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Abstract

Background: Sex is an important covariate of epigenome-wide association studies due to its strong influence on
DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression
Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes
on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex
assignment are accurate and widely applicable.

Results: Here we presented a novel method to predict sex using only DNA methylation beta values, which can be
readily applied to almost all DNA methylation datasets of different formats (raw IDATs or text files with only signal
intensities) uploaded to GEO. We identified 4345 significantly (p < 0.01) sex-associated CpG sites present on both
450K and EPIC arrays, and constructed a sex classifier based on the two first principal components of the DNA
methylation data of sex-associated probes mapped on sex chromosomes. The proposed method is constructed using
whole blood samples and exhibits good performance across a wide range of tissues. We further demonstrated that
our method can be used to identify samples with sex chromosome aneuploidy, this function is validated by five
Turner syndrome cases and one Klinefelter syndrome case.

Conclusions: This proposed sex classifier not only can be used for sex predictions but also applied to identify
samples with sex chromosome aneuploidy, and it is freely and easily accessible by calling the ‘estimateSex’ function
from the newest wateRmelon Bioconductor package (https://github.com/schalkwyk/wateRmelon).
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Background
DNA methylation is one of the most-studied epigenetic
modifications, which typically occurs in the context of
a cytosine-guanine dinucleotide motif (CpG) [1]. DNA
methylation plays important roles in the stability and reg-
ulation of gene expression in the development and main-
tenance of cellular identity [2]. The dynamic process of
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DNA methylation and the plasticity of the DNA methy-
lation landscape make genes responsive to the changes of
environmental conditions. Several health and lifestyle fac-
tors have been found to be associated with DNA methy-
lation signatures, including childhood disease, tobacco
smoke, drug use and poor nutrition [3–5].
Genome-wide analysis of DNA methylation has now

become popular and is growing rapidly, owing to array-
based profiling technologies. The two most widely used
microarray platforms, Infinium HumanMethylation450
BeadChip (450K) [6] and Infinium MethylationEPIC
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BeadChip (EPIC) [7], offer broad coverage and pre-
cise quantification of DNA methylation levels at roughly
480,000 and 860,000 CpG sites respectively.
Epigenome-wide Association Studies (EWAS) are a

powerful way to study the relationships between epige-
netic variation and human diseases [8]. Apart from sex
chromosomes, thousands of CpG sites on autosomes also
show very different DNA methylation patterns between
males and females [9, 10]. As a result of this, sex has been
considered an important co-variate, when undertaking
methylation and phenotype association studies.
Many researchers have submitted their methylation

microarray datasets to the Gene Expression Omnibus
(GEO). Currently, there are over 100,000 HM450k sam-
ples and over 18,000 EPIC samples which are publicly
available. Most of these have phenotype annotations
accompanying them, thus they can be used by other
researchers to perform meta-analyses or as independent
references to validate their hypothesis. However, many
mismatches have been found between annotations and
samples, Toker et al. discovered widespread mislabelling
in transcriptomics datasets of GEO [11], Heiss et al.
found 25% of the datasets they studied contained sex-
mismatched samples, particularly in three datasets, more
than 30% of the samples were identified as being misla-
belled [12]. A large portion of these discrepancies may
stem from data entry errors. Researchers should deal with
these sex-mismatched samples carefully; the safest way is
to remove them directly before downstream analysis.
McCarthy and colleagues performed meta-analysis of

sex-specific methylation patterns and demonstrated that
the first two principal components of X chromosome
methylation data on 27k arrays can differentiate between
sexes [13]. Currently, there are several methods which can
be used to predict the sex of samples from DNA methyla-
tion data. The ‘getSex’ function of minfi package estimate
sex based on the median values of measurements on the
X and Y chromosomes respectively [14]; the ‘estimateSex’
method of sEst package groups beta values and detec-
tion p-values of probes mapped on sex chromosomes into
different intervals and achieved sex prediction by look-
ing at the different distribution patterns of these intervals
from two sexes. [15]; The ‘check_sex’ method within the
ewastools package predict sex based on normalized aver-
age signal intensity values on the sex chromosomes [12].
In this paper, we propose a novel method to predict the

sex of samples using solely DNA methylation beta values.
We identify a set of significant sex-associated CpG sites,
and perform principal component analysis (PCA) on these
sites to obtain a sex classifier, and evaluate our method’s
performance across a wide range of human tissues. The
proposed sex classifier allows users to attribute sex to un-
annotated samples on public databases, and also identify
samples with sex aneuploidy.

