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Abstract

Background: Plant pathogens cause substantial crop losses in agriculture production and threaten food security.
Plants evolved the ability to recognize virulence factors and pathogens have repeatedly escaped recognition due
rapid evolutionary change at pathogen virulence loci (i.e. effector genes). The presence of transposable elements
(TEs) in close physical proximity of effector genes can have important consequences for gene regulation and
sequence evolution. Species-wide investigations of effector gene loci remain rare hindering our ability to predict
pathogen evolvability.

Results: Here, we performed genome-wide association studies (GWAS) on a highly polymorphic mapping
population of 120 isolates of Zymoseptoria tritici, the most damaging pathogen of wheat in Europe. We identified a
major locus underlying significant variation in reproductive success of the pathogen and damage caused on the
wheat cultivar Claro. The most strongly associated locus is intergenic and flanked by genes encoding a predicted
effector and a serine-type endopeptidase. The center of the locus contained a highly dynamic region consisting of
multiple families of TEs. Based on a large global collection of assembled genomes, we show that the virulence
locus has undergone substantial recent sequence evolution. Large insertion and deletion events generated length

analyses to investigate major effect loci in pathogens.

assembly, Population genomics

variation between the flanking genes by a factor of seven (5-35 kb). The locus showed also strong signatures of
genomic defenses against TEs (ie. RIP) contributing to the rapid diversification of the locus.

Conclusions: In conjunction, our work highlights the power of combining GWAS and population-scale genome
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Background

Plant pathogens are a major threat to food security and
cause annual losses of 20-30% of global harvest due to
the lack of durable control strategies [1-3]. The emer-
gence of new pathogens, the rise of new virulence in
resident pathogens, or the gain in resistance against
chemical control agents create significant challenges [2,
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4, 5]. To design effective disease control strategies, un-
derstanding the molecular interaction between plants
and pathogens is critical. The virulence of plant patho-
gens is largely determined by their repertoire of secreted
proteins known as effectors [6, 7]. Effectors target a var-
iety of different plant proteins and metabolic pathways
to manipulate the immune response and physiological
state of the host [8]. Plants evolved a large array of re-
ceptors often organized in networks that can directly or
indirectly recognize the presence of effectors [7, 9, 10].
Detection of effectors triggers a variety of defense
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responses preventing the spread of pathogens across
plant tissues. The discovery of resistance genes encoding
receptors has provided key tools for the rapid breeding
of resistant crop varieties [11, 12]. The identification of
effectors in plant pathogens is challenging due to the
large number of genes encoding effector-like proteins.
The size of effector gene repertoires varies between fila-
mentous pathogens [7, 13]. The potato light blight
pathogen Phytophthora infestans has 1249 predicted ef-
fector candidates, whereas the white rust pathogen of
Arabidopsis thaliana, Albugo laibachii, has only 143 pre-
dicted effector candidates [14]. The frequent birth and
death of genes encoding effectors is underpinning at
least part of the variation in candidate effector reper-
toires among species and underlies also variation within
the same species [15]. Identifying functional effectors
providing an advantage for a pathogen on a specific host
remains challenging [8].

Effector gene polymorphism can be a major factor
driving host-pathogen interactions [12, 15]. The analyses
of complete fungal genomes in combination with map-
ping analyses significantly expanded our knowledge of
effectors across major filamentous pathogens. Genome-
wide association study (GWAS) and analyses of progeny
populations revealed three effectors of the fungal wheat
pathogen Zymoseptoria tritici [16—21]. The analyses of
multiple completely assembled genomes revealed ef-
fector genes missing among individual isolates of the
species [22-24]. Hence, pangenome analyses are crucial
to establish the full extent of effector candidates within
species [25]. Such effector polymorphism is thought to
be at the origin of rapid gains in virulence [15, 26-28].
Breakdown in host resistance can be observed within
few years following the deployment of a crop cultivar
[29-32]. Effector gene evolution can be driven by the
complete deletion of coding sequence, as well as the ac-
cumulation of point and frameshift mutations [15, 16,
33, 34].

The rapid evolution of effector gene sequences is often
driven by features of the chromosomal sequence in
which the effector genes are embedded. Effector genes
can be located on lineage-specific accessory chromo-
somes [35-37]. Such accessory chromosomes are
enriched in repetitive sequences [35]. Effector genes lo-
cated on core chromosomes are often located in the
most repetitive regions of the chromosome [38, 39]. The
proximity to repetitive regions, in particular transposable
elements (TEs), increases the likelihood for sequence re-
arrangements to occur. The localization of effectors in
highly repetitive sub-telomeric regions contributed to
rapid virulence evolution of the rice pathogen Magna-
porthe oryzae [40, 41]. The AVR-Pita effector gene has
been shown to undergo multiple translocations in the
genome contributing to the evolution of virulence on
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specific hosts [42]. The insertion of a Mg-SINE TE in
the effector gene AvrPi9 led to a loss-of-function muta-
tion enabling M. oryzae to escape host resistance [43].
The transposition of TEs can disrupt coding sequences
or change the regulation of effector genes [19, 44, 45].
Additionally, repetitive sequences can lead to higher mu-
tation rates through a mechanism known as repeat in-
duced point (RIP) mutation [46-48]. Brassica napus
(canola) carrying the Rlml resistance gene suffered a
breakdown of resistance against the fungal pathogen L.
maculans [49]. The breakdown was associated with a
rise in virulence alleles at the AvrLml locus [49]. Se-
quence analyses revealed that the gain in virulence was
driven by RIP mutations rendering the locus non-
functional. Highly similar sequences nearby effector
genes can also trigger ectopic recombination and, by
this, the deletion or duplication of the effector gene.
Consequently, the genomic context of effector genes
provides critical information about effector evolvability.
Hence, within-species analyses of effector gene diversifi-
cation and TE dynamics of the surrounding regions have
become key tools to retrace the evolution of virulence.

