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Abstract

Background: Immune responses need to be initiated rapidly, and maintained as needed, to prevent establishment
and growth of infections. At the same time, resources need to be balanced with other physiological processes. On
the level of transcription, studies have shown that this balancing act is reflected in tight control of the initiation
kinetics and shutdown dynamics of specific immune genes.

Results: To investigate genome-wide expression dynamics and trade-offs after infection at a high temporal resolution,
we performed an RNA-seq time course on D. melanogaster with 20 time points post Imd stimulation. A combination of
methods, including spline fitting, cluster analysis, and Granger causality inference, allowed detailed dissection of
expression profiles, lead-lag interactions, and functional annotation of genes through guilt-by-association. We identified
Imd-responsive genes and co-expressed, less well characterized genes, with an immediate-early response and
sustained up-regulation up to 5 days after stimulation. In contrast, stress response and Toll-responsive genes, among
which were Bomanins, demonstrated early and transient responses. We further observed a strong trade-off with
metabolic genes, which strikingly recovered to pre-infection levels before the immune response was fully resolved.

Conclusions: This high-dimensional dataset enabled the comprehensive study of immune response dynamics through
the parallel application of multiple temporal data analysis methods. The well annotated data set should also serve as a
useful resource for further investigation of the D. melanogaster innate immune response, and for the development of
methods for analysis of a post-stress transcriptional response time-series at whole-genome scale.
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Background
Upon microbial infection, Drosophila launch rapid and
efficient immune responses that are crucial to survival.
However, immune responses are energetically costly [1]
because they draw resources from other physiological
processes [2, 3] such as metabolism, reproduction, and
environmental stress responses. An excessive or overly

prolonged immune response can lead to metabolic dys-
regulation, causing wasting in mammals and flies [4].
Furthermore, it has been shown that allocating resources
to the immune system reduces resources for mating [5,
6], and the opposite is also true, where mating reduces
survivorship after infection and decreases resistance to
infection [7–9]. This represents a trade-off where limited
resources need to be allocated to either the immune re-
sponse or reproduction [10]. Therefore, we expect that
natural selection will act to tune the immune response
to strike a balance between the advantage of a rapid and
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robust ability to fight infection, and the costly side-
effects of an over-prolonged immune response. This
tuning is likely to be mediated through a series of regu-
latory and feedback properties of the immune system of
the fly.
While gene expression has been examined at several

time points after infection in Drosophila [11–13], the dy-
namics of this immune response have not yet been stud-
ied with high temporal resolution. A high-resolution
time-course analysis can help profile with more certainty
the types of expression dynamics that different genes
and pathways undergo after infection. Dense and ex-
tended time-course sampling of gene expression of the
immune response can allow us to distinguish between
transient and sustained expression patterns, where ex-
pression of genes with a transient response to perturb-
ation will return back to normal after a certain period of
time, while expression of genes with a sustained re-
sponse will remain at a different level of expression com-
pared to pre-perturbation levels. This kind of temporal
profiling of the immune response, coupled with compu-
tational modeling of gene interaction networks, can also
suggest candidates to examine for possible interactions
and trade-offs between the immune response and other
physiological processes.
Statistical analysis of such high-dimensional longitu-

dinal time-course omics data is not straightforward.
While the problems of detecting differentially expressed
(DE) genes and inferring gene interaction networks from
gene expression data are common in genomics, compu-
tational methods have focused primarily on cross-
section rather than time-course data. Most popular
methods to analyze static RNA-seq data — such as
edgeR [14] or DESeq2 [15] — are not ideal for dealing
with time-course RNA-seq data since they do not dir-
ectly model the correlation of genes between successive
time points [16, 17]. Smooth polynomial or spline based
models of temporal dependence in gene expression, such
as those employed in Limma-Voom [18] and maSigPro
[19, 20], can fail to capture early impulses in stress re-
sponse situations, as we highlight in this paper. Also,
joint network inference of temporal associations among
many genes requires tackling high-dimensionality, an as-
pect that has not received much attention in the litera-
ture. Because there is not one consensus method for the
analysis of time-course RNA-seq data, it is important to
ensure robustness of findings across different types of
computational modeling techniques.
In this study, we performed a dense time-course RNA-

seq analysis of the Drosophila transcriptional response
to commercial E. coli-derived crude lipopolysaccharide
(LPS), which activates the Imd pathway [21], to better
understand the dynamics of activation and resolution of
the innate immune response. Flies were sampled over 5

