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Abstract

Background: Copy number variations (CNV) are a significant source of variation in the genome and are therefore
essential to the understanding of genetic characterization. The aim of this study was to develop a fine-scaled copy
number variation map for African goats. We used sequence data from multiple breeds and from multiple African
countries.

Results: A total of 253,553 CNV (244,876 deletions and 8677 duplications) were identified, corresponding to an
overall average of 1393 CNV per animal. The mean CNV length was 3.3 kb, with a median of 1.3 kb. There was
substantial differentiation between the populations for some CNV, suggestive of the effect of population-specific
selective pressures. A total of 6231 global CNV regions (CNVR) were found across all animals, representing 59.2 Mb
(2.4%) of the goat genome. About 1.6% of the CNVR were present in all 34 breeds and 28.7% were present in all 5
geographical areas across Africa, where animals had been sampled. The CNVR had genes that were highly enriched
in important biological functions, molecular functions, and cellular components including retrograde
endocannabinoid signaling, glutamatergic synapse and circadian entrainment.

Conclusions: This study presents the first fine CNV map of African goat based on WGS data and adds to the
growing body of knowledge on the genetic characterization of goats.
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Background
Structural variations (SV) are an important source of
genetic variation [1–4]. SV are generally considered to
comprise a myriad of subclasses that consist of unbal-
anced copy number variants (CNV), which include dele-
tions, duplications and insertions of genetic material, as
well as balanced rearrangements, such as inversions and
interchromosomal and intrachromosomal translocations

[5]. Deletions and insertions are referred to as unbal-
anced SV because they result in changes in the length of
the genome. Insertions or deletions in the genome are
typically considered CNV when they are at least 50–
1000 base-pairs (bp) long [6–11]. CNV are not as abun-
dant as single nucleotide polymorphisms (SNP), but be-
cause of their larger sizes, they may have a dramatic
effect on gene expression in individuals [12]. Duplication
or deletion in or near a gene or the regulatory region of
the gene may lead to modification of the function of the
gene.
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CNV cover about 4.5–9.8% of the human genome
[13] and are associated with many Mendelian disor-
ders [12]. Girirajan et al. [14] found that CNV signifi-
cantly determine the severity and prognosis of many
genetic disorders. Approximately 14% of diseases in
children with intellectual disability are caused by
CNV [15]. On the other hand, some CNV have been
found to be associated with adaptive fitness of indi-
viduals, such as adaptation to starch diets associated
in the gene encoding α-amylase [13].
Traditionally, microarray-based comparative genomic

hybridization (array CGH) or SNP genotyping arrays are
used to detect CNV. Several studies have been carried
out using these methods to detect and map CNV in the
goat genome, including studies by Fontanesi et al. [16]
in four goat breeds; Nandolo et al. [17] in 13 East Afri-
can goat breeds; and Liu et al. [18] in the global goat
population.
Detecting CNV using array CGH and SNP genotyping

arrays suffers from shortcomings that include
hybridization noise, limited coverage of the genome, low
resolution, and difficulty in detecting novel and rare mu-
tations [19–21]. The development of whole-genome se-
quencing (WGS) technologies has made it possible for
more rigorous and accurate detection of CNV.
According to Mills et al. [22], WGS-based CNV detec-

tion methods fall into four major approaches: methods
based on paired-end (PE) mapping, split reads (SR), read
depth (RD) and de novo assembly of a genome (AS).
The PE and SR methods are useful for detection of
small-scale CNV [23], and several algorithms are loosely
based on them, including BreakDancer [24], Pindel [25],
and Delly [26]. RD approaches are very useful for detec-
tion of larger CNV. Algorithms using this approach in-
clude CNV-Seq [27], CNVnator [28] and the event-wise
testing approach (EWT) developed by Yoon et al. [29].
The methods can also be combined. For example,
LUMPY [30] is able to combine two or more of the pre-
vious approaches to refine SV detection. Assembly-based
approaches are computationally intensive and are there-
fore not generally used with WGS data [23, 31]. Most of
these SV-detection algorithms have been extensively
reviewed [1, 31–34].
LUMPY implements a breakpoint prediction frame-

