white blood cell traits in response to the polymicrobial challenge, and nine genomic regions on multiple
chromosomes (SSC1, SSC4, SSC5, SSC6, SSC8, SSC9, SSC11, SSC12, SSC17) were significantly associated with red blood
cell and platelet traits collected before and after exposure to the challenge. By functional enrichment analyses using
Ingenuity Pathway Analysis (IPA) and literature review of previous CBC studies, candidate genes located nearby
significant single-nucleotide polymorphisms were found to be involved in immune response, hematopoiesis, red blood
cell morphology, and platelet aggregation.

Conclusions: This study helps to improve our understanding of the genetic basis of CBC traits collected before and
after exposure to a polymicrobial infectious challenge and provides a step forward to improve disease resilience.

Keywords: Genome-wide association studies, Disease resilience, Complete blood count, Pigs, Natural disease
challenge model
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Background
The prevalence of infectious diseases caused by a
multitude of pathogens results in high economic losses
for the pig industry [1, 2]. Genetic improvement for dis-
ease resilience is a practical option to help address the
problem of infectious disease as it can ensure production
efficiency, because resilient animals are defined as main-
taining a relatively undepressed performance in the face
of disturbances caused by infection [3, 4]. Disease resili-
ence is a complex trait composed of multiple biological
functions, such as growth, health, nutrient status, and
other dynamic elements, including the efficiency of im-
mune response and the rate of recovery from infection
[5]. This complexity makes disease resilience hard to
properly characterize and little is known about the gen-
etic architecture that drives disease resilience. Alterna-
tively, indirect selection of disease resilience based on
immune-related traits may be a feasible breeding strat-
egy, because the disease response of an animal largely
depends upon its immunity [6, 7].
Blood cells comprise white blood cells, red blood cells,

and platelets that are important elements of an animal’s
immune status [8]. Complete blood count (CBC) is one
of the most common clinical tests performed to evaluate
concentrations and relative proportions of these circulat-
ing blood cells, which may help to uncover the layers of
immune system complexity [9]. Our previous study [10]
found that CBC traits collected from blood samples of
pigs in both healthy and challenged conditions at 2-
weeks before, and 2 and 6-weeks after exposure to a
polymicrobial challenge were moderately to highly herit-
able (0.08 ± 0.04 to 0.53 ± 0.05). Changes of each CBC
trait between blood samples collected at different time
points (e.g. the change of a CBC level from 2-weeks be-
fore to 2-weeks after exposure to the challenge) were
also found to be heritable, with estimates ranging from
0.06 ± 0.04 to 0.24 ± 0.04 [10]. These heritability esti-
mates indicate the importance of the genetic component
of CBC traits. Moreover, significant genetic correlations
(either positive or negative) were found for several CBC
traits collected after exposure to the challenge with the
economically important production traits of grow-to-
finish growth rate (GFGR) and treatment rate (TR) in
response to the polymicrobial challenge (− 0.82 ± 0.47 to
0.89 ± 0.26) [10], which may further indicate the poten-
tial of developing those CBC traits as indicator traits of
disease resilience. In addition to these significant genetic
correlations for CBC with GFGR and TR, our previous
study [10] also found high genetic correlations (≥ 0.40 ±
0.04) between the CBC traits. Changes in CBC traits be-
tween each time point were also found to be genetically
correlated, with significant estimates ranging from −
0.42 ± 0.21 to − 0.92 ± 0.11 to 0.44 ± 0.22 to 0.98 ± 0.03
[10]. This allows multivariate models to be used for joint

analyses of these genetically correlated traits, which pro-
vides the potential to improve statistical power and ex-
plore pleiotropy [11–14].
To date, some quantitative trait loci (QTL) have been

identified for some blood cell traits in pigs under either
healthy or disease challenged status by linkage and asso-
ciation analyses [15–22]. However, due to the use of a
pathogen-specific challenge or a relatively low density of
genetic markers, the genetic components of blood cell
traits in pigs under typical commercial environments,
where multiple disease-causing pathogens are present,
remains largely unknown.
In this study, CBC traits were collected from pigs in a

natural polymicrobial disease challenge model, as de-
scribed by Bai et al. [10]. Standard univariate genome-
wide association studies (GWAS) and multivariate
GWAS based on a relatively high-density panel of 465,
910 autosomal single-nucleotide polymorphisms (SNPs)
were conducted for these CBC traits. The objectives
were: (1) to reveal the genomic regions associated with
the CBC traits and with their changes in response to the
polymicrobial challenge; and (2) to explore the under-
lying genetic architecture for disease resilience of pigs in
the face of a polymicrobial infectious challenge.

Results
Descriptive statistics and genetic parameters
Descriptive statistics (mean, standard deviation, mini-
mum, maximum, and distribution) for the CBC data
after removing the outliers, are shown in Additional file 1:
Fig. S1, S2 and S3. Details about genetic parameters for
the evaluated CBC traits, including heritabilities and
genetic correlations, can be found in our previous study
[10], which used the same 2593 genotyped animals. In
addition to the genetic correlations with resilience
already reported for these data by Bai et al. [10], we also
found significant genetic correlations for platelet con-
centration in Blood 3 collected at 2-weeks after exposure
to a polymicrobial infectious challenge with GFGR
(0.40 ± 0.22) and TR (− 0.46 ± 0.26), and for the change
of monocyte concentration from Blood 1 to Blood 3
(MONOΔ13) collected at 2-weeks before and 2-weeks
after exposure to the challenge with GFGR (0.63 ± 0.21).

Population structure
As false positive results can be introduced in GWAS by
confounding effects due to population stratification,
multidimensional scaling (MDS) plots (Additional file 2:
Fig. S4) were generated to provide a visualization of the
population structure in the first three dimensions (C1,
C2, and C3). Animals tended to cluster by farm of ori-
gin, as they shared a similar genetic background when
they came from the same farm. Since batches were
nested within farms and coded uniquely, population
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stratification associated with the farm effect was
accounted for in the association analysis model by fitting
the fixed effect of batch. The genomic inflation factors
of single-step (SSGWAS) for the CBC traits ranged from
0.98 to 1.06, suggesting that there was no population
stratification that confounded the GWAS results.