Results
Identifying sex-associated CpG loci
To make our method compatible with both 450K and
EPIC, we only included 453,152 probes that are present
on both arrays. Two-sample T-tests were applied to
GSE105018 [16] to identify differentially methylated CpG
sites between sexes, after Bonferroni multiple compar-
ison correction, those with p-value less than 0.01 and
absolute beta value difference between sexes greater than
0.2 were selected as the most significant sex associated
CpG sites. As a result of this, we obtain 4345 significantly
sex-associated sites. In this study we have chosen a rel-
atively strict threshold, as we aim to capture those most
robust features which methylate differently and consis-
tently between the two sex groups across various datasets.
As expected, most of the sex-associated sites belong to
sex chromosomes, with the majority (4047, 93%)located
on the X chromosome (ChrX), and with a total of 284
(6.5%) CpG sites located on the Y chromosome (ChrY)
Additional file 1.
As shown in Fig. 1a, these sex-associated CpG sites on

ChrX are distributed throughout the whole chromosome,
and with most of them (3781, 93.4%) associated with
higher methylation levels in females compared to males,
this is mainly because one X chromosome of the female
is inactivated and highly methylated. However, we also
observed a small portion of CpG sites (266, 6.6%) on
ChrX that have higher methylation levels in males com-
pared to females, this could attribute to the facts that
around 15% of X-chromosome genes often escape from
XCI and another fifteen percentage shows variable degree
of ‘escape’ [17]. For example, four out of the 266 probes
mapped to Xist which is an escape gene with known
exclusive expression fromthe inactivatedXchromosome [17].
Among the 284 sex-associated CpG sites on ChrY, 211

CpG sites have higher methylation levels in male sam-
ples (Fig. 1b). Females do not carry Y chromosomes, thus
most of the intensity signals of ChrY we observed from
females aremay due to background noise and non-specific
hybridisation, nevertheless, the mean raw signal intensi-
ties of the 284 probes in females are only around 11% of
that in males. Interestingly, 70 of the 284 probes are on
McCartney’s list of 67,609 potential non-specific probes of
EPIC array [18], however, 69 of them are hypermethylated
in males (mean=0.73, sd=0.11), while hypomethylated in
females (mean=0.35, sd=0.07). The raw signal intensities
of the 70 probes in females are also only around 10% of
that in males, suggesting they were less affected by the
non-specific hybridisation issue.

Sex classifier based on sex-associated CpG sites
Since we have obtained a large group of CpG sites which
show a significant difference (p < 0.01) in methylation
levels betweenmales and females, we are able to construct



Wang et al. BMC Genomics          (2021) 22:484 Page 3 of 11

Fig. 1 Females and males exhibit distinct methylation patterns at sex-associated CpG sites on the two sex chromosomes a The X chromosome:
most sex-associated CpG sites from females have beta values range between 0.2 and 0.8; most of these sites from males are less methylated (beta
values less than 0.2). b The Y chromosome: the identified sex-associated CpG sites of males are highly methylated with beta values greater than 0.6
whereas females exhibited low methylation signals

a sex classifier. To begin with, the DNA methylation val-
ues of the 4047 sex-associated CpG sites on ChrX from
the same training samples are processed using PCA. PCA
takes a linear approach to generate reduced dimensions
by maximizing the captured residual variance in each
further dimension [19]. As shown in Fig. 2a, the first
principal component, which explained 98% of total vari-
ance, has captured the most sex differences among the
all training samples. Thus, we could use this first compo-
nent to separate samples into two categories: 1) with two
copies of X chromosomes and 2) with only one copy of X
chromosome.
Similarly, a PCA is performed using the 284 CpG sites of