days generating a total of 20 time points post-LPS injec-
tion with an additional time point pre-injection as a
baseline control. We analyzed the resulting longitudinal
RNA-seq dataset using a broad range of statistical
methods, including a cross-sectional and a dynamic
method for differential expression (DE), clustering, and
multivariate Granger causality [22], a method to investi-
gate lead-lag relationships among DE genes. We found
that commercial LPS exposure has a major impact on
the expression of not only immune genes, but also genes
involved in metabolism and replication stress. Clustering
analysis showed that both the onset and persistence of
expression changes varied across these DE genes. Clus-
tering analysis further suggested a role in the immune
response and circadian rhythm for several previously
uncharacterized genes. Finally, throughout our analyses
we observed a theme of interplay and trade-off between
the immune response and metabolism.

Results
High-resolution profiling of gene expression after Imd
stimulation
To generate a full transcriptional profile of gene expres-
sion dynamics in Drosophila melanogaster after Imd
stimulation, we injected adult male flies with commercial
E. coli-derived crude lipopolysaccharide (LPS). While
pure E.coli LPS does not induce an immune response in
Drosophila, the peptidoglycan contamination in crude
LPS preparations consistently activates the Imd pathway
[21]. This was also confirmed using qPCR (see
Methods). In the remaining text, we refer to this treat-
ment as “Imd stimulation”. Using commercial LPS in-
stead of living bacteria gives the advantage of avoiding
the confounding effects of a growing and changing
population of pathogens, and of the mechanisms the
bacteria use to circumvent immune responses [23].
Flies were sampled in duplicate for a total of 21 time

points throughout the course of 5 days, which includes
an uninfected un-injected baseline sample as control at
time zero, and 20 time points after injection. Since this
is a perturbation-response experiment, denser sampling
occurred at early time points [16], with the first 13 time
points taken within the first 24 h (1, 2, 3, 4, 5, 6, 8, 10,
12, 14, 16, 20, and 24 h). Sampling is also essential at
later time points to know how long it takes to return to
baseline, and to differentiate between transient and sus-
tained responses [16]. For this reason, sampling contin-
ued until day 5 after Imd stimulation, although more
sparsely (30, 36, 42, 48, 72, 96, 120 h) (Fig. 1a). For this
dataset we obtained 41 high-quality libraries with an
average of 23.5 million mapped reads per sample. After
normalization of libraries, only genes with more than 5
counts in at least 2 samples were kept, leaving 12,657
genes for further analysis.
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Principal components analysis (PCA) on the 500 genes
with highest row variance across all time points revealed
a horseshoe temporal trend, with the control samples
clustering in the middle, and the post-injection time
points following a horseshoe-shaped track, consistent
with a pattern of many genes displaying a coordinated
change over the five-day interval (Fig. 1b). This type of
“horseshoe” or arch temporal trend in PCA has been
seen in other time-series experiments [18, 24–26], and is
commonly seen in spatial population genetic variation
[27] and in ecological gradient data that varies in a non-
linear manner [28]. PC1, PC2, and PC3 captured 35, 15,
and 14.5% of the variance in gene expression respect-
ively, and the first six PCs account for over 80% of the
total variance in the data.
Proper normalization of the data was assessed by con-

firming the behavior of known Drosophila housekeeping
genes across time (Qiagen Housekeeping Genes RT2

Profiler PCR Array and [29]). As expected, housekeeping
genes showed little change across time (Figure S1A).
The success of the Imd stimulation was confirmed by
the immediate up-regulation of known immune re-
sponse genes within the first time points (Figure S1B).

Spline modeling and pairwise comparisons identify 951
genes that are differentially expressed over time
following Imd stimulation
To identify genes whose expression levels were signifi-
cantly altered across the time course, we employed two
methods. First, we used gene-wise linear models to fit
cubic splines with time, on both the first 8 h and first 48
h after commercial LPS exposure. Second, because we
noticed that certain expression patterns were not ad-
equately described using cubic splines (as discussed
below), we also characterized the temporal patterns of
expression by estimating the differential expression of
every gene at each time point, from 1 to 48 h, compared
to the un-infected un-injected control samples at time
zero (also referred to as baseline).
Cubic spline fits identified a total of 411 DE genes,

based on a 5% False Discovery Rate (FDR) using the
Benjamini-Hochberg method [30] (Table S1). Of these
411 genes, 31 genes were detected only using short
spline fits on the first 8 h post-injection. Long spline fits
on the first 48 h post-injection identified 363 genes, and
17 genes were identified using both short and long
spline fits (Fig. 2a). Long spline fits excelled at