Association results and estimates for SNP effects
White blood cell traits
Five genomic regions were found to be significantly as-
sociated with white blood cell traits at a genome-wise
false discovery rate (FDR) of 0.05 by univariate SSGW
AS. Of note, SNPs located on Sus scrofa chromosome
(SSC) 4, SSC10, and SSC12 were found to be associated
with eosinophil concentration in Blood 3, which was col-
lected 2 weeks after exposure to the challenge (EOSB3).
Meanwhile, SNPs on SSC2 and two adjacent floating
SNPs (significant SNPs without a group of supportive
SNPs) on SSC9 were identified to be associated with
MONOΔ13. The Manhattan and quantile-quantile (Q-
Q) plots for EOSB3 and MONOΔ13 are shown in
Additional file 2: Figs. S5 and S6. Top lead SNPs (the
most significant SNP with a group of supportive SNPs)
for significant associations (genome-wise FDR < 0.05)
with EOSB3 and MONOΔ13 are shown in Table 1. For
EOSB3, the additive genetic variances explained by the
1Mb window of the top lead SNPs (SNP1, SNP2, SNP3)
and their adjacent SNPs on SSC4, SSC10, and SSC12
were estimated to be 0.46, 0.35, and 0.53% of the addi-
tive genetic variance for EOSB3, respectively. SNP4 was
a floating SNP on SSC2 and its 1Mb window explained

0.12% of the additive genetic variance for MONOΔ13.
The 1Mb window for SNP5, the top lead SNP on SSC9,
was estimated to explain about 1.23% of the additive
genetic variance for MONOΔ13.
Estimates of additive and dominance effects for the

top significant SNPs (genome-wise FDR < 0.05, including
both top lead and top floating SNPs) associated with
EOSB3 and MONOΔ13 are summarized in Table 1. A
significant dominance effect (p < 0.05) was only identi-
fied for SNP2, which was associated with EOSB3. Esti-
mates of additive effects were found to be significant
(p < 0.05) for all SNPs that were associated with EOSB3
and MONOΔ13. For EOSB3, estimates of additive ef-
fects were − 0.05 ± 0.01, 0.14 ± 0.04, and − 0.06 ± 0.01 for
SNP1, 2 and 3, respectively. Estimates of additive effects
for MONOΔ13 were 0.08 ± 0.02 and − 0.08 ± 0.02 for
SNP 4 and 5, respectively.
Due the relatively low genetic correlations and large

standard errors between white blood cell traits [10], no
genomic region was found to be significantly associated
with white blood cell traits at FDR < 0.05 from multivari-
ate SSGWAS.

Red blood cell and platelet traits
Nine genomic regions were found to be significantly as-
sociated with red blood cell and platelet traits at the
genome-wise FDR of 0.05 by univariate and or multivari-
ate SSGWAS. The Manhattan plots and Q-Q plots are
shown in Additional file 2: Figs. S7, S8, S9, S10, S11 and
S12. The four top lead SNPs for significant associations
(genome-wise FDR < 0.05) and estimates of additive

Table 1 Top significant SNPs identified by univariate SSGWAS for significant associations with white blood cell traits at a genome-
wise false discovery rate (FDR) of 0.05

Traita Bloodb SNP ID SNP
statusc

SSCd SNP
position
(bp)

MAFe FDR GVar
(%)f

1-Mb window
start SNP
positiong (bp)

Dominance
effect
± standard error

Additive effecth

± standard error

EOS Blood
3

SNP1:
rs336560074

Top lead 4 93,647,202 0.31 0.006 0.46 93,331,316 0.001 ± 0.01 −0.05 ± 0.01i

EOS Blood
3

SNP2:
rs346258273

Top lead 10 8,186,695 0.08 0.03 0.35 7,396,201 −0.09 ± 0.04 0.14 ± 0.04

EOS Blood
3

SNP3:
rs339860061

Top lead 12 36,308,994 0.13 0.003 0.53 35,450,868 0.002 ± 0.02 −0.06 ± 0.01

MONO Δ13 SNP4:
rs321357560

Top
floating

2 120,341,
201

0.47 0.049 0.12 120,219,793 −0.03 ± 0.02 0.08 ± 0.02

MONO Δ13 SNP5:
rs327963623

Top lead 9 105,461,
701

0.43 0.049 1.23 105,461,701 −0.02 ± 0.02 −0.08 ± 0.02

aEOS eosinophil concentration, MONO monocyte concentration
bBlood 3: the CBC measures in Blood 3 collected at 2-weeks after the challenge; Δ13: the change of CBC measures from Blood 1 collected at 2-weeks before the
challenge to Blood 3 collected at 2-weeks after a polymicrobial infectious challenge
cTop lead: the most significant SNP with a group of supportive SNPs; Top floating: the most significant SNP without a group of supportive SNPs
dSus scrofa chromosome
eMinor allele frequency
fThe largest percentage of additive genetic variance explained by the top significant SNP and its adjacent SNPs in a 1 Mb window
gPositions of the start SNP for the 1 Mb window segment with the largest amount of additive genetic variance
hEstimates of additive effects per additional copy of the “B” allele. When the dominance effect was not significant (p > 0.05) the estimate of the additive effect was
based on a model without the dominance effect
iSignificant estimates of additive and dominance effects are highlighted in bold (p < 0.05)
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genetic variances explained by these top lead SNPs and
their adjacent SNPs in a 1Mb window are summarized
in Table 2. Five floating SNPs (genome-wise FDR < 0.05)
that explained small amounts of the additive genetic
variance (0.05 to 0.21%) for associated red blood cell and
platelet traits were found and are summarized in Table 3.
Of note, several pleiotropic SNPs associated with red
blood cell or platelet traits were identified by multivari-
ate SSGWAS of CBC traits in Blood 1, 3, and 4
(collected at 2-weeks before, 2- and 6-weeks after the
challenge, respectively). High genetic correlations were
found between mean corpuscular hemoglobin (MCH),
mean corpuscular volume (MCV), and red blood cell
concentration (RBC) traits (Additional file 1: Table S1),
and also between all three sampling time points for each
of these traits (≥ 0.77 ± 0.08) [10]. Therefore, pleiotropic

SNP7 on SSC6 was identified as the top lead and pleio-
tropic SNP for MCH in Blood 1 and for both MCV and
RBC traits in all three blood samples (Table 2). The per-
centage of additive genetic variance explained by the 1
Mb window of SNP7 and its adjacent SNPs ranged from
0.29 to 0.57% for its associated traits. Moreover, SNP8
was the top lead and pleiotropic SNP on SSC8, which
was associated with MCH, MCV, and RBC traits in all
three blood samples. The percentages of additive genetic
variance explained by SNP8 and its adjacent SNPs in a
1Mb window were estimated to range from 0.28 to
0.35% for its associated traits. SNP9 on SSC17 was the
top lead and pleiotropic SNP for mean platelet volume
(MPV) in Blood 1 and 4. Together with adjacent SNPs
in a 1Mb window, SNP7 was estimated to explain about
0.49 and 0.40% of the additive genetic variances for

Table 2 Top lead SNPsa identified by univariate and multivariate SSGWAS for significant associations with red blood cell and platelet
traits at a genome-wise false discovery rate (FDR) of 0.05

SNP ID SSCb SNP position (bp) MAFc Traitd Bloode FDR GVar (%)f 1-Mb window
start SNPg

position (bp)

Dominance
effect
± standard
error

Additive effecti

± standard error

SNP6: rs336055186 4 91,591,493 0.38 MCHC Blood 3 0.04 1.15 91,291,800 1.08 ± 0.02j −2.13 ± 0.02