ChrY, and as that of ChrX, the first principal component
accounted for the most variances can make a good sepa-
ration between male and female samples (Fig. 2b). As the
result of this, the first component can be used to divide
samples into two categories: 1) with Y and 2) without Y.
Finally, the two first principal components of the two

PCAs which both explained the most sex differences are
utilized to build the sex classifier. Normal females have
two copies of X chromosomes and normal males have
one copy of X chromosome and one copy of Y chro-
mosome. By our sex classifer, male samples with 46,XY
should locate in the top left area and female samples with
46,XX should distribute at the bottom right area (Fig. 2c).
It is reasonable to suggest that this model can be applied to
identify samples with sex aneuploidy: samples with 45,XO
will be placed at the bottom left corner, and samples with
47,XXY should be distributed at the top right corner.

Comparison with other tools
To compare the proposed sex classifier with three other
existing sex prediction classifiers for DNA methylation
microarray data taken from the R packages (see Table 1),
minfi [14], ewastools [12] and sEst [15], we take GSE51032
[20] as a benchmark dataset, as it was used in develop-
ing ewastools and sEst. GSE51032 includes 857 samples
(188 men and 657 women) and their source tissue are
all from buffy coat. Figure 3 shows the results gener-
ated by the four methods, as we can see, there are eight
samples (four males and four females) displaying mis-
matches between predicted sex and labelled sex, and the
mismatches are consistent in the results from four meth-
ods, thus we have high confidence that the eight samples
are mislabelled. Two samples (marked by black circles)
are identified by our classifier as 47,XXY, sEst also iden-
tified the two outliers. However, only one of the two
samples appears as an outlier from minfi and ewastools,
and the other one stays close with the main male
cluster.
In general, all four methods show good performance in

clustering male samples, however the method from minfi
performs much poorer in clustering female samples com-
pare to the other three tools, as some females are not
distinguishable from males along the x-axis. The female
cluster produced by ewastools exhibits long tail towards
the male cluster; the sex prediction tools in minfi and
ewastools are both based on signal intensity therefore they
produce more similar results than the other two tools.
Our sex classifier and the method from sEst are both beta
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Fig. 2 A sex classifier is constructed by applying two PCAs on two sex chromosomes separately. a The first two components on ChrX. b The first two
components on ChrY. Results of c training set and d validation set produced by the sex classifier, all samples are classified into four categories: 46XY,
46XX, 47XXY, and 45XO

value based, although the twomethods utilised beta values
very differently and sEst requires detection p-values, the
patterns of their results are similar. It should be noted,
detection p-values are used as an index of usability for
each probe but are not well defined. It is implemented as a
test for signal intensity above background level in the pro-

prietary GenomeStudio software, the detection p-values
calculated by the minfi package are better documented
but not equivalent. Overall, compared to the other three
sex prediction tools, our proposedmethod is highly robust
and shows better or similar performance in clustering
females and males.

Table 1 Summary of four sex prediction tools for DNA methylation samples

Package Function name Input requirements Mechanism Performance on
clustering females
andmales

SCA detection

Minfi getSex IDATs Compare the log2
transformed median
total intensity of probes
mapped on ChrX and
ChrY.

Good in clustering
males and less well in
clustering females

Not provided

Ewastools check_sex IDATs Compare the normalized
average signal intensity of
probes mapped on sex
chromosomes

Excellent in clustering
males and good in
clustering females

Not provided

sEst estimateSex Beta values and
detection p-values

Group beta values and
detection p-values into
defined intervals and PCAs
on the distribution
patterns of these intervals.

Excellent in clustering
males and females

Proposed but not
validated

WaterRmelon estimateSex Beta values (which
can be easily
generated from signal
intensity text files or
IDATs )

PCAs on beta values of
sex differently methylated
CpGs on ChrX and ChrY
separately.