The haploid ascomycete Zymoseptoria tritici is one of
the most destructive pathogens of wheat leading to yield
losses of ~5-30% depending on climatic conditions [50,
51]. Pathogen populations across the wheat-producing
areas of the world harbor significant variation in patho-
genicity and genetic diversity [16, 17, 52—54]. GWAS were
successfully used to identify the genetic basis of virulence
on two distinct wheat cultivars [16, 17]. In addition, ana-
lyses of progeny populations revealed a third effector gene
related to a resistance breakdown [19, 20]. GWAS was
also successfully used to map the genetic architecture of a
broad range of phenotypic traits related to abiotic stress
tolerance [55]. TE dynamics are playing a key role in influ-
encing the sequence dynamics at effector gene loci [16,
19, 44]. Gene gain and loss dynamics are accelerated in
proximity to TEs [52]. TEs shape also the epigenetic land-
scape in proximity to effectors [44, 56]. Phenotypic traits
expressed across the life cycle of the pathogen show ex-
tensive trade-offs possibly constraining the evolution of
virulence [55, 57]. Identifying additional pathogenicity loci
associated with host specificity remains a priority since for
most wheat resistance genes (i.e. Stb), the corresponding
effector genes remain unknown [58].

In this study, we aimed to identify the genetic basis of
virulence on the wheat cultivar Claro using GWAS per-
formed on a genetically highly diverse mapping popula-
tion established from a single wheat field. We analyzed
the expression patterns of genes in proximity to the top
associated SNP, the presence of TEs and genetic vari-
ation at the locus in populations across the world to
build a comprehensive picture of sequence dynamics at
the newly identified virulence locus.
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Results

Genome sequencing of a highly polymorphic pathogen
field population

To build a mapping population for GWAS, we used a sub-
set of a previously established collection of 177 isolates of
Z. tritici. The collection originates from a multi-year experi-
mental wheat field in Switzerland planted with 335 wheat
cultivars [54, 59] (Supplementary Table S1). In total 120
isolates from ten genetically different winter wheats (7-20
isolates per cultivar) collected at two different time points
during a single growing season were included in this study.
We analyzed whole-genome sequencing datasets of each
isolate constituting an average coverage of 21X as previ-
ously described [54]. We found that the minor allele fre-
quency (MAF) spectrum showed a strong skew towards
rare alleles in the population, suggesting that the population
did not experience any recent genetic bottlenecks (Fig. 1a).
After filtering for MAF > 0.05 (also see methods), we ob-
tained 788'313 high-confidence SNPs. We constructed an
unrooted phylogenetic network using SplitsTree to visualize
the genotypic differentiation within the population (Fig.
1b). Compared to the broader field population analyzed
previously, our GWAS mapping population contained 10
clonal groups comprising a total of 21 isolates [54] (Supple-
mentary Table S2). A principal component analysis con-
firmed the overall genetic differentiation within the
population (Fig. 1c). Nearly all isolates were at similar gen-
etic distances to each other with the exception of six iso-
lates with larger genetic distances to the main cluster of
isolates [54] (Fig. 1c). The percent variance explained was
only 2.6 and 2.5 for principal component 1 and 2, respect-
ively, though (Fig. 1c). Interestingly, the six isolates were all
collected from cultivar CH Combin, which is susceptible to
Z. tritici [60] and grouped into two clone groups of three
isolates each (Supplementary Table S2). A principal compo-
nent analysis performed after removing the six isolates col-
lected from CH Combin revealed no meaningful
population structure (Supplementary Fig. 1).

Heritability and correlations among pathogenicity traits

We experimentally assessed the expression of pathogenicity
traits of each individual isolate on the winter cultivar Claro
using a greenhouse assay. The cultivar Claro was among
the cultivars used in the multi-year experimental wheat
field from which the isolates were sampled from [59]. The
cultivar is widely planted in Switzerland and is generally
mildly susceptible to Z. tritici [60]. We obtained quantita-
tive data on symptom development from a total of 1’800
inoculated leaves using automated image analysis [59]. The
image analyses pipeline was previously optimized to detect
symptoms caused by Z. tritici under greenhouse conditions
and uses a series of contrast analyses to obtain estimates of
the surface covered by symptoms. For each leaf, we re-
corded the counts of pycnidia (structures containing
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asexual spores) and the percentage of leaf area covered by
lesion (PLACL) (Fig. 1d-e). We considered the pycnidia
count as a proxy for reproductive success of the pathogen
on the host and PLACL as an indication of host damage
due to pathogen infection. From these measurements, we
derived three quantitative resistance measures: pie,s is the
pycnidia count per cm? of leaf area, Plesion 1S defined as the
total number of pycnidia divided by per cm? lesion area,
and tolerance is expressed as the pycnidia count divided by
PLACL. The overall reproductive success per leaf area is
represented by pje.r while piesion focuses on the reproductive
success within the lesion area. Tolerance indicates the abil-
ity of the host to tolerate pathogen reproduction while lim-
iting damage by lesions [61]. We found that the mean
pycnidia count ranged from 0 to 20 (mean 7, median 6.3)
among isolates and PLACL ranged from 2 to 97% (mean
56%, median 57.7%) (Fig. le, Supplementary Table S1, Sup-
plementary Fig. 2). The values for pj,s ranged from 0.04—
7.2 (mean 2.4, median 2.15); piesion ranged from 0 to 13.8
(mean 3.6, median 3.3) and tolerance ranged from 0.15-0.3
(mean 0.12, median 0.17) (Supplementary Table S1, Sup-
plementary Fig. 2).