Fig. 1 Transcriptional profiling of Drosophila immune response. a Timeline of 21 time points, including un-infected un-injected sample as control
at time 0. Sampling was denser in the first 24 h and continued — although more sparsely — until day 5 (120 h). b Principal component analysis
(PCA) of the top 500 genes with highest row variance across all time points shows a coordinated change of gene expression over 5 days. Both
replicates are shown for all samples except for the time point at 3 h, where one replicate was excluded from the analysis during RNA-seq data
processing. The two samples in blue clustering in the middle (marked with grey dashed circle) correspond to the control time point (0 h). All
other time points from 1 to 120 h show a horseshoe temporal pattern around the controls
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identifying gradual changes and global patterns, such as
the ones shown by the dynamics of two genes involved
in galactose metabolism (Gale and Galk, Fig. 2b) which
are gradually downregulated after stimulation but later
recover. However, long spline fits failed to detect early
impulse patterns, such as those observed in the known
immune response genes AttA and DptB (Fig. 2c), which
were better captured by short spline fits on the first 8 h
post-injection. Still, even short spline fits failed to iden-
tify additional known immune genes with early impulse
patterns, such as CecC and CecB. We also fit third de-
gree polynomials using the R package maSigPro [19, 20].
This approach identified many DE genes that had been
selected using spline modeling (Figure S2), but similarly
failed to adequately describe early impulse patterns.
Based on these observations, we also used pairwise com-
parisons to identify additional DE genes whose trajector-
ies were not well described using cubic splines. Pairwise
comparisons identified 729 DE genes that were signifi-
cantly (FDR < 0.05) up- or down-regulated by a log2 fold
change (log2FC) of at least 1 (i.e.: 2 times higher than

baseline) in at least one time point throughout the first
48 h after injections (Table S1). Within this gene set,
there were 214 genes that were up- or down-regulated
by at least 2 log2FC (4 times higher than baseline), in at
least one time interval after injection (Figure S3, Table
S1). Of these 214 genes, 91 “core” DE genes underwent
at least a 2 log2FC in expression in at least two time in-
tervals after injection, with a more stringent FDR < 0.01
(Fig. 3a). Among the most strongly induced genes were
known immune genes DptB, AttC, Mtk, Dro, DptA, and
edin (bottom of Fig. 3a and Figure S4A). These genes
underwent an expression change of approximately 5
log2FC (32 times higher than baseline) and remained el-
evated up until 48 h after Imd stimulation. Further in-
vestigation of the 91 core genes showed that the number
of up-regulated genes was much higher than the number
of down-regulated genes across all time points (Fig. 3b).
Eleven of the up-regulated genes at each time point were
known immune genes, as identified by a list of immune
genes curated in Early et al. [31]. Within these 91 core
DE genes, we also found circadian rhythm genes period

Fig. 2 Identification of time-dependent genes. a Genes that significantly change in expression across time according to spline analysis in the first
8 h (yellow) vs 48 h (blue). b Spline modeling of two genes (Galk and Gale) that undergo gradual expression changes, when using first 48 h (blue)
and first 8 h (yellow) compared to the pattern of normalized counts (green). Spline modeling over 8 h misses the main change in pattern. c
Spline modeling of two immune genes (AttA and DptB) when using first 48 h (blue) and first 8 h (yellow) compared to the pattern of normalized
counts (green). Spline modeling over 48 h smooths out the early impulse signal, drastically changing the inferred expression at time zero
(indicated with arrows). d Comparing results from spline analysis (over 48 h in blue and over 8 h in yellow) vs. results from differential expression
analysis (|log2FC| > 1 in green and |log2FC| > 2 in orange) at FDR < 0.05
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Fig. 3 Dynamics and functions of genes with changing expression patterns over time. a Heatmap of gene expression changes. Up-regulated
genes are shown in orange, down-regulated genes are shown in purple. These 91 genes were selected based on FDR correction of 0.01 and a
|log2FC| > 2 in at least two time points across 48 h. The genes were ordered using Euclidean distance. b Number of significantly up- and down-
regulated genes, from the core 91 DE genes, at each timepoint (in red and blue, correspondingly). Known immune genes are shaded over red.
No down-regulated immune genes were observed
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(per), timeless (tim), takeout (to), and vrille (vri), which
when plotted against time exhibit the classic 24 h peri-
odic expression of the circadian rhythm (Figure S4B).
Of a total of 951 DE genes, 189 genes were identified

as differentially expressed using both pairwise methods
and spline modeling, but 762 out of 951 genes were
identified using only one of these methods, indicating
the importance of using complementary methods for the
analysis of time course RNA-seq data (Fig. 2d).