work, where a breakpoint is defined as a pair of genomic
regions that are adjacent in a sample, but not in the ref-
erence genome. The location of the breakpoint is deter-
mined using a probability function that considers
different sources of evidence supporting the existence of
a breakpoint, including information from discordant
read pairs and split reads. A discordant read pair occurs
when sequence from two ends of an insert are inconsist-
ent when compared to the reference genome. These in-
consistencies result from differences between mapping

distance or the orientation between the pairs of se-
quences [35, 36]. Split reads are sequences that map to
the reference genome on one end only, and, as explained
by Ye and Hall [33], such reads can indicate the location
of a breakpoint with a high degree of certainty. There
are similar algorithms that rely heavily on the use of
breakpoints to determine genome rearrangements at
single-nucleotide resolution, including Delly [26] and
Pindel [25].
Like LUMPY, Manta [37] incorporates use of PE and

SR methods. However, Manta also uses AS analysis.
Manta overcomes the computational expense of AS
methods by splitting the work into many smaller work-
flows which can be carried out in parallel. Manta scans
the genome for SV and then scores, genotypes and filters
the SV based on diploid germline and somatic biological
models [37]. Manta can detect all structural variant types
that are identifiable in the absence of copy number ana-
lysis and large-scale de-novo assembly, which is why this
approach is also a good candidate for joint analysis of
small sets of diploid individuals, tumor samples, and
similar analyses. Both LUMPY and Manta are good at
identifying SV break points with high resolution.
Many studies have been carried out to detect CNV

using WGS data in various domesticated species: cattle
[38], cats [39], chickens [40], dogs [41], etc. So far, there
is no report of goat CNV discoveries using WGS data.
The goal of this study was to identify CNV in the goat
genome through the intersection of LUMPY and Manta
outputs as a part of the characterization of African goats
in conjunction with the ADAPTmap project [42]. Goats
are a very important farm animal genetic resource for
the livelihoods of African smallholders, and a deeper un-
derstanding of the goat genome is necessary to facilitate
the improvement of goats in the region. This study
aimed to generate a fine-scale CNV map for the goat
genome.

Results
Number and distribution of CNV
The number of CNV detected depended on the filter
levels (low, medium, or stringent) and the cut-off point
for CNV length (3Mb or 10Mb) as given in Supplemen-
tary Figure 11 (Additional file 2). Using precise SV only
with moderate filters (PE + SR ≥ 5), LUMPY detected
8563 duplications and 230,497 deletions while Manta de-
tected 24,088 duplications and 320,374 deletions. A
combined data set with 244,876 deletions and 8677 du-
plications (totaling 253,553, translating into an average
of 1393 CNV per animal) was derived from the intersec-
tion of the LUMPY and Manta sets after removal of vari-
ants shorter than 50 bp or longer than 3Mb. The
combined data set had more observations than the
LUMPY data set (which had fewer raw CNV) because
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for some individuals, many short CNV from Manta
intersected with few long CNV from LUMPY.
The CNV were distributed across the 29 auto-

somes as shown in Fig. 1. A vast majority of the
CNV (96.6%) were losses. This is not unexpected,
because all CNV detection methods suffer from an
inherent deficiency in detecting insertions. In the
case of CNV detection using WGS data, this limita-
tion is even more pronounced with PE methods, be-
cause they detect insertions when the mapped reads
are at a distance shorter than the fragment length,
so they are not able to detect insertions larger than
the insert size of the reference library [43]. This has
also been supported by the observation that recall
percentage is lower than 2 and 5% for medium (1–
100 kb) and large (100 kb-1 Mb) duplications, re-
spectively, for most of the SV-calling algorithms cur-
rently in use, including Manta and LUMPY used in
this study [44].
Overall, the mean CNV length was about 3.3 kb, with a

median of 1.3 kb. The distribution of the lengths of the
CNV for each population are shown in Fig. 2 by CNV
length category. A summary of the descriptive statistics of
the CNV for the populations are given in Table 1. Most of
the CNV losses (99.92%) were less than 100 kb long while
6.3% of CNV gains were longer than 100 kb. Despite the
overwhelming proportion of losses over gains, there were
more CNV gains observed over 100 kb than losses. Simi-
larly, only 1.04% of the loss CNV were longer than 10 kb,
while almost one-quarter (22.99%) of all gain CNV were
over 10 kb. As a result, CNV gains were longer than CNV
losses and had larger range in length. Deletions and dupli-
cations averaged about 2.3 and 31.5 kb long, with median
lengths of 1.3 and 1.4 kb, respectively. There were no sig-
nificant differences in the distribution of CNV across the
five populations as shown in the percentile and sample
QQ plots in Fig. 3.