We estimated SNP-based heritability (hzs,,p) for each
trait using a genomic-relatedness-based restricted
maximum-likelihood approach to partition the observed
phenotypic variation (Fig. 1f). The h2Snp ranged from
0.08-0.23 among different phenotypes (Fig. 1f). Herit-
ability for pycnidia counts and PLACL was 0.17 (SE =
0.14) and 0.15 (SE =0.16), respectively. We found the
highest //12Snp for piear (0.24, SE =0.15) exceeding hZSnp
for piesion (0.19, SE=0.16). Pathogenicity-related traits
have overlapping genetic architectures leading to pheno-
typic and genetic correlations [55]. To identify potential
trade-offs among traits, we analyzed correlations among
all pairs of traits (Fig. 1g). We found overall positive
phenotypic trait correlations except for PLACL and tol-
erance (r,=-0.08; Fig. 1g). To assess genetic correla-
tions among traits, we performed GWAS on each trait.
To avoid p-value inflation due to non-random degrees
of relatedness among isolates, we used a mixed linear
model that included a kinship matrix. We assessed the
allelic effects across all SNPs for all traits to estimate the
degree of genetic correlation among trait pairs. We
found the genetic correlations (r,) to vary from - 0.1 to
0.98 (Fig. 1g). Pycnidia counts and pje,r showed the high-
est degree of genetic correlation. Tolerance and PLACL
showed the lowest degree of genetic correlation. Overall,
phenotypic and genetic correlations among pairs of traits
were highly similar.

Major effect locus for pathogen reproduction on the
cultivar Claro

We used the GWAS on each trait to identify the most
significantly associated SNPs in the genome. We focused
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Fig. 1 Genetic and phenotypic diversity in a single field population of Zymoseptoria tritici. a Minor allele frequency spectrum (frequency of the
less common allele in the population) at 1'496'037 single nucleotide polymorphism (SNP) loci genotyped in 120 isolates. b Phylogenetic network
of 120 isolates constructed using SplitsTree visualizing reticulation due to potential recombination. ¢ The first two principal components (PC) from
a PC analysis of 788313 genome-wide SNPs with a minor allele frequency of at least 5%. Isolates are color-coded by the cultivar of the origin. d
Photographs showing the difference between a mock treated and infected leaf. e Trait distribution of pycnidia counts in lesions and the
percentage of leaf area covered by lesion (PLACL). f SNP based heritability (h, SNP) of the virulence phenotypes estimated following a GREML
approach. Error bars indicate standard errors. g Mean allelic effect (i.e.. genetic) correlation and phenotypic correlation coefficients for all
measured virulence phenotypes. h Number of significantly associated SNPs (5% FDR threshold) exclusive to an individual virulence trait or shared

on association p-values passing the 5% false discovery
rate threshold for all the phenotypes except for PLACL
where we found no significant associations (Supplemen-
tary Fig. 3). All significantly associated SNPs for pycnidia

count were overlapping with significantly associated
SNPs for piear and piesion (Fig. 1h). The traits preas, Presion
and tolerance had 58, 9 and 11 associated SNPs, respect-
ively, which were uniquely associated with the specific
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trait and not overlapping with any other trait (Fig. 1h).
We then focused our investigation on the most signifi-
cantly associated SNPs passing the Bonferroni threshold
(a=0.05). We found a single locus on chromosome 1
with significantly associated SNPs for pycnidia count,
Plear aNd plesion (Fig. 2a-b, Supplementary Fig. 3C, E).
Both integrating principal components of a principal
component analysis (PCA) and a kinship matrix can be
used as random factors to control false positive rates in
a GWAS. The inclusion of principal components did not
meaningfully affect the outcome and confirmed the sin-
gle strong association on chromosome 1 for pycnidia
count, pPiear and Presion (Supplementary Fig. 4B,D-E). The
top SNP (chrl_4521202) showed an association of iso-
lates carrying the non-reference allele T with higher pyc-
nidia production compared isolates with reference allele
G (Fig. 2¢). The non-reference allele was less frequent in
the population (10%) and nearly half (48%) of all isolates
were not assigned a SNP genotype at the locus.