Excellent in clustering
males and females

Proposed and validated
by five Turner syndrome
cases and one Klinefelter
syndrome case
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Fig. 3 Comparisons of sex prediction ability between four tools. aminfi, b ewastools, c sEst, d our classifier in wateRmelon. Two outlier samples are
marked by black circles, blue square represents male and red triangle denotes female

Performance evaluation
The DNA methylation profiles of samples from training
set and validation set are assessed by 450k array and EPIC
array respectively. As we can see from the results (Fig. 2),
the proposed model has correctly classified all samples in
the two datasets, proving that the proposed classifier is
highly robust and compatible with both platforms.
The proposed sex classifier is trained and validated

using whole blood samples. As whole blood is a hetero-
geneous collection of different cell types, to investigate
whether our classifier is biased by blood cell types, we
tested its performance on DNA methylation data derived
from five purified blood cell types–B cells, CD4 T cells,
CD8 T cells, monocytes and granulocytes from 28 indi-
viduals. As shown in Fig. 4a and b, all the five cell types
are clustered into two sex groups and we could not find
any or very minor differences between cell types. Collec-
tively, these results suggest that the proposed sex classifier
is robust to blood cell types.
Although blood is the most studied tissue in EWAS,

there are also many DNA methylation studies that use
samples from other types of human tissue. To evaluate our
sex classifier’s range of application, we further tested its
performance on several othermost studied human tissues,
including saliva, buccal cells, brain cells, liver, placenta,
and sperm. Results from Fig. 4c to f demonstrate that the
proposed classifier is robust in these vastly different types
of tissues–saliva, buccal cells, brain cells, and liver. How-
ever, even though we can observe two clusters within the
placenta samples, the female samples are more loosely dis-

tributed along the x-axis than that in other tissues, and all
of them are more close to the zero point of x-axis, with
several samples even have negative values (Fig. 3g).
Interestingly, all sperm samples were clustered into a

single group by our sex classifier, located in the bottom
left region (Fig. 3h). This area is typically recognised by
our sex classifier as 45,XO. As sperm cells are a mixture
of two types of haploid cells (23,X and 23,Y) this suggests
that their methylation levels are lower on ChrY compared
to other mature human tissues.

Predicting sex chromosome aneuploidy
DNAmethylation has been an important way to study the
various developmental symptoms caused by copy num-
ber aberrations of the sex chromosome [21]. Earlier, we
proposed that our classifier can be applied to identify sam-
ples with abnormal sex chromosomes, including 45,XO
and 47,XXY. To further validate its ability, we searched the
public repositories for positive samples with clinical diag-
nosis. As a result of this, we obtained five cases (Table 2)
diagnosed as Turner syndrome from two studies [22, 23].
As hoped, they are all clearly classified as 45,XO by our
model (Fig. 5 ), proving our classifier’s ability to predict
females with only one X chromosome.
Viana et al. reported a male with schizophrenia carrying

an extra X chromosome [24] which is also clearly clas-
sified as 47,XXY by our method (Fig. 5 ). Unfortunately,
we did not find any publicly available DNA methylation
samples from those diagnosed with Klinefelter syndrome.
Unlike Turner syndrome, most patients with Klinefelter
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Fig. 4 The sex classifier was evaluated across five blood cell types (a and b) and six other human tissues (c-h). a Scatter plot showing results from
five blood cell types: B cells, CD4 T cells, CD8 T cells, monocytes and granulocytes. b On X chromosome, the five blood cell types showing similar
results. c Buccal cells; d Brain cells; e Saliva; f Liver; g Placenta; h Sperms

syndrome have only mild symptoms and are never diag-
nosed. It is interesting to check if there are any samples
in GEO having a karyotype of 47,XXY but not linked to
a diagnosis? By applying our classifier to scan the GEO
datasets, we find a total of eight samples (Table 2) which
are highly likely to be 47,XXY (Fig. 5). It should be noted
that we only include these samples sourced from blood
or brain cells related tissues and their DNA methylation
level are assessed by 450K or EPIC arrays; we also do
not include those samples which located near the bound-
aries which may be low-level sex chromosome mosaics
(46,XX/47,XXY). It is interesting that two of the eight sus-
pect abnormal samples were diagnosed with schizophre-
nia. Martin et al. found that Klinefelter patients have
nearly a four times higher risk of schizophrenia [32],

which may explain why we have predicted more 47,XXYs
with schizophrenia. Studying the methylation patterns of
these syndromes will provide more insights into these
diseases.