Gene ontology and gene set analysis demonstrate a
divergence in expression between immune and metabolic
processes after Imd stimulation
To understand the biological functions of genes whose ex-
pression is influenced by Imd stimulation, we performed
both a Gene Ontology (GO) and Gene Set Analysis. GO
analysis is a useful tool to illustrate the functions of genes
with significant differential expression over time, in this
case 951 DE genes selected using spline fitting and/or pair-
wise contrasts. However, focusing only on the top-scoring
genes can lead to missing biologically relevant signals from
genes with modest expression changes. Furthermore, GO
analysis does not take into account expression changes over
time. Both of these limitations are addressed by Gene Set
Analysis, which searches for enriched pathways (Gene Sets)
across all 12,657 genes in the dataset, guided by their log2
fold changes for all available time points.
GO analysis of the 951 DE genes using PANTHER iden-

tified a significant (FDR < 0.05) overrepresentation of GO
terms related to the immune and stress response, carbohy-
drate, carboxylic acid and lipid metabolism, and proteoly-
sis. Immune response related genes included Attacins
(AttA, AttB, AttC), Diptericins (DptA, DptB), Cecropins
(CecB, CecC), Bomanins (BomS1, BomS2, BomS3,
BomBc1), genes encoding Daisho peptides (Dso1, Dso2),
IMPPP (BaraA2, also called IM10), Drosocin (Dro), Droso-
mycin and Drosomycin-like genes (Drs, Drsl1, Drsl2,
Drsl3), Metchnikowin (Mtk), Peptidoglycan Recognition
Proteins (PGRP-SB1, PGRP-SD), Diedel, Relish (Rel) and
elevated during infection (edin), among others. DE genes
known to respond to stress included Turandots (TotA,
TotC, TotM) and Heat Shock proteins (Hsp70Aa,
Hsp70Ab, Hsp70Ba, Hsp70Bb, Hsp70Bbb, Hsp70Bc).
Of the 951 DE genes, we identified 20 genes that encode

known or putative transcription factors, based on the
FlyTF database [32] (Table S2). Seven of these twenty
genes have a fast impulse of up-regulation, reaching their
maximum expression in the first two hours following Imd
stimulation (Rel, Dif, CrebA, luna, Ets21C, Hr38, and
stripe; Fig. 4a). Rel and Dif encode downstream compo-
nents of the Imd and Toll pathways respectively, both in-
volved in the activation of the immune response [33–36].
Of these two transcription factors, Rel undergoes the
strongest up-regulation, consistent with activation of the

Imd pathway by Gram-negative peptidoglycan in com-
mercial LPS, and remains up-regulated at 1 log2FC even
after 48 h. Ets21C encodes a stress-inducible transcription
factor, and Hr38 and stripe are the two most robust
activity-regulated genes (ARGs, defined as genes that are
rapidly induced upon stimulation of neurons, mostly
within an hour) in Drosophila [37]. Three genes encoding
transcription factors had oscillating expression patterns
over time and are involved in the regulation of the circa-
dian clock (vri, clk, Pdp1; Figure S5A [38, 39];). One gene
of interest, p53, involved in the response to genotoxic
stress (Figure S5B [40];), reached its maximum up-
regulation later, at 6 h after injection.
Overall, the GO analysis indicates that the flies manifest

a robust immune response, as the gene expression
changes are consistent with known expression profiles of
immune response deployment in Drosophila [11, 12]. In
addition, the GO analysis demonstrates that the response
to Imd stimulation also affects metabolic homeostasis.
Supporting these results, Gene Set analysis across all 12,