SNP7h: rs325274805 6 28,511,423 0.41 MCH Blood 1 0.04 0.29 28,110,554 0.10 ± 0.07 −0.25 ± 0.06

MCV Blood 1 0.001 0.57 28,110,554 0.29 ± 0.07 −0.73 ± 0.06

Blood 3 0.002 0.49 28,096,004 0.05 ± 0.04 −0.45 ± 0.04

Blood 4 0.002 0.48 28,096,004 −0.12 ± 0.04 −0.53 ± 0.04

RBC Blood 1 0.01 0.44 28,110,554 −0.02 ± 0.07 0.08 ± 0.06

Blood 3 0.01 0.44 28,110,554 0.001 ± 0.04 0.08 ± 0.04

Blood 4 0.03 0.40 28,110,554 −0.04 ± 0.05 0.06 ± 0.04

SNP8h: rs344612650 8 41,156,538 0.45 MCH Blood 1 0.01 0.36 40,257,441 0.15 ± 0.06 0.20 ± 0.05

Blood 3 0.04 0.36 40,257,441 0.11 ± 0.04 0.16 ± 0.04

Blood 4 0.04 0.35 40,257,441 −0.006 ± 0.04 0.18 ± 0.04

MCV Blood 1 0.03 0.33 40,219,864 0.35 ± 0.06 0.59 ± 0.05

Blood 3 0.006 0.27 40,219,864 0.19 ± 0.04 0.38 ± 0.04

Blood 4 0.002 0.33 40,219,864 0.04 ± 0.04 0.51 ± 0.04

RBC Blood 1 0.007 0.31 40,219,864 0.01 ± 0.06 −0.08 ± 0.05

Blood 3 0.02 0.31 40,219,864 −0.02 ± 0.04 −0.06 ± 0.04

Blood 4 0.03 0.30 40,219,864 0.01 ± 0.04 −0.06 ± 0.04

SNP9h: rs323125939 17 59,739,745 0.34 MPV Blood 1 0.02 0.49 59,053,639 0.002 ± 0.10 0.28 ± 0.08

Blood 4 0.04 0.40 59,053,639 −0.09 ± 0.07 0.25 ± 0.05
aThe most significant SNP with a group of supportive SNPs
bSus scrofa chromosome
cMinor allele frequency
dMCHC mean corpuscular hemoglobin concentration, MCH mean corpuscular hemoglobin, MCV mean corpuscular volume, RBC red blood cell concentration, MPV
mean platelet volume
eBlood 1, Blood 3, and Blood 4: CBC measures in blood samples collected at 2-weeks before, and 2- and 6-weeks after a polymicrobial infectious challenge
fThe largest percentage of additive genetic variance explained by the top lead SNP and its adjacent SNPs in a 1 Mb window
gPositions of the start SNP for the 1 Mb window segment with the largest amount of additive genetic variance
hSNPs identified and results estimated by multivariate SSGWAS
iEstimates of additive effects per additional copy of the “B” allele. When the dominance effect was not significant (p > 0.05) the estimate of the additive effect was
based on a model without the dominance effect
jSignificant estimates of additive and dominance effects are highlighted in bold (p < 0.05)
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MPV in Blood 1 and 4, respectively. Significant associa-
tions (genome-wise FDR < 0.05) for SNP7 with MCV in
Blood 1 (genome-wise FDR = 0.003) and for SNP8 with
MCV in Blood 4 (genome-wise FDR = 0.04) were also
found by univariate SSGWAS but at a lower significance
level compared to the multivariate SSGWAS. Mean-
while, univariate SSGWAS only indicated suggestive as-
sociations (genome-wise FDR of 0.10) for SNP8 with
RBC in Blood 1 (genome-wise FDR = 0.09) and with
MCV in Blood 1 (genome-wise FDR = 0.08).
For red blood cell and platelet traits, the estimates of

additive and dominance effects for the top lead SNPs are
summarized in Table 2 and for the top floating SNPs in
Table 3. Of note, the additive effects for pleiotropic
SNPs showed a tendency of affecting each CBC trait in
the three blood samples in the same way, including
SNP7 for MCV, SNP8 for MCH and MCV, SNP9 for
MPV, SNP10 for MCV, SNP11 for PLT, and SNP12 for
MCH. For pleiotropic SNP8, no significant additive ef-
fect was found for RBC traits.

Candidate genes and functional enrichment results
Browsing regions for candidate genes located within a
maximum distance of 1Mb on either side of the lead
SNPs based on a genome-wise FDR < 0.1 for the associ-
ated CBC traits are summarized in Additional file 3:
Table S2. Candidate gene functions for each CBC trait
were explored with the Ingenuity Pathway Analysis
(IPA) database. The top five enriched (p < 0.05) bio-
logical functions among diseases, molecular and cellular
functions, and physiological system development and
function categories for each CBC trait are summarized
in Additional file 4. Enriched functions such as inflam-
matory responses, cell-to-cell signaling and interaction,
cellular development, cell morphology, cellular growth
and proliferation, and hematological system develop-
ment and function were commonly identified for the
candidate gene lists for white blood cell traits collected
after exposure to the challenge, and / or the pleiotropic
candidate gene lists for red blood cell and platelet traits
collected before and after exposure to the challenge.

Table 3 Top floating SNPsa identified by univariate and multivariate SSGWAS for significant associations with red blood cell and
platelet traits at a genome-wise false discovery rate (FDR) of 0.05

SNP ID SSCb SNP Position
(bp)

MAFc Traitd Bloode FDR GVar
(%)f

1-Mb window start
SNPg position (bp)

Dominance effect
± standard error

Additive effecti

± standard error

SNP10h:
rs319452131

1 18,792,764 0.37 MCV Blood
1

0.003 0.18 18,536,535 −0.16 ± 0.18 0.52 ± 0.14j

Blood
3

0.004 0.21 18,546,024 0.03 ± 0.13 0.52 ± 0.10

Blood
4

0.02 0.15 18,536,535 −0.02 ± 0.14 0.37 ± 0.11

SNP11h:
rs1109789977

5 64,520,638 0.31 PLT Blood
1

0.001 0.09 63,861,170 −3.80 ± 6.83 26.78 ± 5.18

Blood
3

0.001 0.09 63,861,170 −9.28 ± 7.44 23.92 ± 5.39

Blood
4

0.03 0.05 63,861,170 −10.57 ± 7.40 18.33 ± 5.46

SNP12h:
rs320615395

9 40,919,049 0.45 MCH Blood
1

0.03 0.05 39,919,771 0.07 ± 0.08 0.21 ± 0.07

Blood
3

0.04 0.07 40,490,005 −0.04 ± 0.05 0.19 ± 0.05

Blood
4

0.04 0.06 40,490,005 0.03 ± 0.05 0.21 ± 0.05

SNP13: rs80784550 11 13,749,336 0.12 MCHC Δ14 0.02 0.07 13,011,748 1.89 ± 2.42 2.38 ± 2.33