Discussion
There are two principal reasons to require a good and
simple sex classifier based on methylation data. First,
there are still many samples in GEO that do not have sex
annotations, thus an accurate classifier can provide reli-
able sex information. Second, due to data entry errors,
there are non-negligible proportions of mislabelled sam-
ples in the public database. A mismatch between reported
sex and predicted sex would be a clear indication of a
wrong annotation and introduces doubt on the accuracy
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Table 2 Samples with verified or suspect abnormal karyotypes from GEO

Sample ID Karyotype Verified karyotype? Source tissue Disease status Reference

GSM1566904 45,XO Yes Peripheral Blood Turner syndrome [22]

GSM1566905 45,XO Yes Peripheral Blood Turner syndrome [22]

GSM1566906 45,XO Yes Peripheral Blood Turner syndrome [22]

GSM1566907 45,XO Yes Peripheral Blood Turner syndrome [22]

GSM1572595 45,XO Yes Whole Blood Turner syndrome [23]

3999215192_R06C02 47,XXY Yes Prefrontal cortex Schizophrenia and Klinefelters syndrome [24]

GSM3562874 (GSM3667736)* 47,XXY No Whole blood [25]

GSM1649023 47,XXY No Whole blood [26]

GSM1946555 47,XXY No Whole Blood Post-traumatic stress disorder [27]

GSM3662121 47,XXY No Blood Lynch-like syndrome NA

GSM1344329 47,XXY No Peripheral blood [28]

GSM2336820 47,XXY No CD8+ T-cells Ulcerative colitis [29]

GSM3680912 47,XXY No Frontal cortex Schizophrenia [30]

GSM1496810 47,XXY No Frontal cortex Schizophrenia [31]

*GSM3562874 and GSM3667736 refer to the same case.

of the rest of the phenotype information for that sample,
hence it is reasonable to remove these mislabelled sam-
ples before downstream analyses. We would recommend
sex checking to be a standard part of all DNA methyla-
tion QC pipelines. Here in this study, the proposed sex
classifier is straightforward and the outcomes are highly
intuitive.

In this study, we first obtained a group of significant
sex-associated CpG sites. 90% of these located on the X
chromosome are more methylated in females than that in
males, this is mainly due to the effect of X-chromosome
inactivation: one of the two X chromosomes in females
is randomly chosen for inactivation (highly methylated)
to balance the extra gene expression dosage [33, 34]. This

Fig. 5 The proposed classifier is verified its ability to predict sex chromosome aneuploidy in five Turner syndrome samples and one Klinefelter
syndrome case, it also predicted eight potential 47,XXY cases from GEO
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also justified that our classifier was built on blood samples
could work well across a wide range of other tissue types.
The proposed sex classifier shows robust performance