Population CNV differentiation
Analysis of population differentiation (VST) as described by
Redon et al. [11] showed that several CNV were highly dif-
ferentiated between and across the populations. Some of
these CNV overlapped with genes of importance in goats.
Results for the pairwise population VST tests and the VST

test across all the populations with their respective 99th
percentile CNV VST thresholds are given in Supplementary
Table 1 (Additional file 1). VST values for the pairwise tests
are given in Supplementary Figures 1–10 (Additional file
2). The VST values for genes that were in CNV that were
highly differentiated across all populations are shown in
Fig. 4. The gene DST was in a CNV with a very high VST

threshold across all the populations. DST has been associ-
ated with herpes virus and respiratory disease (BRD) in cat-
tle [45]. Some CNV were highly differentiated both
between and across populations. CNV with high differenti-
ation between only some populations include the CNV cor-
responding to the genes BCO2, CCSER1 (FAM190A),
COL24A1, CPNE4, CWC22, IMMP2L, KBTBD12, LAMA3,
NAALADL2, RFX3, SEMA3D, SLC2A13, STPG2 (C4orf37),
TAFA2 (FAM19A2), TMEM117, TMEM161B and VPS13B.
The rest of the genes were in CNV that were highly differ-
entiated across all populations.

Number and distribution of CNV regions (CNVR)
The lists of CNV regions (CNVR) by population are
given in Supplementary Table 2 (Additional file 1) and
their locations on the goat genome are shown in Fig. 5.
Plots of the CNVR for each breed (with more than 2 ani-
mals) are given in Supplementary Figures 12 to 40 (Add-
itional file 2). Descriptive statistics of the CNVR for each
population are given in Supplementary Table 3 (Add-
itional file 1) while a distribution of CNVR by size and
populations is given in Fig. 6. Over 92% of the CNVR
were copy losses. There was a wide variation in the
number and sizes of the CNVR between and among

Fig. 1 Overall numbers of CNV by chromosome and CNV state. Orange is for copy gain and blue-green is for copy loss
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the populations. The fraction of copy gains or gains
and losses was highest in the group of CNVR of at
least 10 kbp, with 25% copy gains and 19% for losses/
gains (Fig. 6).

Number and distribution of global CNVR
Global CNVR for different levels of SV filter parameters are
given in Supplementary Figures 41 to 64 (Additional file 2).
Only the PE and SR filter levels and the CNV length cut-off
point affected CNVR coverage. Inclusion of imprecise SV
led to an increase in the proportion of called duplications,
but the additional duplications were much longer than the
upper cut-off point for CNV length. A total of 6231 global

CNVR were found across all animals. A list of the global
CNVR is given in Supplementary Table 4 (Additional file
1) and a summary is given in Table 2. There were 5742
CNVR with copy losses, 280 with copy gains and 209 with
both copy losses and gains in different individuals. The lo-
cations of the global CNVR are given in Fig. 7. CNVR with
both gains and losses were much longer (mean 185.8 kb)
and constituted a significant proportion of the total CNVR
coverage (65.6%). Sixteen of these were longer than 1Mb
(on chromosomes 1, 2, 6, 7, 12, 14 (two regions), 17, 19,
21, 23 (two regions), 27 and 29).
Overall, the CNVR covered about 59.2Mb of the goat

genome. Previous work on genome-wide CNV discovery

Fig. 2 Distribution of the sizes of CNV for each population by CNV state. Orange is for copy gains while the rest of the colors for copy loss for each of
the five populations (magenta for Boer; blue is for the East African; green for Madagascar; brown for Southern African and purple for West African)

Table 1 Descriptive statistics of CNV and CNV length for each population

Population Number
of
samples

CNV CNV length (bp)