SNP14h:
rs323585109

12 22,234,265 0.3 MCV Blood
3

0.04 0.08 21,749,390 −0.06 ± 0.14 −0.40 ± 0.10

aThe most significant SNP without a group of supportive SNPs
bSus scrofa chromosome
cMinor allele frequency
dMCV mean corpuscular volume, PLT platelet concentration, MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration
eBlood 1, Blood 3, and Blood4: CBC measured in blood samples collected at 2-weeks before, and 2- and 6-weeks after a polymicrobial infectious challenge; Δ14:
the change of CBC measures from Blood 1 collected at 2-weeks before the challenge to Blood 4 collected at 6-weeks after the challenge
fThe largest percentage of additive genetic variance explained by the top significant SNP and its adjacent SNPs in a 1 Mb window
gPositions of the start SNP for the 1 Mb window segment with the largest amount of additive genetic variance
hSNPs identified and results estimated by multivariate SSGWAS
iEstimates of additive effects per additional copy of the “B” allele. When the dominance effect was not significant (p > 0.05) the estimate of the additive effect was
based on a model without the dominance effect
jSignificant estimates of additive and dominance effects are highlighted in bold (p < 0.05)
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Candidate genes that have been reported by previous
studies of pigs, human, mice, or rats to be functionally
and biologically related to the same category of blood
cells, as explored here, are summarized in Table 4. A
group of immunity genes on SSC2 has been reported to
be functionally and biologically related to monocytes, in-
cluding TICAM2 (toll-like receptor adaptor molecule 2),
TMED7(transmembrane emp24 domain-containing pro-
tein 7 precursor), and CDO1 (cysteine dioxygenase type 1),
which were located proximal to SNP4, and COMMD10
(COMM domain containing 10), which harbored SNP4
(Table 4). An overview of the location of these candidate
genes and the distribution of all the SNPs in this region
on SSC2 is shown in the linkage disequilibrium (LD)
haplotype map in Additional file 3: Fig. S13. SNP6 on
SSC4 is intronic within candidate gene SPTA1 (spectrin
alpha, erythrocytic 1) and the LD haplotype map for this
region is shown in Additional file 3: Fig. S14. In Table 4, a
group of candidate genes, including THAP11 (THAP do-
main containing protein 11), PSMB10 (proteasome subunit
beta type 10), LCAT (lecithin-cholesterol acyltransferase),
and SLC12A4 (Potassium/Chloride Cotransporter 1), was

reported to be functionally related to red blood cells and
were located close to SNP7 in the same haplotype block
on SSC6 (Additional file 3: Fig. S15). SNP8 on SSC8 was
found to be in LD (r2 > 0.30) with SNPs in the PDGFRA
(platelet derived growth factor receptor alpha) gene (Add-
itional file 3: Fig. S16).

Discussion
Potential roles of candidate genes
Functional enrichment analyses for the candidate gene
lists for CBC traits indicated multiple enriched functions
that can be considered as functionally and biologically
relevant to white blood cell traits in response to a polymi-
crobial infectious challenge, and red blood cell and platelet
traits that were collected before and after exposure to the
challenge, such as inflammatory response, cell growth and
proliferation, cell-to-cell signaling and interaction, and
hematological system development and function.
The candidate genes in Table 4 have been reported to

be relevant to particular types of CBC traits by studies in
pigs, human, mice, and rat, which may help us to further
understand the functions of these candidate genes

Table 4 Candidate genes located within 1 Mb on either side of the top significant SNPsa that have been reported by previous
studies of pigs, human, mice, and rats to be functionally and biologically related to CBC traits

SNPI
D

Traitsb Browsing region Candidate genes and locations

SNP1 Eosinophils SSC4: 92,647,202 bp – 94,
647,202 bp

ARHGEF2 (94,026,391 bp – 94,082,206 bp)

SNP2 Eosinophils SSC10: 7,186,695 bp – 9,
186,695 bp

TGFB2 (8,327,779 bp – 8,435,306 bp)

SNP3 Eosinophils SSC12: 35,308,994 bp – 37,
308,994 bp

MIR21 (36,065,267 bp – 36,065,358 bp)

SNP4 Monocytes SSC2: 119,341,201 bp –
121,341,201 bp

COMMD10 (120,238,623 bp – 120,429,913 bp), ATG12 (119,948,443 bp – 119,965,702 bp), CDO1 (119,928,476 bp
– 119,940,425 bp), TMED7 (119,794,608 bp – 119,804,406 bp), TICAM2 (119,758,636 bp – 119,760,759 bp)

SNP5 Monocytes SSC9: 104,461,701 bp –
106,461,701 bp

NAMPT (106,121,909 bp – 106,161,841 bp)

SNP6 Red blood
cells

SSC4: 90,591,493 bp – 92,
591,493 bp

SPTA1 (91,485,067 bp – 91,640,063 bp), MNDA (91,416,410 bp – 91,433,243 bp), ACKR1 (91,221,889 bp – 91,225,
651 bp)

SNP7 Red blood
cells

SSC6: 27,511,423 bp – 29,
511,423 bp

CBFB (27,684,030 bp – 27,776,751 bp), THAP11 (28,465,458 bp – 28,466,387 bp), PSMB10 (28,544,910 bp – 28,
547,609 bp), LCAT (28,550,363 bp – 28,553,512 bp), SLC12A4 (28,554,162 bp – 28,576,458 bp)

SNP8 Red blood
cells

SSC8: 40,156,538 bp – 42,
156,538 bp

PDGFRA (40,967,493 bp – 41,021,442 bp), KIT (41,402,334 bp – 41,492,306 bp)

SNP9 Platelets SSC17: 58,739,745 bp – 60,
739,745 bp

GNAS (59,031,820 bp – 59,053,022 bp), TUBB1 (59,161,420 bp – 59,168,385 bp)

SNP10 Red blood
cells

SSC1: 17,792,764 bp – 19,
792,764 bp

STXBP5 (18,345,363 bp – 18,513,252 bp), RAB32 (18,870,875 bp – 19,097,892 bp)

SNP11 Platelets SSC5: 63,520,638 bp – 65,
520,638 bp

VWF (64,517,593 bp – 64,655,938 bp), CD9 (64,420,177 bp – 64,459,776 bp), GNB3 (63,863,656 bp – 63,870,396
bp), PHB2 (63,751,566 bp – 63,756,480 bp)

SNP12 Red blood
cells

SSC9: 39,919,049 bp – 41,
919,049 bp

ZBTB16 (41,639,701 bp – 41,836,742 bp)

SNP13 Red blood
cells

SSC11: 12,749,336 bp – 14,
749,336 bp

TRPC4 (13,300,556 bp – 13,517,568 bp), FREM2 (13,959,865 bp – 14,154,246 bp)