across a wide range of tissue types despite it is built upon
whole blood samples. We choose blood samples because
they are easily accessible and are the most widely used
tissue for measuring DNA methylation and have been
adopted in most large cohort studies. However, whole
blood is a heterogeneous collection of different cells,
and their cell composition changes across age [35]. Dif-
ferent cell types can have distinct methylation profiles
even though they share identical genetic makeup [36].
Here as our results have shown that the proposed model
is not biased among different blood cell types; we also
demonstrated the proposed classifier performs well across
a wide range of human tissues, including saliva, buc-
cal cells, brain cells, liver. These results suggest that our
model is not driven by blood-specific sex differences, but
it has captured the more general sex-associated differ-
ences across human tissues and cell types. However, we
have also found some tissues such as placenta (Fig. 3h)
showing an ambiguous boundary between the two sexes.
Placenta is a fetal-maternal endocrine organ responsible
for ensuring proper fetal development throughout preg-
nancy [37]. The fetal part of the placenta has the same
genetic composition as fetus, whereas it exhibits apparent
different DNA methylation patterns. Our results demon-
strate placenta samples are less distinguishable between
the two sex groups, showing both ChrX in female placen-
tas and ChrY in male placentas are less methylated than
that in other normal tissues. During the early develop-
ment of human embryo, sperm cells are highly methylated
and then become hypomethylated after fertilization [38].
Our results have shown that those sex-associated CpG on
X chromosomes of sperm cells exhibited similar methyla-
tion patterns with other normal male tissues, however, the
Y chromosomes are much less methylated. Collectively,
our method can also be used to compare the methylation
level of the two sex chromosomes in different tissues.
Our method can be readily applied to almost all DNA

methylation datasets in GEO. Nearly a half of the DNA
methylation datasets uploaded to GEO are not in IDAT
format, which is prerequisite by usingminfi and ewastools,
many of these datasets only include intensity values of
the methylated and unmethylated signals. Our sex clas-
sifier developed in this paper is based on beta values of
those differently methylated CpG loci between the two
sexes, users are only required to feed the whole beta
value matrix, which can be easily computed from the sig-
nal intensity text files, to the ‘estimateSex’ function in
wateRmelon to obtain final sex predictions.
The underlying mechanism of our sex classifier is very

intuitive: females have higher levels of methylation on
ChrX, on the contrary, males are less methylated on ChrX

and show strong methylation signals on ChrY. We have
also demonstrated that the proposed classifier can be
applied on both 450K and EPIC arrays. Compared to sig-
nal density-based methods such as minfi and ewastools,
the methylation ratio-based method from our sex clas-
sifier and sEst provide better separation between the
two sexes (Fig. 4). In addition, both minfi and ewastools
require at least one female and one male in the input
samples to make correct sex predictions, however, our
method and sEst do not have a such limitation. Lastly, our
method has amuch higher advantage over sEst on running
speed and this is especially the case when applied to large
sample size, for example, our method is more than four
times faster than sEst when the number of input samples
exceeds 1,000. Our speed advantage lies in that we saved
the pre-trained weights for those sex-associated CpGs and
only matrix multiplication is required to make sex classi-
fication, however, sEst requires to perform two seperate
PCAs which are very time consuming.
We have provided a powerful tool that can identify

sex chromosome aneuploidies (45,XO and 47,XXY) from
DNA methylation data. This function has been verified
in five Turner syndrome samples and one Klinefelter syn-
drome case, we should acknowledge that we need much
more positive cases to testify its sensitivity and specificity.
It is a pity that we did not find any DNA methylation
samples labelled as Klinefelter syndrome in the public
repositories. Nevertheless, we found eight cases in the
GEO database with great potential to be 47,XXY by apply-
ing our classifier, with the knowledge that most patients
with Klinefelter syndrome have only mild symptoms and
are never diagnosed. Those eight suspect Klinefelter syn-
drome cases can be good candidates to study the various
developmental symptoms caused by copy number aberra-
tions of sex chromosomes.

Conclusion
In this study, we constructed a very biological intuitive
sex classifier, simply based on the most robust CpG sites
on the sex chromosomes, which not only can be used for
sex predictions but also applied to identify samples with
sex chromosome aneuploidy. Our classifier has been inte-
grated into the wateRmelon Bioconductor package, which
is freely and easily accessible by calling the ‘estimateSex’
function.