State Number Mean Median Minimum Maximum

BOE 9 Loss 9079 2227.1 1326 67 254,129

Gain 331 20,165.9 1500 161 631,262

Overall 9410 2858.1 1330 67 631,262

EAF 80 Loss 108,051 2244.7 1293 52 2,161,018

Gain 3544 30,979.2 1316.5 118 2,777,398

Overall 111,595 3157.2 1293 52 2,777,398

MAD 27 Loss 31,426 2475.3 1295 84 2,069,909

Gain 1078 28,384.1 1446 84 1,660,243

Overall 32,504 3334.6 1296 84 2,069,909

SAF 44 Loss 67,099 2368.9 1285 51 2,539,701

Gain 2514 31,000.7 1192 101 1,959,154

Overall 69,613 3402.9 1283 51 2,539,701

WAF 22 Loss 29,221 2491.4 1280 52 2,457,795

Gain 1210 40,255.3 1234 65 2,788,546

Overall 30,431 3993 1280 52 2,788,546
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in goats using SNP data done by Liu et al. [18] showed
that CNVR cover approximately 262Mb of the goat gen-
ome. Of the 978 CNVR reported in that study, 540
CNVR intersected with 819 CNVR identified in our
study. The amount of the overlap between the CNVR in
the two studies was 217.1Mb, covering 38.6Mb (65.1%)
in this study, and 194.2Mb (74.1%) in the other study.

Common and rare CNVR
Most of the CNVR (> 95.9%) were found in at least 2
breeds. Out of the 6231 CNVR, 98 (1.6%) were present
in all the 34 breeds and 1790 (28.7%) were present in all
the populations (Fig. 8a and b). The most frequent
CNVR observed was on chromosome 6 from 115,822,
332 bp to 115,825,687 bp with a frequency of 96.2%.
There were 259 CNVR private to 30 breeds, and 1018
private to all 5 populations, distributed as shown in
Fig. 8c and Fig. 8d. BOE (Tanzania and Zimbabwe), KEF

(Ethiopia) and MLY (Tanzania) breeds had the highest
numbers of private CNVR (20, 21 and 31, respectively).

Functional annotation and gene enrichment analysis
Functional annotation was carried out for genes in glo-
bal and private CNVR. Up to 2980 genes overlapped
with the 6321 CNVR identified in this study. Up to 755
of these genes formed 24 clusters, with enrichment
scores ranging from 0.0 to 1.89. Higher enrichment
scores imply higher overrepresentation of the genes in
the gene set for the gene enrichment term [46]. The top
3 clusters with the highest enrichment scores are given
in Table 3 while the full list is given in Supplementary
Table 5 (Additional file 1). The most significant GO
terms identified in the analysis included retrograde
endocannabinoid signaling; glutamatergic synapse; circa-
dian entrainment; dopaminergic synapse; gastric acid se-
cretion; long-term potentiation; salivary secretion; and
calcium signaling pathway.
CNVR private to populations and breeds overlapped

with 172 and 620 genes, respectively. The GO terms as-
sociated with these genes based on functional analysis
are listed in Supplementary Table 6 (Additional file 1).
The genes that overlapped with the CNVR private to
breeds were not significantly enriched in biological pro-
cesses, molecular functions and cellular components,
while the ones that overlapped with the CNVR private
to populations were significantly enriched (P ≤ 0.05) with
such terms as aldosterone synthesis and secretion; gluca-
gon signaling pathway; insulin secretion; glutamatergic
synapse; thyroid hormone synthesis; gastric acid secre-
tion and phosphatidylinositol signaling system. The most
common CNVR (chr6:115,822,332-115,825,687) includes
the gene TMEM129 (transmembrane protein 129) that
has been reported to be responsible for ubiquitination
and proteasome-mediated degradation of misformed or
unassembled proteins in the cytosol [47–49], and be-
longs to a network responsible for cellular assembly and
organization, cellular function and maintenance, and cell
cycle [50].

Discussion
This study identified CNV and CNVR in the goat gen-
ome using WGS data. Use of WGS for CNV detection is
highly encouraged, because it overcomes many of the
shortcomings of the other CNV detection methods such
as the ones using array CGH and SNP data [19–21].
Genome-wide studies to discover CNV have already
been done in other domesticated species, such as in Sus
scrofa [51], Bos taurus [38, 52] and Felis catus [39]. Here
we provide a first glimpse of the goat genome CNV map
at a dense genome coverage, using animals from 34 di-
verse breeds from the African continent. This addition is
an important contribution, as goats are an important