We analyzed sequence characteristics of the chromo-
somal region surrounding the top locus. The SNP chri_
4521202 is located in an intergenic region rich in TEs (Fig.
2d-e). The closest identified genes include a gene encod-
ing a putative effector (Zt09_1_01590) and a gene encod-
ing a serine-type endopeptidase (Zt09_1_01591). The
effector gene (415bp) in length have four SNPs detected
in the mapping population. Additionally, the gene encodes
a protein of 114 amino acids with 7% cysteine residues
and is predicted to be secreted. We detected no evidence
for a conserved protein domain using PFAM. The two
genes were at a distance of ~8kb and ~ 4.5 kb, respect-
ively, from the SNP chri_4521202 (Supplementary Table
S3). The low genotyping rate at the SNP suggests that seg-
mental deletions are present. The genotyping rate was
58%, which is consistent with the SNP genotyping
rate for nearby SNPs (within ~5kb; Fig. 2e). We re-
covered no SNPs in the immediate vicinity (at around
425Mb on chromosome 4). The genotyping rate in-
creases to close to 100% at a further distance of the
top SNP (>10kb; Fig. 2e. The segmental pattern in
the reduced genotyping rate close to the most signifi-
cant SNP suggests that a substantial fraction of the
isolates harbor deletions. We analyzed patterns of
linkage disequilibrium among pairs of SNPs including
SNP chri_4521202 (Fig. 2f). We found that the decay
in linkage disequilibrium generally occurred at short
distance near the associated virulence locus. The link-
age disequilibrium in the effector gene region decayed
to 7% = 0.2 within ~ 1000 bp while the decay in the repeat
rich region surrounding the most significantly associated
SNP was faster (= 0.2 within ~ 500 bp; Fig. 2f). The in-
creased linkage disequilibrium suggests that the physical
distance among SNPs in the analyzed isolates is shorter
consistent with the detection of deletions.
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We analyzed transcription levels of the two closest
genes using RNA-seq data generated under culture condi-
tions simulating starvation (minimal medium) for all iso-
lates of the GWAS panel. Both genes were conserved in
all the isolates and appear transcriptionally active with
variable expression levels among the isolates. The candi-
date effector gene was transcribed between 12 and 14'750
reads per kilobase of transcript per million mapped reads
(RPKM) (Fig. 2h, Supplementary Fig. 5). RPKM
normalization compensates for library size differences and
for the bias generated by the higher number of reads from
longer RNA molecule [62]. The serine-type endopeptidase
gene showed much lower transcription ranging from 1.6—
33.4 RPKM (Fig. 2g, Supplementary Fig. 5). We found that
transcription levels of the gene encoding the endopeptid-
ase was positively correlated with the amount of pycnidia
produced (r=0.3, p=0.0021, Fig. 2g). We found no sig-
nificant correlation between pycnidia production and ex-
pression of the effector candidate gene (Fig. 2h). We also
investigated transcriptional activity of the genes during
wheat infection. For this, we analyzed RNA-seq data of
four isolates previously collected from a nearby site in
Switzerland and for which in planta transcriptional pro-
files were available [44, 63]. The effector gene Zt09_1_
01590 is upregulated during early infection stages (7-14
days post infection) while the endopeptidases gene Zt09_
1_01591 is mainly expressed towards the end of the infec-
tion cycle (~ 28 days post infection; Fig. 2i-j).

Transposable element dynamics and sequence
rearrangements

Given the indications for segmental deletions at the viru-
lence locus, we analyzed multiple completely assembled ge-
nomes of the species. We included genomes from isolates
from Switzerland, United States, Australia and Israel cover-
ing the global distribution range of the pathogen [24]. The
locus showed a highly variable content in TEs underlying
significant length variation. The distance between the two
flanking genes is 20.2 kb in the reference genome IPO323
used for mapping (Fig. 3a-b). However, this distance varies
from 4.8—35.3 kb between the genes depending on the gen-
ome for an average distance of ~ 17 kb (Fig. 3b). The lon-
gest distance between genes was found in the genome of
the Swiss strain CH99 1A5 and the shortest distance was
found in the genome of the Israeli strain ISY92.

We identified five different TE families in the reference
genome IPO323 covering a segment of ~20kb (Fig. 3c).
We detected additional TE families in two of the three ge-
nomes from Switzerland (CH99_1A5 and CH99 _3D7). The
genomes carry multiple copies of a total of seven different
TE families. Meanwhile, the two genomes from Israel and
the United States showed a reduction in TEs with the re-
gion carrying only single copies of two and three different
TE families, respectively (Fig. 3a-c). The presence of TEs in
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fungal genomes can trigger RIP mutations. We found con-
sistent signatures of RIP between the two flanking genes
but we found no indications for RIP leakage into the flank-
ing genes (Fig. 3d, Supplementary Fig. 6).

Transposable element insertion dynamics across
populations

The small set of completely assembled genomes provides
only a partial view on the sequence rearrangement
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dynamics within the species. Hence, we generated draft
genome assemblies for 432 isolates from previously ana-
lyzed field populations in the United States (1 =56 + 97),
Switzerland (1 =37 + 185), Israel (n=30) and Australia
(n=27; Supplementary Table S4). The two population
from United States and Switzerland were collected at an
interval of 25 and 20 vyears, respectively, from the same
field (Supplementary Table S4). Illumina sequencing data-
sets for fungi with compact genomes produce reasonably
accurate draft assemblies [64—66]. We used BLASTN [67]
to locate the two genes Zt09_1_01590 and Zt09_1_01591
adjacent to the top SNP across all assemblies. We retained
only draft assemblies for which both genes were located
on the same scaffold. Hence, these scaffolds provide a
contiguous view on the sequences located between the
two adjacent genes. With this filtering step, we retained
122 isolates from all four different locations including the
United States (n = 49), Israel (n = 17) and Switzerland (n =
6 and 50) (Fig. 4a; Supplementary Table S4). The distance
between the two genes ranged from 5 to 35 kb, which is
highly consistent with the gene distances observed in the
completely assembled genomes (Fig. 4b). The isolates
from Israel and Switzerland (collection 2016) showed
shorter distance ranging from 5 to 15kb. The United
States population and the older Switzerland population
(collection 1999) showed a range of 6.8—-35kb between
the genes (Fig. 4b).