Methods
Data collection and preprocess
We downloaded publicly available methylation datasets
fromGEO (https://www.ncbi.nlm.nih.gov/geo/), for those
datasets which raw IDAT files were not available, such as
GSE78874 and GSE137884, the intensity values of methy-
lated and unmethylated signals were extracted from raw
intensity text files. While for most of the datasets in which

https://www.ncbi.nlm.nih.gov/geo/
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Table 3 Summary of datasets used in this study

Dataset Source Platform Number Male/Female Age(years) Reference

GSE105018 Whole blood 450k 1658 832/826 18 - 18 [16]

UKHLS Whole blood EPIC 1175 489/686 28 - 98 [49]

GSE103541 Purified blood cells EPIC 145 NA NA [42]

GSE137884 Buccal cells 450k 89 51/38 3 - 6 [43]

GSE112179 Brain cells EPIC 100 75/25 23 - 77 [44]

GSE78874 Saliva 450k 259 146/113 36 - 88 [45]

GSE119100 Liver EPIC 108 46/62 25 - 71 [46]

GSE100197 Placenta 450k 102 NA NA [47]

GSE64096 Sperms 450k 40 NA NA [48]

GSE51032 Buffy coat 450k 845 188/657 34 - 72 [20]

raw IDAT were provided, we used the function ‘iadd2’
from bigmelon package [39] to read and load intensity val-
ues from IDAT files. After that, beta values are calculated
as:

β = M
M + U + 100

where β is beta value, M denotes methylated densities
and U represents unmethylated densities. Beta values are
ranged between 0 and 1, beta value close to 1 means
high-level methylation and a near-zero beta value rep-
resents low level methylation. With manual inspection,
those samples with apparent abnormal beta value density
distributions were removed prior to downstream analysis.
Also, those samples withmore than 10%missing data were
excluded.
There are 453,152 probes that exist in both 450k array

and EPIC array, therefore, we only keep the shared 453,152
probes for downstream analysis. For each sample, the
missing values of each probe were replaced by their
corresponding means across all samples. Then, Z-score
normalization was applied to each sample separately to
reduce technical variance, which means all beta values
were transformed to their Z-score values by subtracting
the mean of all autosomal beta values and then divided
by the standard deviation of all autosomal beta values
within a sample. Z-score transformed beta values were
used to construct PCA models and were used to make sex
predictions.

Model construction
GSE105018 was used to screen for sex-associated CpGs,
it includes 1658 whole blood DNA methylation samples
from participants in the Environmental Risk Longitudi-
nal Twin Study, there are 826 female samples and 832
male samples in this dataset, with all participants aged at
18, among them, 1468 participants who were members of
complete twin pairs (430 MZ pairs and 304 DZ pairs).

To identify sex-associated probes, T-test was applied to
raw beta values of each of the 453,152 probes for the two
sex groups, after Bonferroni multiple comparison correc-
tion, those probes with p-value less than 0.01 and absolute
beta value difference between sexes greater than 0.2 were
selected as significant sex-associated probes.
In order to have equal ratios of sexes, we randomly

selected 800 females and 800 males from GSE105018, the
Z-score transformed beta values of the identified sex-
associated probes which mapped on sex chromosomes
were used as input data. To be specific, the Z-score trans-
formed beta values of the sex-associated probes which
mapped on X chromosomes were processed by PCA, and
the coefficients of the first principal component were
used in the final model to distinguish whether a sample
contains one copy X chromosome or two copy X chro-
mosomes. Similarly, the Z-score transformed beta values
of the sex-associated probes which mapped on Y chro-
mosomes were processed by another PCA, and the coef-
ficients of the result first principal component were used
in the final model to distinguish whether a sample has Y
chromosomes or not. As a result, the final model includes
two sets of coefficients from two first principal compo-
nents of two separate PCAs. Finally, the proposed sex
classifier was tested by UKHLS dataset, with the labelled
sexes as true sex annotations.

Statistics analysis
All statistical analyses were conducted by Python (version
3.7.4, https://www.python.org/). T-tests were performed
by using the function ‘stats.ttest_ind’ in the Scipy library
[40]. The principal components analyses (PCAs) were
performed by using the ‘decomposition.PCA’ function in
Scikit-learn module [41].
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