Fig. 3 Percentile plots for CNV gains and losses and a QQ plot for
CNV losses
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source of income and high-quality animal protein for
small holder farmers in Africa.
We used two software suites (LUMPY [30] and

Manta [37]) for detecting SV to increase our confi-
dence in the SV calls. Both software packages use

split read and read-pair methods. They complement
each other in that LUMPY makes use of read depth
methods, while Manta draws heavily on genome as-
sembly methods. Taking the intersection of SV calls
from the two methods gives us confidence that the

Fig. 5 Location of the CNVR for the 29 autosomes by population. The outermost numbers are the autosomes, and the other numbers are the
start and end positions of each autosome

Fig. 4 Population CNV differentiation, estimated by VST computed across all populations, plotted for each chromosome. The dotted line
represents the VST threshold value for this test (0.601)
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number of false positives in the SV calls was kept to
a minimum, although this means that some true SV
were possibly filtered out.
This study has shown that there are wide variations in

the number and sizes of CNV in the goat genome be-
tween chromosomes, individuals and breeds. However,
considering the small and variable numbers of samples
within breeds, breed comparisons are not particularly
meaningful. The results suggest that there are negligible
differences in the sizes of CNV between populations.
Some of the CNV displayed large differences between
populations, suggestive of population-specific selective
pressures.
A large proportion of the global CNVR identified in

this study (65.1%) are within the CNVR reported by Liu
et al. [18]. The remaining 34.9% may comprise false
positive CNVR and CNVR that were missed by the
PennCNV algorithm used in the other study, considering
the limitation of CNV detection using SNP data, which
include limited coverage for genome, low resolution, and
difficulty in detecting novel and rare mutations. The
CNVR coverage of 2.4% (59.2 Mb of about 2466Mb of
autosomal genome) found in this study is lower than the
4.8–9.5% SV coverage in the human genome [13], com-
parable to 55.6Mb (2.0%) reported for cattle [38], later
revised to 87.5Mb (3.1%) [53].

VST analysis showed that several CNV were highly dif-
ferentiated among and across the populations. The genes
in the highly differentiated CNV included BCO2
(Madagascar vs West African population differentiation),
CCSER1 (FAM190A) (Boer vs East African), FAM155A
(across all populations), GNRHR (Boer vs Madagascar;
Boer vs West African), IMMP2L (East vs Southern Afri-
can), LAMA3 (East African vs Madagascar), NAALADL2
(East vs Southern African), TAFA2 (FAM19A2) (East vs
Southern African) and TOMM70 (across all the popula-
tions). Våge and Boman [54] reported that BCO2 is asso-
ciated with the accumulation of carotenoids in the
adipose tissue of sheep, leading to the yellow fat syn-
drome. The quality of semen (including total sperm
motility, average path velocity and beat cross fre-
quency) in Holstein-Friesian bulls has been associated
with CCSER1 (FAM190A) as well as FAM155A [55].
GNRHR has been associated with number of days to
first service after calving in dairy cattle [56] while
IMMP2L is associated with cow conception rate [57].
The partial deletion of LAMA3 is responsible for epi-
dermolysis bullosa in horses [58]; NAALADL2 is be-
lieved to be responsible for immune homeostasis [59],
and TAFA2 (FAM19A2) is believed to be responsible
for the regulation of feed intake and metabolic activ-
ities in mice [60]. Yamano et al. [61] reported that

Fig. 6 Distribution of size of CNVR (in kbp) for each population. Orange is for copy gains and red is for CNVR with both copy gains and losses.
The rest of the colours for copy loss for each of the five populations (magenta for Boer; blue is for the East African; green for Madagascar; brown
for Southern African and purple for West African)

Table 2 CNVR summary statistics for each CNV state based on CNV occurring in at least 2 individuals

Copy
state

Number
of CNVR

Length (bp) CNVR
coverage
(bp)