We annotated the scaffolds matching the top GWAS
locus using consensus sequences of known TE families.
Overall, the TEs between the two adjacent genes
grouped into 11 superfamilies and 25 families (Fig. 4d).
The two most frequent TEs included both retrotranspo-
sons and miniature-inverted repeat transposable ele-
ments. We found that genomes from the United States
and the earlier Switzerland population (collection 1999)
had higher TE copy numbers compared to other ge-
nomes from the other populations (2—13 TE copies; Fig.
4c). The locus contains overall 16 different TE families
in the United States population (Fig. 4d-e). The locus
contained 3, 11 and 16 different TE families in the Is-
raeli, and the Swiss 1999 and 2016 populations, respect-
ively (Fig. 4d-e). The TEs RSX_SINE_Reikon and DTX_
MITES_Addanc were found in all analyzed populations
population while other TE families were segregating in
populations in different proportions (Fig. 4e). To test for
potential associations of TE presence and pathogenicity
traits, we focused on the complete scaffolds retrieved
from 50 different isolates of the GWAS population (Fig.
4f). We found segregating presence-absence polymorph-
ism for the four TE families RII_Philae and RLX_LARD_
Gridr (retrotransposons), as well as DTX_MITES_Wol-
pertinger and DTC_Jamila (DNA transposons; Fig. 4f).
None of the TE presence-absence polymorphism showed
a significant association with the transcription of

Page 8 of 16

adjacent genes (Fig. 4g-h; effector candidate Z:09 1_
01590: Student’s t-test, p > 0.15; serine-type endopeptid-
ase Zt09_1_01591: Student’s t-test, p>0.05). We also
found no significant association with the TE presence-
absence polymorphism and reproduction on the host
(Fig. 4i; Student’s ¢-test, p > 0.2).

Discussion

We used whole-genome sequencing data and association
mapping to unravel the genetic architecture of patho-
genicity of Z. tritici on the wheat cultivar Claro. The
identified locus is rich in TEs and is flanked by genes en-
coding an effector candidate and a serine-type endopep-
tidase. We analyzed a worldwide set of populations to
analyze sequence variation at the pathogenicity locus.
We found significant length variation caused by the in-
sertion of a diverse set of TEs.

Variation in pathogenicity on the wheat cultivar Claro
was largely quantitative. We found that heritability was
higher for pathogen virulence (damage to host) than
pathogen reproduction (production of pycnidia). This is
in contrast to analyses of heritability across 12 different
wheat cultivars where heritability for pathogen
reproduction was typically higher compared to lesion
damage [55]. However, virulence and reproduction were
overall positively correlated in both studies. We also
found a high degree of phenotypic and genetic correl-
ation with tolerance (i.e. preventing lesion damage des-
pite high reproduction of the pathogen). Using GWAS,
we identified several loci significantly associated with
different pathogenicity traits. The most significant asso-
ciations were found for pycnidia counts and pj,s both
related to reproductive success of the pathogen. Patho-
gen reproduction showed a strong single locus associ-
ation while host damage (i.e. lesions) revealed no single
gene effects. The difference between traits may be due
to the fact that the genetics underlying host damage is
more complex. Lesions are caused by host cell death
triggered as a response to pathogen attack [68, 69].
Hence, variation in lesion development among isolates
could be due to the host’s ability to perceive specific
molecules produced only by a subset of the isolates [12,
22, 70]. Furthermore, variation in the pathogen’s ability
to spread across tissue and manipulate host immune re-
sponses could also lead to variation in overall lesion de-
velopment  [71]. Interestingly, extensive lesion
development is not necessarily related to pycnidia pro-
duction by the pathogen across cultivars [61, 72]. This
suggests that despite damage to the leaf, the host im-
mune system can efficiently repress the pathogen from
acquiring nutrients to reproduce. In contrast, the strong
single locus association for pycnidia production on the
cultivar Claro suggests a rather simple genetic architec-
ture. Hence, the action of a single pathogen factor (e.g.
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an effector) may be largely sufficient to determine vari-

ation in host exploitation and reproduction.

We identified a highly polymorphic chromosomal
locus associated with pathogenicity on the cultivar Claro.

The most significant SNPs mapped in an intergenic re-
gion flanked by a large cluster of diverse TEs. We found
no clear evidence for a coding sequence in immediate
proximity of the most significantly associated SNPs. The
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closest genes encode functions, which may be relevant
for host infection though. Serine-type endopeptidases
play pivotal roles in nutrient degradation and subsequent
assimilation, as well as protection from the host immune
system [73]. Serine proteases can also help the pathogen
to escape the host’s immune system by degrading chiti-
nases targeted at the fungal cell wall [74]. Furthermore,
serine proteases play a role in the nutrient acquisition
from plant tissue [75] and potentially during the initi-
ation of necrosis [76]. The second gene encodes a puta-
tive effector, which is a category of genes showing
frequent presence-absence polymorphism within the
species [25, 52]. Our analyses of linkage disequilibrium
decay suggest that neither of the two adjacent genes play
a causal role in pathogenicity on Claro. The most dra-
matic changes occurred due to the insertion and dele-
tion of TEs next to the most significantly associated
SNPs. The TE dynamics diversified the locus to the ex-
tent that the distance between the adjacent genes varies
by a factor of seven (5-35kb). The insertion and dele-
tion of TEs can have both an impact on gene regulation
by inducing epigenetic silencing or upregulation. Both
mechanisms are well established in Z. tritici and underlie
variation in melanin production, virulence and fungicide
resistance [19, 77, 78]. The locus flanked by the two
genes showed strong signatures of RIP. The elevated
mutation rates triggered by this genomic defense mech-
anism against TEs likely contributed to the rapid diversi-
fication of the locus. Yet, we could not establish any
direct association between the insertion of individual
TEs and the expression of pathogenicity. Targeted dele-
tion assays focusing on individual sequence segments
may provide experimental evidence for the sequence
variation underlying pathogenicity on the wheat cultivar.