SNP14 Red blood
cells

SSC12: 21,234,265 bp – 23,
234,265 bp

RARA (22,047,442 bp – 22,085,674 bp), THRA (22,270,062 bp – 22,296,618 bp)

aThe most significant SNP above the genome-wise FDR of 0.05 in each genomic region
bThe category of traits that associated with candidate genes
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related to CBC traits in response to the polymicrobial
challenge. Of note, candidate genes ARHGEF2 (Rho/Rac
guanine nucleotide exchange factor), TGFB2 (transform-
ing growth factor beta 2), and MIR21 (microRNA miR-
21) were identified to be functionally and biologically
relevant to eosinophils. The product of ARHGEF2 regu-
lates the activity of GTPases and has been identified to
be highly expressed in eosinophils. GTPases are known
to be involved in mediator release from granulocytes,
which is a crucial event in the activation of eosinophils
and neutrophils during inflammation [23, 24]. TGFB2
has also been found to be expressed mainly in eosino-
phils, and greater expression of TGFB2 has been identi-
fied to be associated with persistent eosinophilic
inflammation (severe asthma) in human [25]. However,
in the polymicrobial challenge, an increase in the num-
ber of eosinophils may be associated with parasitic infec-
tion (e.g. Ascaris suum) rather than respiratory disease.
Eosinophils play an important role of killing larvae by
releasing the toxic content of their granules as part of
the immune response [26]. Thus, further investigations
are warranted to investigate the functional relationships
between the expression of TGFB2 and response to the
challenge. Expression of MIR21 has not been identified
in eosinophils but in other white blood cells, including
lymphocytes, monocytes, macrophages, and dendritic
cells, which work collaboratively with eosinophils in the
immune response [27–29]. Although the mRNA targets
for MIR21 are complex and remain an area of active in-
vestigation, it has been demonstrated that MIR21 acts as
a key signal mediating the balance of the inflammatory
reaction to promote healing, resolution, and a return to
homeostasis [27].
For the candidate genes on SSC2, the product of

COMMD10 has been found to be related to the function of
phagosomes in murine macrophages, which promotes pha-
golysosome maturation and facilitates the timely killing of
pathogens [30, 31]. The product of ATG12 (autophagy re-
lated 12) is involved in autophagy of circulating monocytes
for degradation and recycling of cellular components,
which prevents apoptosis (programmed cell death) of
monocytes and is essential for monocyte-macrophage dif-
ferentiation and cytokine production in the innate immune
response [32, 33]. The product of CDO1, cysteine dioxygen-
ase type 1, catalyzes taurine synthesis and it is commonly
accepted that taurine plays an important role in the im-
mune system as an antioxidant to protect phagocytes, in-
cluding macrophages, from oxidative stress caused by the
generation of reactive oxygen species at the site of inflam-
mation [34–37]. Both TMED7 and TICAM2 are immunity
genes and their products are involved in the function of
toll-like receptors (TLRs), which are expressed on
macrophages and monocytes and are responsible for the
sensing of pathogen-associated-molecular-patterns in the

extracellular environment and in endosomes [38–40]. Of
note, overexpression of TMED7 has been found to be asso-
ciated with inhibition of MyD88-independent TLR4 signal-
ing and the protein encoded by TICAM2 has been
identified as a bridge adaptor recruiting TLRs to mediate
innate immune responses [38–40]. In addition, NAMPT
(nicotinamide phosphoribosyl transferase) on SSC9 has
been found to be functionally and biologically related to
monocytes, and its gene product has been found to play an
important role in governing monocyte recruitment and in
monocyte-macrophage differentiation [41, 42].
For red blood cells, the majority of candidate genes re-

ported here have been identified as key components in-
volved in hematopoiesis and erythropoiesis responsible
for the differentiation and development of red blood
cells, including MNDA (myeloid cell nuclear differenti-
ation antigen) on SSC4, CBFB (core-binding factor sub-
unit beta) and THAP11 on SSC6, PDGFRA and KIT
(KIT proto-oncogene, receptor tyrosine kinase) on SSC8,
and RARA (retinoic receptor alpha) and THRA (thyroid
hormone receptor alpha) on SSC12 [43–52]. In addition,
SPTA1 on SSC4 encodes a protein in the red blood cell
membrane, the products of LCAT and SLC12A4 on
SSC6 regulate the lipid composition in the red blood cell
membrane and cell swelling, respectively, and all these
gene products work together to maintain the normal
volume and biconcave shape of red blood cells, which
helps to ensure the biological and biomechanical func-
tions of the cells [53–57]. ACKR1 (atypical chemokine
receptor 1) on SSC4 and PSMB10 on SSC6 are candidate
genes that have been shown to be involved in the im-
mune response of red blood cells. The receptor ACKR1
expressed in red blood cells was found to regulate im-
mune responses by interacting with chemokines, and
which works as a blood-based chemokine buffer in-
volved with the uptake and degradation of chemokines
[58]. Meanwhile, ACKR1 has also been identified as an
essential regulator of hematopoiesis and erythropoiesis
promoting interactions between nuclear progenitor red
blood cells and hematopoietic stem cells in the bone
marrow [58, 59]. PSMB10 is found to be responsible for
intracellular protein degradation and generation of pep-
tides that bind to class I major histocompatibility com-
plex (MHC) molecules [60]. The MHC molecules
display these peptides to cytotoxic CD8+ T cells to sup-
port their activity of immune surveillance [61]. Further,
through a study of anemia caused by congenital red
blood cell aplasia in human, PSMB10 has been sug-
gested to be functional in the MHC class I machinery
in mature red blood cells in response to inflammatory
signaling [62].
Candidate genes for platelet traits were annotated into

two major functions, platelet aggregation and megakaryo-
poiesis. Platelet aggregation involves platelet-to-platelet
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adhesion, which is essential for effective hemostasis
following injury and bleeding, and megakaryopoiesis is the
process of differentiation and development of platelets
[63]. Among them, CD9 (CD9 antigen) on SSC5 encodes
a major platelet cell surface glycoprotein and plays dual
roles in megakarypoiesis and platelet aggregation [64–67].
The products of VWF (von Willebrand factor), PHB2 (pro-
hibitin 2), and GNB3 (G protein subunit beta 3) on SSC5
and GNAS (guanine nucleotide binding protein) on SSC17
were found to be involved in platelet aggregation [68–73].
In addition to megakaryopoiesis, tubulin beta class VI
coded by TUBB1 (tubulin beta 1 class VI) on SSC17 has
been reported to play a role in maintaining platelet
morphology [74–76].