657 genes and all time points showed that the top up-
regulated pathways were all related to immune response,
defense response to bacteria, and peptidoglycan functions
(Fig. 4b). Within these we found pathways related to
defense response against both Gram-negative and Gram-
positive bacteria. While the commercial LPS used for in-
jections is derived from the outer membrane of Gram-
negative bacteria, which activates the Imd pathway, the in-
jections themselves also result in septic injury, which is
known to activate both Gram-positive and Gram-negative
immune pathways (Toll and Imd pathways correspond-
ingly) [41]. Among down-regulated pathways we found
many metabolism-related functions. Three of these path-
ways (glycogen metabolic process, triglyceride biosynthetic
process, and gluconeogenesis) are highlighted in Fig. 4c-d
and S5. The glycogen pathway down-regulation pattern
was driven by genes Fatty acid synthase 1 (FASN1), and
UGP, which encodes a UTP--glucose-1-phosphate uridy-
lyltransferase (Fig. 4c). Down-regulation of the triglyceride
pathway was driven by FASN1 and minotaur (mino), a
glycerol-3-phosphate 1-O-acyltransferase (Fig. 4d). Finally,
the gluconeogenesis pathway down-regulation was driven
by fructose-1,6-bisphosphatase (fbp), a rate limiting en-
zyme for gluconeogenesis [42] (Figure S6). These meta-
bolic genes reached their lowest expression within the first
6 h after Imd stimulation, and mostly recovered to base-
line levels by hours 12–24.

Clustering of temporal profiles highlights differences in
the initiation and shutdown of immune and metabolic
genes and demonstrates a regular rhythm of circadian
clock genes
GO and Gene Set Analysis illuminated functions of
genes that respond to Imd stimulation, and indicated a

Schlamp et al. BMC Genomics          (2021) 22:304 Page 6 of 22



Fig. 4 (See legend on next page.)
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trade-off between immune and metabolic processes.
However, both GO and Gene Set Analysis are based on
prior knowledge of gene function. Clustering of genes
based only on their expression profiles is not influenced
by prior annotations. Such an unbiased approach can
thus identify responses of poorly annotated genes. In
addition, clustering can illustrate how gene expression
trajectories differ over time. We performed three ana-
lyses to characterize temporal profiles. First, we per-
formed hierarchical clustering based on Pearson
correlation on a set of 551 predominant time-dependent
genes to identify major expression patterns over time.
These 551 genes included the 411 genes identified using
spline modeling, and 214 genes with at least a 2 log2 fold
change in expression as identified using pairwise com-
parisons (Table S1). Second, we performed clustering
based on autocorrelation on these 551 genes. As op-
posed to Pearson correlation or Euclidean distance, an
autocorrelation function takes the ordering of time
points into account, allowing us to identify more de-
tailed characteristics of gene expression profiles in time
series. Third, because circadian rhythm genes were not
apparent in the clusters identified using the previous
methods, but were expected to be present in our dataset,
we used the R package JTK_Cycle [43] to identify genes
with 24 h cycling patterns among all genes in the dataset.
We were interested in these patterns since the circadian
clock is known to regulate the expression of immune
genes [44], and in turn, infections are known to influ-
ence the flies’ circadian rhythm [45].
First, expression profiles of the 551 predominant time-

dependent genes fell into four main hierarchical clusters
(Fig. 5a). Clusters 1 and 2 both had a strong increase in
expression after Imd stimulation (Fig. 5b). Cluster 1 had
a more immediate increase in expression, reaching a
maximum within the first 2 h. Cluster 2, on the other
hand, reached a maximum expression later, at around 9
h. Cluster 1 showed significant enrichment of GO terms
for immune and stress response related processes, and
contained Attacins and Cecropins, as well as Heat Shock
protein family genes. Cluster 2 was enriched for GO
terms for abiotic stimulus response, and contained
among others Bomanins, Daisho genes, as well as genes
from the Turandot family (Fig. 5c). Clusters 3 and 4
were characterized by an initial decrease in expression
followed by an increase after 3 h and 6 h respectively
(Fig. 5b), with cluster 4 showing a stronger decrease in

expression in the early hours after Imd stimulation.
These clusters had a significant enrichment of GO terms
for biosynthetic, catabolic, and metabolic processes (Fig.
5c), and their down-regulation again indicates a trade-
off between metabolism and the initiation of an immune
response.
Our second clustering analysis based on autocorrel-