Mean Median Minimum Maximum

Loss 5742 3041.3 1140.5 52 1,177,087 17,463,236

Gain 280 10,377.9 1008.0 302 236,347 2,905,806

Both 209 185,755.2 1731.0 616 2,956,746 38,822,839

Overall 6231 9499.6 1157.0 52 2,956,746 59,191,881
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TOMM70 is responsible for integral mitochondrion
proteins and for metabolism.
Functional annotation and clustering analysis revealed

that the CNVR identified in the study have genes that are
significantly enriched with many biological processes, mo-
lecular functions and cellular components, some of the
most significant of which are retrograde endocannabinoid
signaling, circadian entrainment and long-term potenti-
ation. The retrograde endocannabinoid signaling system is
a complex and diverse regulator of synaptic function [62],
and is responsible for many diseases in the nervous system
and peripheral organs. In the human genome, this system
is widely considered as a potential target for treating con-
ditions such as alcoholism [63]. A CNVR in the cannabin-
oid receptor 2 (CNR2) region has been reported in the
human genome, but its effect has not been fully character-
ized [64]. Zajkowska et al. [65] suggested that there is need
to explore genetic variation in the system from the per-
spective of copy number of variations.
Circadian entrainment is an important aspect of ani-

mal behavior and adaptation, especially considering the
wide range of environmental conditions the animals are
exposed to. An example of goat adaptation to the envir-
onment is their ability to rapidly change the size of their
foreguts in response to changes in the environment [66].
Goats tend to be active during some parts of the day
only [67], and this varies with season [67], suggesting a

considerable amount of circadian entrainment. The in-
creased importance of the biological process “response
to stimulus” (GO:0050896) in the highly differentiated
CNV may also support the hypothesis of the importance
of circadian entrainment in goats.

Conclusions
This study presents the first fine CNV map of the Afri-
can goats based on WGS data. This information will
prove invaluable for further improvement of goats, espe-
cially on African continent, as more phenotype data be-
comes available, through CNV or CNVR association
analyses and other approaches.

Methods
Sample description
The data used in this study was generated from 182
goats representing 34 breeds from 9 Sub-Saharan Afri-
can countries (Ethiopia, Kenya, Madagascar, Malawi,
Mali, Mozambique, Tanzania, Uganda, and Zimbabwe),
and these countries were grouped into four populations
based on geographic locations and a fifth population of
Boer goats obtained in Tanzania and Zimbabwe. The
Boer goat is a special breed widely used in Africa and
much of the world [68]. The samples were previously ge-
notyped using the Illumina Goat SNP50 BeadChip [69]
as described by Bertolini et al. [70], Cardoso et al. [71]

Fig. 7 Location of the global CNVR across the 29 autosomes. Blue is for loss; red is for gain and green is for both loss and gain
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and Colli et al. [72], and some of them were also used
for detection of CNV using 50 K SNP chip data, as re-
ported by Liu et al. [18]. A list of the breeds, populations
and samples sizes used in the analysis is given in
Table 4.
Sample processing was done by Edinburgh Genomics

using the Edinburgh Clinical Genomics method. This
approach uses Illumina SeqLab products and services,
including, Illumina TruSeq library preparation, Illumina
cBot2 cluster generation, Illumina HiSeqX sequencing,
Hamilton Microlab STAR integrative automation, and
Genologics Clarity LIMS X Edition as outlined in Sup-
plementary Table 7 (Additional file 1). Quality control
information for the samples is given in Supplementary
Table 8 (Additional file 1).

Sequence alignment
Sequence alignment was done using the Burrow-
Wheeler Alignment (BWA) tool version 0.7.13-r1126
with the maximal exact matches (MEM) “mem” option
[73]. The reads were aligned to the ARS1 Capra hircus
(goat) reference assembly (https: //www.ncbi.nlm.nih.
gov/assembly/GCF_001704415.1/) [74]. The aligned
reads were processed into binary sequence alignment
map (BAM) format using SAMTools version 1.8 [75].

Detection of SV
SV were detected using LUMPY version 0.2.13–85-
gc1bcea1 and Manta version 1.5.1, which are two of the
most used algorithms for detecting SV. In LUMPY, the
“lumpyexpress” script was used. This script runs auto-
mated breakpoint detection for standard analyses. It uses
SAMBLASTER [76] to extract split and discordant reads
from BWA-MEM-aligned Binary Sequence Alignment
Map (BAM) files. Default options were used, including
minimum non-overlap and minimum sample weight set
to 20 and 4, respectively. In Manta, the “configManta.py”
script was used to process each sample, with default op-
tions including minimum variant candidate size (8);
minimum candidate spanning count (3); minimum
scored variant size (50); minimum diploid variant score
(10); minimum diploid variant score pass point (20);
minimum somatic score (10); and minimum somatic
score pass point (30). The “runWorkflow.py” scripts
were run in parallel to extract the SV for each sample.