Overlap with previously discovered QTL
In addition to the novel QTL for CBC traits identified in
this study, some of the QTL identified have been previ-
ously reported. QTL on SSC8 located nearby the KIT
gene were found to be associated with MCH, MCV, and
RBC in this study. In addition, this region has also been
identified to show a significant effect on the levels of
NEU and HCT in the crossbreds of European Wild Boar
× Yorkshire and Landrace × Yorkshire subsequent to
stress and disease challenges [15, 22]. For QTL on SSC5
that associated with PLT traits here, Reiner et al. [17]
found them to be associated with red blood cell traits in
Pietrain × Meishan pigs including HCT, HGB, and RBC
traits. These results may be caused by the common mye-
loid progenitors for all cells mentioned above. Moreover,
it may also further indicate the pleiotropic roles of QTL
involved in the functions of different blood cells. Apart
from studies in pigs, the candidate gene SPTA1 associ-
ated with MCHC has also been identified by GWAS for
red blood cell traits in human, which also functions in
maintaining the shape and deformability of human red
blood cells [77].

Potential links with disease resilience
Although the QTL uncovered for blood cell traits have
small effects in this study, which has also been found in
previous GWAS for blood cell traits of pigs and human
[21, 77], the genes involved in these QTL are suggested
to be involved in hematopoiesis and immune responses
in the face of a polymicrobial infectious challenge. In
turn, they may contribute to disease resilience, as
hematopoiesis and immune response are collaborative
mechanisms that play essential roles in defending against
pathogens, maintaining homeostasis, and preventing
death from the infection [6, 78, 79]. None of the QTL
identified for the CBC traits were pleiotropic with GFGR
or TR in response to the challenge. However, some can-
didate genes are known to have pleiotropic effects
among different CBC traits and play roles in both

hematopoiesis and immune response. For example, KIT
may be a pleiotropic gene for multiple blood cell popula-
tions in response to stress and disease challenge, and
ACKR1 exhibits pleiotropic effects on hematopoiesis and
immune responses, as discussed above [15, 22, 58, 59].
Accordingly, these results highlight the importance of
further investigating and validating the function of such
pleiotropic genes in disease resilience.

Conclusions
In this study, we identified 14 genomic regions that were
significantly associated (genome-wise FDR < 0.05) with
CBC traits collected from the natural polymicrobial chal-
lenge model, including five for white blood cell traits
and nine for red blood cell and platelet traits. Candidate
genes or regions located nearby significant SNPs were
found to have potential roles in immune response path-
ways, red blood cell morphology, platelet aggregation,
and hematopoiesis, including granulopoiesis and gran-
ulocytic differentiation, erythropoiesis, and megakarypoi-
esis. These results complement previous GWAS for
blood cell traits in pigs and contribute to improving our
understanding of the genetic basis of blood cell compos-
ition before and after exposure to a polymicrobial infec-
tious challenge. This study also advances understanding
of the genetic control of disease resilience, as blood cells
are key players in an animal’s immune response and are
recruited by hematopoiesis. Validation and identification
of the candidate genes and causal mutations are neces-
sary to further investigate and develop the use of CBC
traits to enhance genetic improvement of disease resili-
ence for the pig industry.

Methods
Natural disease challenge model and phenotypic traits
Details of the natural disease challenge model (NDCM)
and the collection of phenotypic traits are described in
Bai et al. [10] and Putz et al. [80]. Briefly, the NDCM
was established to simulate a polymicrobial infectious
challenge and severe disease pressure often found at the
commercial level of pig production. A 3-week healthy
quarantine nursery after weaning and a test station that
consisted of a 4-week second-stage nursery and an ap-
proximately 16-week grow-to-finish stage were the two
main facilities in the NDCM. A total of 2743 healthy F1
crossbred (Landrace × Yorkshire) barrows owned by
company Centre de Développement du Porc du Québec,
Inc. were introduced into the NDCM in 42 batches at 3-
week intervals after weaning at an average age of 21 days
old. Each batch consisted of 60 or 75 weaned crossbred
barrows that were provided by one of the seven mem-
bers of PigGen Canada from healthy multiplier farms.
All pigs from each batch were sourced from one multi-
plier farm, and over time, 13 farms were involved, and
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each supplied one to six batches of pigs. Pigs that went
through the NDCM were first exposed to the polymicro-
bial infectious challenge in the second-stage nursery.
The challenge was established by co-introducing four
groups of 12 to 28 commercial seeder pigs from three
strategically selected commercial farms with known dis-
ease outbreaks together with the first four batches of
healthy barrows into the NDCM. Common disease-
causing pathogens found in commercial farms were the
major target pathogens in the NDCM, including
multiple strains of porcine reproductive and respiratory
syndrome virus (PRRSV) and swine influenza A virus,
various respiratory and enteric bacterial pathogens (such
as Mycoplasma hyopneumoniae, Haemophilus parasuis,
Brachyspira hampsonii, Salmonella enterica serovar
typhimurium, and Streptococcus suis), and two parasites
(Cystoisospora suis and Ascaris suum). Subsequently, the
challenge model was maintained as a continuous flow
system by nose-to-nose direct contact between the new
batch of healthy barrows and the preceding challenged
group during the first week of challenge nursery period,
except during the period of excessively high challenge
pressure when indirect contact was used to help main-
tain the mortality rate below the target level established
by the Animal Protection Committee. Serum samples
were randomly collected from a subset of individuals for
RT-PCR 4 weeks post-challenge and ELISA 6 weeks
post-challenge to confirm that every batch had been ex-
posed to PRRSV in the test station and to monitor the
pathogens in the test station for each batch. The disease
pressure varied by batch; not all pigs were exposed to all
the same pathogens because not all pathogens were
identified in all batches, as would be the case on a com-
mercial farm. Clinical signs and mortality were moni-
tored in the NDCM for treatment decisions made by
herd veterinarians and trained staff, including individual
treatments that were given on a case-by-case basis and
group medication through water and feed on a batch-
level, as necessary, to maintain a balance between dis-
ease pressure and animal welfare. Of a total of 2743 pigs,
some of the animals died due to infectious diseases after
exposure to the challenge (n = 561), a few animals died
due to non-infectious and unclear reasons (n = 164) and
their phenotypes were set to missing, the other animals
(n = 2018) reaching the target slaughter weight at ap-
proximately 181 days old were slaughtered commercially
and entered the food chain after the study.
In total, four sets of blood samples (Blood 1, Blood 2,