ation revealed additional differences regarding the initi-
ation and resolution of gene expression after Imd
stimulation. First, we identified a cluster of genes with
an immediate and sustained up-regulation. This cluster
was characterized by a strong early induction with an
up-regulation of ~ 2.5 to 6 log2FC within the first hour
(6 to 64 times higher than baseline), reaching a max-
imum of 6 to 8.5 log2FC (64 to 362 times higher than
baseline), and maintaining persistent up-regulation of ~
2.5 to 6 log2FC throughout 5 days (Fig. 6a). This cluster
contained canonical immune response genes known to
be activated downstream of Imd, such as AttA, AttB,
AttC, DptA, DptB, Dro, edin, Mtk, PGRP-SB1, PGRP-SD.
The cluster further contained IBIN (Induced by Infec-
tion), whose exact mode of action is unknown, but
whose up-regulation stimulates starch catabolism as part
of an immune-induced metabolic switch, likely to make
free glucose available to circulating immune cells [46].
Finally, this immediate-response cluster also contained
Mtk-like, CG43920, and CG45045, which are less charac-
terized transcripts known to be up-regulated after bac-
terial infection [47].
Autocorrelation-based analysis also identified clusters

of genes with transient responses to infection (Fig. 6b-c).
One of these clusters was composed of Bomanins
(BomS1, BomS2, BomS3, BomBc1), Daisho genes (Dso1,
Dso2), and two Baramicin gene family members,
CG33470 (BaraA1) and IMPPP (BaraA2) (Fig. 6b). The
Bomanins are located in the 55C4 region of chromo-
some 2R, confer resistance against certain bacteria and
fungi and are regulated by Toll signaling [48]. Dso1 and
I were also reported to be regulated by Toll signaling
and aid defense against specific filamentous fungi [49].
Finally, CG33470 (BaraA1) and IMPPP (BaraA2) were
also shown to be regulated by Toll signaling [50–52].
These two genes show nearly identical gene counts in
our dataset, which fits with the finding that they likely
arose through gene duplication [52]. This cluster was
characterized by an early induction (but not as immedi-
ate as the cluster containing known Imd-responsive

(See figure on previous page.)
Fig. 4 Dynamics and functions of genes with changing expression patterns over time. a Temporal dynamics of DE transcription factors show that
many transcription factors reach their maximal expression 1–2 h after Imd stimulation. b Heatmap showing most up- and down-regulated
pathways (orange and purple respectively) through the first 48 h post-injections (absolute pathway score > 2.5 and P-value < 0.05 in at least one
time point). c-d Gene Set Analysis identifies up- and down-regulated pathways. Selected significantly down-regulated metabolic pathways
with corresponding gene memberships
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genes in Fig. 6a) of ~ 2.5 to 3.5 log2FC (6 to 11 times
higher than baseline) within the first two hours, reaching
a max of ~ 2.5 to 5 log2FC, and returning to a steady
state after 3–5 days. Thus, clustering analysis identified
effector immune genes partitioned by Imd vs Toll signal-
ing: Imd-regulated genes showed an immediate early
sustained up-regulation even after 5 days (Fig. 6a), while
Toll-regulated Bomanins and Daisho genes had an early
up-regulation that eventually returned to steady state
levels (Fig. 6b).

A final cluster illustrated a more complex expression
pattern: many genes in this cluster were down-regulated
immediately, 1–2 h after injection, after which they were
up-regulated, reaching their maximum expression after
8–12 h, followed by a return to baseline after 2–3 days
(Fig. 6c). This cluster was composed of genes from the
stress-induced Turandot family (TotA, TotB, TotC, and
TotX) [53] as well as Diedel, Grik, lectin-24A, NimB3,
BomT2, CG11459, and CG30287. Diedel encodes an im-
munomodulatory cytokine known to down-regulate the

Fig. 5 Global dynamics of time-dependent genes show divergent patterns of expression. a Heatmap of the 551 most predominant time-
dependent genes, identified by spline modeling over 48 and 8 h (FDR < 0.05) and pairwise differential expression (with |log2FC| > 1 and FDR <
0.05). Hierarchical clustering of the genes shows four main clusters characterized by time points in which the genes reach maximum and
minimum expression across time. Z-score values of each gene are shown from dark purple (minimum expression across time) to dark orange
(maximum expression across time). b Mean patterns of expression across time for genes within each of the four main clusters during the first 24
h, displayed by their centered and scaled normalized counts. c Significant Gene Ontology terms (FDR < 0.05) for over-represented Biological
Processes at each cluster
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Imd pathway. Grik encodes a glutamate receptor, and
Lectin-24A encodes a pattern recognition receptor that
mediates pathogen encapsulation by hemocytes [54].
Lectin-24A has been shown to be down-regulated in the
first 2 h following septic injury and then up-regulated 9
h after [55], consistent with the pattern we see in our
data. NimB3 is part of the Nimrod gene family, which is
involved in phagocytosis [56]. BomT2 is part of the
Bomanin gene family (like BomS1, BomS2, BomS3, and
BomBc1, expressed in the previous cluster, Fig. 6b).
CG11459 encodes a predicted cathepsin-like peptidase
induced by bacterial infection and injury [57]. CG30287
encodes a predicted serine protease, a class of proteins
that plays roles in immune response proteolytic cascades
[58].
Finally, using JTK_cycle, we identified 22 periodic