Conclusions

The effects of gene-TE proximity have been studied
mainly in animal [79, 80] or plant models [81]. Only a
handful studies are focused on fungi. Some fungal path-
ogens have genomes with a clearly compartmentalized
architecture described by the two-speed model [26]. The
core genome encodes all essential genes while niche- or
host-specific genes (e.g. effectors) are typically encoded
in the repeat-rich genome compartment. Such genome
architectures have been identified in Mycosphaerella
fijiensis [82], Cochliobolus heterostrophus [83], Fusarium
species [84], L. maculans [34] and Verticillium species
[85]. However, systematic investigation of TEs and co-
localizing genes have rarely been extended to the within
species level. Our study shows that a combination of
genome-wide association mapping, complete and draft
genome assemblies can provide a comprehensive insight
into the evolutionary dynamics of virulence loci. Hence,
even in absence of experimentally validated effectors, the

Page 10 of 16

evolutionary trajectory of virulence loci becomes tract-
able. Our approach should be broadly applicable to
many fungal pathogen systems.

Methods

Field collection and storage

Z. tritici isolates were collected from the Field Phenotyp-
ing Platform (FIP) site of the ETH Zirich, Switzerland
(Eschikon, coordinates 47.449°N, 8.682°E). We analyzed
a total of 120 isolates collected during the 2015/2016
growing season from 10 winter wheat cultivars, which
are commonly grown in Switzerland [86]. We analyzed
isolates originating from two collection time points over
the season (Table S1). Isolates from the first collection
(n=62) were collected when wheat plants were in
Growth stage (GS) 41 while the second collection (n =
58) was performed when the plants were in GS 85 stage.
After sampling, spores of each isolate were stored in ei-
ther 50% glycerol or anhydrous silica gel at — 80 °C. Add-
itional information regarding sampling schemes and
genetic diversity is available [54].

Culture preparation and seedling infection assay

Isolates were revived from glycerol stock by adding 50 pl
fungal stock solution to a 50 ml conical flask containing
35 ml liquid YSB (yeast-sucrose broth) medium. The in-
oculated flasks were incubated in the dark at 18'C and
140-180rpm on a shaker-incubator. After 8 days of in-
cubation, the cultures were passed through four layers of
meshed cheesecloth and washed twice with sterile water
to remove media traces. The filtering step also largely
eliminated hyphal biomass but retained spores. The
Swiss winter wheat cultivar Claro was used for virulence
assays (provided by DSP Delley, Inc.). Four seeds were
sown in pots with commercial compost soil in tripli-
cates. The pots were frequently in the growth chamber.
The plants were grown under controlled conditions as
follows: 16/8 h day/night periods at 18 °C throughout the
experiment. The growth chamber was maintained at
70% humidity. Plants were grown for 3 weeks before in-
fection with Z. tritici. To initiate infections, washed
spores were diluted to 2 x 10° spores/ml in 15 ml of ster-
ile water containing 0.1% TWEEN20. For each isolate,
plants from three pots were infected using spray bottles.
After spray inoculation, the plants were allowed to dry
before sealing them in clear plastic bags to maintain
100% humidity for 48 h. Plastic bags were removed after
48 h and conditions were kept as described above.

Automated image-based evaluation of infection

Twenty-one days post inoculation (dpi), the second leaf
of each plant was cut and fixed on a barcoded white
paper. Leaves were scanned immediately using a flatbed
scanner at 1200 dpi. The scanned images were batch-
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processed using a macro [59, 87] based on routines im-
plemented in the image analysis software Image] (Ras-
band, W.S., Image]; U. S. National Institutes of Health,
http://imagej.nih.gov/ij/, 1997-2012). Briefly, the macro
recorded the total leaf area, total lesion area, the number
of pycnidia, mean size of pycnidia and pycnidia grey
value. The percent leaf area covered by lesions (PLACL)
was calculated as the ratio of the total lesion area and
total leaf area [72].

Whole-genome sequencing, variant calling and RNA-seq
analyses

Approximately 100 mg of lyophilized spores were used
to extract high-quality genomic DNA using the Qiagen
DNeasy Plant Mini Kit according to the manufacturer’s
protocol. We sequenced paired-end reads of 100 bp each
with an insert size of ~550bp on the Illumina HiSeq
4000 platform. Raw reads are available on the NCBI Se-
quence Read Archive wunder the BioProject
PRJNA596434 [88]. For RNA sequencing, the same iso-
lates were cultured in a Vogel Minimal N Medium [89]
where ammonium nitrate was replaced with potassium
nitrate and ammonium phosphate [90]. The medium
contained no sucrose and agarose to induce hyphal
growth. Total RNA was isolated from the filtered myce-
lium after 10-15 days using the NucleoSpin® RNA Plant
and Fungi kit. The RNA concentration and integrity
were checked using a Qubit 2.0 Fluorometer and an Agi-
lent 4200 TapeStation System, respectively. Only high-
quality RNA (RIN>8) was used to prepare TruSeq
stranded mRNA libraries with a 150 bp insert size and
sequenced on an Illumina HiSeq 4000 in the single-end
mode for 100 bp.