Blood 3, and Blood 4) were collected from the jugular
vein. Blood 2 was collected immediately before entry
into the challenge nursery and polymicrobial infectious
challenge at 40 days of age. Whole EDTA-anticoagulated
blood was collected for CBC analyses at Blood 1, Blood
3, and Blood 4 (2-weeks before, and at 2- and 6-weeks

after exposure to the challenge) at an average age of 26
days, 54 days, and 82 days, respectively, using the ADVI
A® 2120i Hematology System (Siemens Healthineer,
Erlangen, Germany) within 24 to 48 h of collection. The
standard deviation of the bleeding age was 2, 3, and 3
days for Blood 1, Blood 3, and Blood 4, respectively.
CBC traits used for this study were described and the
outliers were removed previously [10]. There are three
categories of CBC traits: (1) six white blood cell traits,
including total white blood cell concentration (WBC,
103/μL), neutrophil concentration (NEU, 103/μL),
lymphocyte concentration (LYM, 103/μL), monocyte
concentration (MONO, 103/μL), eosinophil concentra-
tion (EOS, 103/μL), and basophil concentration (BASO,
103/μL); (2) seven red blood cell traits, consisting of red
blood cell concentration (RBC, 106/μL), hemoglobin
concentration (HGB, g/L), hematocrit (HCT, %), mean
corpuscular volume (MCV, fL), mean corpuscular
hemoglobin (MCH, pg), mean corpuscular hemoglobin
concentration (MCHC, g/L), and red blood cell distribu-
tion width (RDW, %); and (3) two platelet traits, includ-
ing platelet concentration (PLT, 103/μL) and mean
platelet volume (MPV, fL). CBC traits were assessed at
individual time points (Blood 1, Blood 3, Blood 4) as well
as calculating and testing the changes between time
points: Blood 1 to Blood 3 (Δ 13, calculated as Blood 3 −
Blood 1), Blood 3 to Blood 4 (Δ 34, Blood 4 − Blood 3),
and Blood 1 to Blood 4 (Δ 14, Blood 4 − Blood 1). All
white blood cell traits in Blood 1, Blood 3, and Blood 4
were log10-transformed to reduce skewness of the
distribution.
Body weights and veterinary treatments were recorded

on an individual pig basis and used to calculate produc-
tion traits, grow-to-finish growth rate (GFGR), and treat-
ment rate (TR), which were regarded as economically
important traits related to disease resilience. The GFGR
for each animal was estimated using linear regression of
body weights measured every 3 weeks in the grow-to-
finish phase on ages from an average age of 69 days of
age to the endpoint, i.e., either mortality due to infec-
tious diseases or reaching the target slaughter weight at
approximately 181 days old. The TR for each animal was
the number of individual treatment events given on a
case-by-case basis standardized by the number of days
the animal spent in the NDCM (TR = number of treat-
ment events/days × 100%). The TR for animals that died
before receiving any treatment was set to missing.

SNP array genotyping and quality control
The genotyping using the 650 K Affymetrix Axiom®
Porcine Genotyping Array was performed at Delta
Genomics (Edmonton AB, Canada). Raw Affymetrix
SNP data were processed by Delta Genomics with the
Axiom Analysis Suite, using all defaults (sample call
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rate ≥ 97%; SNP call rate ≥ 97%; number of minor alleles
observed ≥2). Imputation of sporadic missing genotypes
was completed using FImpute [81]. The pedigree was
utilized for imputation but only included the dam, since
sire was typically unknown due to the use of pooled
semen. The preGSf90 software in the BLUPF90 suite of
programs was used to remove SNPs with minor allele
frequency lower than 0.01 [82]. After quality control,
there were 2593 genotyped animals with 465,910 auto-
somal SNPs remained for the subsequent analyses.

Population stratification and linkage disequilibrium
estimation
Population stratification among genotyped animals was
investigated using PLINK 1.90 [83] based on pairwise
identity-by-state (IBS) distance, which was estimated
using SNP genotypes. A multidimensional scaling
(MDS) plot based on IBS pairwise distance was drawn
by the ‘ggplot2’ package in R [84] to show the first three
dimensions of the population structure. The genomic in-
flation factor and quantile–quantile (Q–Q) plots were ap-
plied to assess genomic inflation of the test statistics using
the R packages of ‘GenABEL’ and ‘qqman’ [84–86]. The
linkage disequilibrium (LD) of pairwise SNPs was mea-
sured as the squared correlation (r2) of allele counts for
the two SNPs and haplotype blocks were built using the
Haploview software [87, 88].

Single-step GWAS and models
Univariate and multivariate single-step GWAS (SSGW
AS) for CBC traits were implemented in the BLUPF90
suite of programs [82, 89] with the joint pedigree-
genomic relationship matrix (H) for single-marker asso-
ciations, accommodating both genotyped (n = 2593) and
non-genotyped (n = 150) animals. Details for algorithms
employed for these analyses have been described by
Aguilar et al. [89]. Briefly, BLUPF90 combines the algo-
rithms for single-step GBLUP and for back-solving to
obtain estimates and p-values for SNP associations from
estimates of breeding values. The genomic relationship
matrix (G) for genotyped animals was constructed as
ZZ′/2 ∑ pi(1 − pi), where the Z matrix contains centered
SNP genotype codes and pi is the minor allele frequency
for SNP i [90]. The p-values for SNP associations were
adjusted for multiple testing by the Benjamini and
Hochberg correction (false discovery rate, FDR) [84, 91].
An FDR threshold of 0.05 was used to control false posi-
tive results and to declare significant associations. The
most significant SNP above the genome-wise FDR of
0.05 in each genomic region were referred to as the top
significant SNP, which were further separated into top
lead and top floating SNPs, which referred to top signifi-
cant SNPs in a genomic region with or without a group
of supportive SNPs, respectively.

The univariate mixed linear model used for GWAS
can be described as follows:

y¼XbþZaþWcþe

where y is a vector of observations on a CBC trait for all
individuals, b is a vector of fixed effects, including the
effect of batch and the covariate of bleeding age, X is a
design matrix relating observations to the fixed effects, a
is a vector of breeding values, Z is a design matrix that
relates observations to breeding values, including geno-
typed and ungenotyped animals, and e is a vector of re-
sidual effects. Vector c represents a stack of vectors
(cLitter, cPen1, cPen2, and cPen3) of independent and un-
correlated random environmental effects, including litter
(cLitter) and pen effects in the quarantine unit (cPen1), in
the test station second-stage nursery (cPen2), and in the
test station grow-to-finish stage (cPen3). These random
environmental effects were tested and fitted in the
model for each CBC trait when they were significant
(p < 0.05). Matrix W (WLitter, WPen1, WPen2, and
WPen3) is a stack of incidence matrices that relate obser-
vations to the corresponding random environmental
effects. The random effects fitted for each of CBC traits
were the same as Bai et al. [10].
Assuming the random effects c and e are uncorrelated

and identically distributed, the (co-)variances of random
effects for univariate models are:

var
a
c
e

2
4

3
5 ¼

Hσ2a 0 0
0 Iσ2

c 0
0 0 Iσ2e

2
4

3
5

where H is the joint pedigree-genomic relationship matrix
for genotyped and non-genotyped animals as mentioned
above, I is the identity matrix, σ2a is the additive genetic
variance, σ2

c represents a stack of random effect variances

(e.g. σ2
c¼

σ2cLitter 0
0 σ2cPen1

� �
, when the random effects cLitter

and cPen1 are significant and fitted in the model for a trait),
and σ2e is the residual variance.
The model for multivariate analyses resembles a stack

of univariate models for each of the traits that were
found to be highly genetic correlated in [10], which can
be written as [11, 92]:

y1
y2
y3

2
4

3
5¼

X1b1þZ1a1þW1c1þe1
X2b2þZ2a2þW2c2þe2
X3b3þZ3a3þW3c3þe3

2
4

3
5

For each trait in the multivariate model, the same ef-
fects were fitted as in the univariate models. For multi-
variate models, assuming random effects cn and residual
effects en for the nth trait (n = 1, 2, 3) are uncorrelated
and identically distributed, the (co-) variances of random
effects are:
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where σa12 ¼ σa21 , σa13 ¼ σa31 , and σa23 ¼ σa32 are additive
genetic covariances between traits, σc12 ¼ σc21 , σc13
¼ σc31 , and σc23 ¼ σc32 are covariances for common ran-
dom effects between two traits, σe12 ¼ σe21 , σe13 ¼ σe31 ,
and σe23 ¼ σe32 are covariances for residual effects be-
tween two traits.