Post-processing of SV
SV from LUMPY were genotyped with svtyper version
0.6.1 [77], which uses a Bayesian maximum likelihood al-
gorithm to determine the most likely genotype of each
base-pair. Variant call format (VCF) files from the two

Fig. 8 Distribution of the CNVR. a, b Number of CNVR found in different numbers of breeds and populations, respectively. c, d Distribution of
CNVR found in only a single breed and only a single population only, respectively. In C, only 30 breeds had private CNVR
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software packages were converted to browser extensible
data (BED) format for downstream analysis using svtools
version 0.5.0 [78]. Various levels of SV post-processing
parameters were used to come up with the CNV calls
from the SV calls. The parameters included: 1) precision
of SV calls (whether imprecise SV were included in
computation of the CNV calls); 2) point of application of
the lower SV length cut-off point (before or after mer-
ging Manta and LUMPY SV); 3) stringency of the SV
call filters (low, medium, and high stringency); and 4)

upper SV length cut-off (3 or 10Mb). Stringency of SV
call filters was in terms of the number of PE and SR re-
quired as evidence supporting an SV. Consensus SV
were obtained by identifying the intersection of the SV
from LUMPY and Manta using BEDTools version 2.26.0
[79] with default settings.

Derivation of copy number variations
CNV were defined as SV duplications and deletions lon-
ger than 50 bp [80]. SV longer that 3Mb were also

Table 3 Functional annotation clusters of the genes found in the global CNVR based on analysis in DAVID

Cluster (Enrichment score, database) Enrichment term Gene count p-value

1 (1.89, KEGG_PATHWAY) chx04020: Calcium signaling pathway 31 0.001

chx04970: Salivary secretion 16 0.011

chx04022: cGMP-PKG signaling pathway 25 0.016

chx04270: Vascular smooth muscle contraction 19 0.037

chx04261: Adrenergic signaling in cardiomyocytes 21 0.046

2 (1.62, KEGG_PATHWAY) chx04723: Retrograde endocannabinoid signaling 24 0.000

chx04724: Glutamatergic synapse 24 0.000

chx04713: Circadian entrainment 21 0.001

chx04728: Dopaminergic synapse 25 0.002

chx04971: Gastric acid secretion 16 0.004

chx04720: Long-term potentiation 14 0.009

chx04970: Salivary secretion 16 0.011

chx04925: Aldosterone synthesis and secretion 15 0.014

chx04730: Long-term depression 13 0.014

chx04540: Gap junction 16 0.019

chx04750: Inflammatory mediator regulation of TRP channels 18 0.020

chx04921: Oxytocin signaling pathway 23 0.028

chx04922: Glucagon signaling pathway 17 0.028

chx04972: Pancreatic secretion 16 0.033

chx04270: Vascular smooth muscle contraction 19 0.037

chx04725: Cholinergic synapse 18 0.043

chx04911: Insulin secretion 14 0.053

chx04726: Serotonergic synapse 17 0.072

chx04915: Estrogen signaling pathway 15 0.091

chx04961: Endocrine and other factor-regulated calcium reabsorption 8 0.094

chx04912: GnRH signaling pathway 13 0.131

chx04918: Thyroid hormone synthesis 11 0.137

chx04924: Renin secretion 10 0.161

chx04611: Platelet activation 16 0.273

chx04916: Melanogenesis 11 0.458

chx04310: Wnt signaling pathway 14 0.599

3 (1.14, KEGG_PATHWAY) chx05204: Chemical carcinogenesis 12 0.033

chx00980: Metabolism of xenobiotics by cytochrome P450 10 0.075

chx00982: Drug metabolism - cytochrome P450 10 0.075

chx00830: Retinol metabolism 9 0.152
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filtered out, because putative CNV in the goat genome
are usually much shorter than this length. Visualization
of the SV was done using R [81] package circlize version
0.4.7 [82].