Sequencing filtering and analysis

We performed sequencing quality checks using FastQC
v. 0.11.9. (Andrews S., 2010) and extracted read counts.
Sequencing reads were then trimmed for adapter se-
quences and sequencing quality using Trimmomatic v.
0.39 [91] using the following settings: illuminaclip = Tru-
Seq3-PE fa:2:30:10, leading =10, trailing =10, sliding-
window =5:10 and minlen =50. Trimmed sequencing
reads were aligned to the reference genome IPO323
[92]; accessible from https://fungi.ensembl.org/
Zymoseptoria_tritici/Info/Index) and the mitochondrial
sequence (European Nucleotide Archive EU090238.1)
using Bowtie2 v. 2.4.1 [93]. Multi-sample joint variant
calling was performed using the HaplotypeCaller and
GenotypeGVCF tools of the GATK package v. 4.0.1.2
[94]. We retained only SNP variants (excluding indels)
and proceeded to hard filtering using the GATK Var-
iantFiltration tool based on the following cutoffs: QD <
5.0; QUAL < 1000.0; MQ < 20.0; - 2 > ReadPosRankSum
>2.0; —2>MQRankSum >2.0; -2 > BaseQRankSum >
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2.0. Finally, we applied a filtering for a per SNP locus
genotyping rate of at least 50% (“--max-missing” option)
and a minor allele count (MAC) of 1 using VCFtools v.
0.1.15 [95]. We further subset SNPs for GWAS by re-
quiring a minor allele frequency (MAF) of at least 0.05
(5%). Similarly, RNA-seq datasets were checked for qual-
ity using FastQC v. 0.11.9. and trimmed with Trimmo-
matic v0.39 to remove adapter sequences and low-
quality reads with parameters: illuminaclip: TruSeq3-
SE.fa:2:30:10 leading = 3, trailing = 3, sliding-window = 4:
15 and minlen = 36. Trimmed sequences were aligned to
the reference genome IPO323 using HISAT2 v. 2.1.0
[96] with the parameter “--RNA-strandedness reverse”.

Population genetic analyses

Population structure and relatedness among individuals
in the mapping population may be a source of p-value
inflation due to non-random phenotype-genotype associ-
ations [97, 98]. To account for this, we analyzed the
population structure and genetic relatedness of all iso-
lates by performing a PCA. We performed and visualized
the PCA using the R packages vcfR v. 1.8.0 [99], ade-
genet v. 2.1.1 [100], ade4 v. 1.7-13 [101] and ggplot2 v.
3.1.0 [102]. We also generated an unrooted phylogenetic
network using SplitsTree v4.14.6 [103]. File format con-
versions were performed using PGDSpider v2.1.1.5
[104]. To identify groups of clonal isolates, we calculated
the pairwise genetic distances between all isolates using
the function “dist.dna” included in the R package ape v.
5.3 [105]. Isolate pairs with a pairwise genetic distance
below 0.01 were considered as clones for further ana-
lyses (see [54] for more details). The SNP-based herit-
ability (h2snp; equivalent to narrow-sense heritability) for
each trait was estimated using the genome-wide complex
trait analysis (GCTA) tool v.1.93.0 [106]. The hzSnp was
estimated using a genome-based restricted maximum
likelihood (GREML) approach using the phenotypic
values of each trait and considering the additive effect of
all the SNPs represented by the GRM.

Genome-wide association mapping and linkage
disequilibrium analyses

We performed GWAS based on mixed linear models ac-
counting for genetic relatedness using either only a kin-
ship matrix (MLM K) or a kinship matrix along with
principal components of a PCA (MLM K + Q). We esti-
mated relatedness among isolates by computing a kin-
ship matrix using the scaled identity-by-state (IBS)
algorithm implemented in TASSEL v. 20,201,110 [107].
We included the kinship matrix as a random effect in
the mixed linear models for association mapping using
TASSEL. We used the allelic effect output of TASSEL to
compute the pairwise genetic correlation (Spearman’s
correlation) values using complete observations (use =
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pairwise.complete.obs) and visualized the values using
the ggcorr function from the GGally R package v2.1.1
[108]. Similarly, we used the Spearman’s correlation to
compute pairwise phenotypic trait correlations. Associ-
ation mapping outcomes were visualized using the R
package ggman v 0.1.4 [109]. We considered associa-
tions to be significant when p-values were smaller than
the Bonferroni threshold at the nominal a=0.05 (here
p < 1l.le-7). The Bonferroni threshold was calculated by
dividing the nominal threshold of 0.05 by the total num-
ber of SNPs used for GWAS. False discovery rate (FDR)
thresholds of 5% were determined using the p.adjust
function in the stat package in R. We explored the gen-
omic regions containing significantly associated loci
using the “closest” command in bedtools v. 2.29.0 [110].
Regions in the genome spanning the most significant as-
sociations were investigated for linkage disequilibrium
patterns. We calculated the linkage disequilibrium 7* be-
tween marker pairs using the “option—hap-r2” in
VCFtools v. 0.1.15 [95] with “--ld-window-bp” of 10,000.
A heatmap was generated based on the 7* values with
the R package LDheatmap v 0.99-7 [111].