Post-GWAS marker effect analyses
The percentage of additive genetic variance explained by
a 1Mb window (with a median of 224 adjacent SNPs)
was estimated by conducting window-based inferences
for additive genetic variance in the BLUPF90 suit of pro-
grams [82]. Each chromosome was evaluated by using a
sliding (moving) 1Mb window by using every SNP on
the chromosome as a starting SNP for a window
segment [82]. Therefore, a top significant SNP was
contained within multiple windows and among them,
the largest percentage of additive genetic variance ex-
plained by a window that contained that top significant
SNP was reported for each trait.
Additive and dominance effects of each top significant

SNP were estimated using the BLUPF90 suite of pro-
grams [82] based on the following model:

y ¼ Xbþ ZaþWcþ vαþ dδþ e

where y, X, b, Z, a, W, c, and e are the same as for the
univariate model described above; v is a vector of the
top significant SNP genotypes coded as − 1, 0, and 1 for
the AA, AB, and BB, respectively; α is the additive effect;
d is a vector of dominance coded as 1 for heterozygous
genotype (AB) and 0 for homozygous genotypes (AA
and BB); δ is the dominance effect. Vectors v and d were
fitted as covariates and the top significant SNPs were fit-
ted one by one in the model. The likelihood ratio test
was used to test the significance of the additive and
dominance effects for each of the top significant SNPs
by comparing full models to restricted models that
constrained additive or dominance effects to zero using
the REMLF90 program of BLUPF90 [82]. When the
dominance effect was not significant (p > 0.05), the addi-
tive effect for a SNP was re-estimated by removing the
dominance effect from the model.

Post-GWAS bioinformatics analyses
Ingenuity Pathway Analysis (IPA) (Ingenuity® Systems,
Redwood City, CA; https://www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis/, IPA Spring
2020 release) was used for functional enrichment analyses
of candidate genes in significant genomic regions for the
CBC trait. A maximum distance of 1Mb on either side of
the lead SNPs based on a genome-wise FDR < 0.10 was
used to search for candidate genes for white blood cell
traits of EOSB3 and MONOΔ13. The lead pleiotropic
SNPs at genome-wise FDR < 0.10 were used to search for
common candidate genes located within 1Mb on either
side of the SNPs for red blood cell (MCH, MCV, and
RBC) and (MPV and PLT) platelet traits in different time
points before and after exposure to the challenge. A re-
laxed FDR < 0.10 threshold for associated SNPs was used
here to increase identification of true positives for the sig-
nificance of biological and functional relevance of candi-
date genes [93]. Identification of positional candidate
genes was conducted using the UCSC Genome Browser
for the Ensembl annotation of the Sscrofa11.1 build of the
swine genome (https://genome.ucsc.edu). One collective
gene list was created for each trait by combing all candi-
date genes in associated genomic regions for IPA [94, 95].
Human, mouse, and rat genes in the IPA knowledge base
database were used as background for biological function
analyses in diseases, molecular and cellular functions, and
physiological system development and function categories.
A biological function was considered significantly
enriched if the p-value for the overlap comparison test be-
tween the input list of candidate genes and the IPA data-
base was less than 0.05 [94–96].
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Additional file 2: Figure S4. Multidimensional scaling (MDS) plots
showing the first three dimensions (C1, C2, and C3) of the population
structure for genotyped animals based on pairwise identity-by-state dis-
tance. Figure S5. (A) Manhattan plot for EOSB3. (B) Quantile-Quantile
plot for EOSB3; Figure S6. (A) Manhattan plot for MONO Δ 13. (B)
Quantile-Quantile plot for MONO Δ 13; Figure S7. Manhattan plots (A, C,
E) and Quantile-Quantile plots (B, D, F) for MCH in Blood 1, Blood 3, and
Blood 4, respectively; Figure S8. Manhattan plots (A, C) and Quantile-
Quantile plots (B, D) for MCHC in Blood 3 and for the change of MCHC
from Blood 1 to Blood 4, respectively; Figure S9. Manhattan plots (A, C,
E) and Quantile-Quantile plots (B, D, F) for MCV in Blood 1, Blood 3, and
Blood 4, respectively; Figure S10. Manhattan plots (A, C, E) and Quantile-
Quantile plots (B, D, F) for RBC in Blood 1, Blood 3, and Blood 4, respect-
ively; Figure S11. Manhattan plots (A, C) and Quantile-Quantile plots (B,
D) for MPV in Blood 1 and Blood 4, respectively; Figure S12. Manhattan
plots (A, C, E) and Quantile-Quantile plots (B, D, F) for PLT in Blood 1,
Blood 3, and Blood 4, respectively.

Additional file 3: Table S2. Browsing regions for candidate genes
located within 1-Mb on either side of lead SNPs (FDR < 0.10) associated
with complete blood cell count traits; Figure S13. Haplotype block pat-
tern (r2-scheme) for the region of candidate genes on SSC2 located
within the maximum distance of 1 Mb on either side of the top lead
SNP4 (SSC2, 120,341,201 bp); Figure S14. Haplotype block pattern (r2-
scheme) for the region of candidate genes on SSC4 located within the
maximum distance of 1 Mb on either side of the top lead SNP6 (SSC4,
91,591,493 bp); Figure S15. Haplotype block pattern (r2-scheme) for the
region of candidate genes on SSC6 located within the maximum distance
of 1 Mb on either side of the top lead SNP7 (SSC6, 28,511,423 bp); Figure
S16. Haplotype block pattern (r2-scheme) for SNPs (40,946,144 bp to
41,198,574 bp) on SSC8 located within the maximum distance of 1 Mb on
either side of the top lead SNP8 (SSC8, 41,156,538 bp).

Additional file 4. This file contains a list of top five enriched biological
functions (p-value < 0.05) for the candidate gene lists for EOSB3, MONO Δ 13,
and for MCH, MCV, RBC, MPV, and PLT in Blood 1, Blood 3, and Blood 4.
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