Population CNV differentiation
A measure of population differentiation (VST) as de-
scribed by Redon et al. [11] was computed based on nor-
malized read count values for each CNV, similar to the

method used in PECNV as described by Liu et al. [83],
which was in turn based on clustering algorithms de-
scribed by Cridland et al. [84] and transposable element
detection algorithms described by Rogers et al. [85].
Read count values were corrected for size of the consen-
sus CNV, batch effect, variable GC content and genomic
mappability as described by Liu et al. [83]. Regional and
batch effect correction was done by computing reads per
kb per million mapped reads (RPKM) as described by

Table 4 List of the breeds used in the analysis

Population Population Code Breed name Breed Code Country Number of samples

Boer BOE Boer BOE Tanzania 2

Boer BOE Boer BOE Zimbabwe 7

East African EAF Abergelle ABR Ethiopia 6

East African EAF Galla GAL Kenya 7

East African EAF Gogo GOG Tanzania 7

East African EAF Gumez GUM Ethiopia 4

East African EAF Keffa KEF Ethiopia 7

East African EAF Landin LND Mozambique 5

East African EAF Maasai MAA Tanzania 7

East African EAF Manica MAN Mozambique 3

East African EAF Malya MLY Tanzania 7

East African EAF Norwegian NRW Tanzania 3

East African EAF Pare White PRW Tanzania 6

East African EAF Saanen SAA Tanzania 4

East African EAF Small East African SEA Kenya 7

East African EAF Small East African SEA Mozambique 6

East African EAF Sonjo SNJ Tanzania 2

East African EAF Woyito Guji WYG Ethiopia 7

Madagascar MAD Androy AND Madagascar 4

Madagascar MAD Diana DIA Madagascar 3

Madagascar MAD Menabe MEN Madagascar 7

Madagascar MAD Sofia SOF Madagascar 6

Madagascar MAD SudOuest SOU Madagascar 7

Southern African SAF Balaka-Ulongwe BAW Malawi 2

Southern African SAF Dedza DZD Malawi 4

Southern African SAF Lilongwe LGW Malawi 3

Southern African SAF Mashona MSH Zimbabwe 7

Southern African SAF Matebele MTB Zimbabwe 7

Southern African SAF Nsanje NSJ Malawi 6

Southern African SAF Thyolo THY Malawi 7

West African WAF Guerra GUE Mali 6

West African WAF Maure MAU Mali 1

West African WAF Naine NAI Mali 5

West African WAF Peulh PEU Mali 1

West African WAF Soudanaise SDN Mali 7

West African WAF Targui TAR Mali 2
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Mortazavi et al. [86], where RPKM ¼ 109�RC
TRC�S , where RC is

the read count of a region, S is the size of the region and
TRC is the total number of mapped reads in the library.
GC content and mappability correction was done on the
RPKM using the formula used by Yoon et al. [29], where
adjusted read count is given by RPKM�m

mGC
where mGC is the

median GC content of all regions with the same read
count and m is the median GC of all regions. This ap-
proach is similar to the read depth approaches used in
CNVnator [28] and in CNVcaller [87]. The normalized
read count values were treated as proxies of log R ratio
(LRR) values normally obtained from array analysis. As
defined by Redon et al. [11], VST was computed as VT−VS

VT
,

where VT is the variance in LRR among all unrelated in-
dividuals and VS is the average variance in LRR within
each population. CNV VST testing was done pairwise
(for each combination of two populations) and (separ-
ately) across all the 5 populations. CNV with VST values
above the 99th percentile of all VST values for each com-
parison were treated as being highly differentiated. We
searched for these highly differentiated CNV in the
Golden Helix Genome Browse® software (version 3.0.0)
(https://www.goldenhelix.com/) using the ARS1 caprine
genome reference assembly to identify the genes in the
CNV.

Determination of CNV regions
CNV regions (CNVR) were obtained by merging CNV
that overlapped by at least 1 bp within populations
(population CNVR) and across all the individuals (global
CNVR) using the “merge” function in BEDTools version
2.26.0 [79].

CNVR functional annotation and gene enrichment
analysis
A list of genes for the goat genome was downloaded
from the NCBI website (https://www.ncbi.nlm.nih.gov/
gene). The Database for Annotation, Visualization, and
Integrated Discovery (DAVID) Bioinformatics Resources
(version 6.8) [88–90] was used to identify if genes in the
CNVR have significant biological, cellular or molecular
function. Functional analysis was done using default pa-
rameters, with significance of enriched terms determined
at P ≤ 0.05. Further information about various genes was
obtained from the GeneCards (www.genecards.org)
database.
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