De novo genome assemblies, TE annotation, synteny
analyses

We analyzed the locus surrounding the genes Zt09_1_
01590 and Zt09_1_01591 in multiple completely assem-
bled genomes of isolates collected in Switzerland, the
United States, Australia and Israel covering the global
distribution range of the pathogen (Badet et al., 2020).
For synteny plots, the available repeat-masked
chromosome-scale assemblies were analyzed using pair-
wise BLASTN. Information on BLAST hits among hom-
ologous chromosomes was visualized in R using the
genoplotR package [112]. We analyzed signatures of re-
peat induced point mutations (RIP) using The RIPper
online tool available at https://theripper.hawk.rocks/
[113].

To analyze sequence polymorphism at the locus, we
used draft genome assemblies of 432 isolates from previ-
ously analyzed field populations in the United States,
Switzerland, Israel and Australia [16, 88]. Illumina short
read data was obtained from the NCBI Sequence Read
Archive under the BioProject PRJNA327615 [16] and
PRJNA596434 [88]. We used SPAdes version 3.14.0 to
produce draft assemblies for each isolate [114]. We ran
the tool with the following settings: -k 21,33,55,75,95
--careful. De novo assemblies were annotated for TEs
using the TE consensus sequences (https://github.com/
crolllab/datasets) generated for the species [24]. Consen-
sus sequences were previously manually curated and
renamed based on the three-letter classification system
[115, 116]. The curated consensus sequences were used
for annotation of each individual de novo assembly using
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RepeatMasker version 4.0.8 with a cut-off value set to
250 [117], ignoring simple repeats and low complexity
regions. Further filtering of the TE annotation included:
(1) removal of element annotations shorter than 100 bp,
(2) merging of identical adjacent TE families overlapping
by more than 100bp, (3) renaming of overlapping TE
families overlapping by more than 100 bp as nested in-
sertions, and (4) grouping of interrupted elements sepa-
rated by less than 200 bp into a single element using a
minimal distance between start and end positions.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512864-021-07691-2.

Additional file 1: Supplementary Fig. 1: The first two principal
components (PC) of 788313 genome-wide SNPs in 114/120 isolates. Iso-
lates are color-coded by the cultivar of the origin. The six excluded iso-
lates grouped into two clone groups of three isolates each and were
collected from cultivar CH Combin. Supplementary Fig. 2: Phenotypic
trait values. Red and blue lines represent the mean and median, respect-
ively. A) The percentage of leaf area covered by lesion (PLACL). B) pycni-
dia count. C) Tolerance expressed as the pycnidia count divided by PLAC
L. D) piear is the pycnidia count per cm? of leaf area and E) Dlesion 1S de-
fined as the total number of pycnidia divided by per cm? lesion area.
Supplementary Fig. 3: Manhattan and QQ-plot representing of the
genome-wide association mapping analyses using mixed linear models
based on a kinship matrix. The blue line corresponds to the Bonferroni
threshold (alpha = 0.05) and the red line corresponds to the 5% FDR. A-B)
Percentage of leaf area covered by lesions (PLACL), C-D) tolerance E-F)
Diesion- Supplementary Fig. 4: Manhattan and QQ-plot representing of
the genome-wide association mapping analyses. The GWAS was per-
formed using mixed linear models including a kinship matrix and the first
two principal components as random factors. The blue line corresponds
to the Bonferroni threshold (alpha = 0.05) and the red line corresponds to
the 5% FDR. A-B) Percentage of leaf area covered by lesions (PLACL), C-D)
Pycnidia count, E-F) tolerance G-H) piear and 1)) Piesion- Supplementary
Fig. 5: Gene expression in reads per kilobase of transcript, per million
mapped reads (RPKM) for genes closest to the top-associated SNP. A) Pu-
tative effector gene (Zt09_1_01590) and B) serine-type endopeptidase
gene (Zt09_1_01591). Supplementary Fig. 6: The Large RIP Affected Re-
gions (LRARs) composite index was calculated using The RIPer tool (van
Wyk et al, 2019) and shown in black. The region flanked by the genes
Zt09_1_01590 and Zt09_1_01591 is shown in complete genome assem-
blies of seven isolates from global population.

Additional file 2 Supplementary Table S1: Phenotypic trait values
used for GWAS. The percentage of leaf area covered by lesion (PLACL);
Oieaf is the pycnidia count per cm? of leaf area; Piesion is defined as the
total number of pycnidia divided by per cm? lesion area. Tolerance is
expressed as the pycnidia count divided by PLACL. Supplementary
Table S2: Groups of clonal genotypes identified in the GWAS population
with information about the collection time point and cultivar of origin.
The clonal genotype columns provides a unique identifier. See Singh

et al. (2020) for more detailed analyses. Supplementary Table S3: List
of significantly associated SNPs above 5% FDR for pycnidia counts.
Supplementary Table S4: Number of isolates from populations on
different continents analyzed for transposable element content. Total
assembled genomes and total of isolates per population where a scaffold
was retrieved containing both genes Zt09_1_01590 and Zt09_1_01591.
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