genes with a 24 h cycle, using a cutoff of Benjamini-
Hochberg corrected Q-value < 0.05 and amplitude > 0.5
(Fig. 7). Among them were four well characterized

circadian genes, suggesting that their periodicity was not
affected by Imd stimulation: period (per), takeout (to),
vrille (vri), and PAR-domain protein 1 (Pdp1), as well as
eight genes which do not have assigned circadian func-
tions but have evidence of cyclic behavior in previous lit-
erature (Table 1), and 10 genes, of which 8 are
uncharacterized, that have not yet been reported to have
cyclic expression outside this study (Table 1; CG10560,
Sgroppino, CG15253, CG15254, CG18493, CG31321,
CG33511, CG34134, CG42329, salt).
Overall, the combination of clustering methods aug-

mented by GO analysis allowed us to identify strong
temporal patterns that correspond to early and late in-
duction of immune processes, as well as both transient
and sustained responses to infection, which point to a
trade-off between the immune response and metabolism.
We found that genes that share functions often have
similar temporal expression patterns, suggesting co-
regulation. This observation further allowed us to assign

Fig. 6 Clusters of genes identified using autocorrelation. Network nodes represent genes; network edges represent the distance between gene
autocorrelations, based on ACF analysis using TSclust. a A cluster containing multiple Imd-responsive genes shows sustained expression after Imd
stimulation throughout 5 days (120 h). b Toll-responsive genes show a transient response to Imd stimulation. c Other stress response genes return
to steady state by day 5 (120 h) post Imd stimulation
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putative functions to previously uncharacterized genes
that cluster together with well-studied genes.

Gene interaction modeling of lead-lag patterns using
Granger causality
Clustering methods based on a single gene’s autocor-
relation or cyclicity patterns can detect genes with
similar expression profiles. However, these methods
are not suitable for seeking causal relationships be-
tween genes that manifest in a lead-lag relationship,
for instance when high expression of gene A results
in a high expression of gene B shortly afterwards. De-
tecting such lead-lag patterns (Fig. 8a) is a unique ad-
vantage of dense time-course experiments. Granger
causality (GC), a statistical method popular in analysis
of macroeconomic time series, provides an ideal
framework for modeling such patterns and building

directed networks among genes. The concept of GC
is based on predictability. If the knowledge of the
past of one time series improves the prediction of a
second one, the first is said to be Granger causal
(GC) for the second. Bivariate GC analysis between
two genes A and B, as described above, does not ac-
count for possible confounding effects of other genes
C, D, E which can also influence genes A and B (Fig.
8b). Multivariate GC analysis alleviates this problem
by explicitly accounting for the effects of the con-
founding genes by a joint modeling [59, 60], but does
not account for high-dimensionality and consequently
cannot jointly model hundreds of genes based on tens
of data points. We used modern high-dimensional
methods (viz LASSO [61] and de-biased LASSO [62,
63]) to address this problem and build lead-lag net-
work models among 258 genes.

Fig. 7 Top 22 genes identified by JTK_Cycle show 24 h temporal cycling

Table 1 Evidence of cyclic behavior for top genes identified by JTK_Cycle

Gene Evidence of cyclic behavior Source

Carbonic anhydrase 5 (CAH5) upregulated DE gene in response
to light stimulation

Adewoye et al. 2015 [59]

cypher (cyr) downregulated DE gene in response
to light stimulation

CG17127 photoperiodic Pegoraro and Tauber 2018 [60]

rhythmically expressed in constant
dark conditions

Ueda et al. 2002 [61]

Alcohol dehydrogenase CG4842 and
Cuticular protein 72Ec (Cpr72Ec)

downregulated in the retina after
heme oxygenase (ho) silencing in
photoreceptor cells

Damulewicz et al. 2019 [62]

CG8170 cycling mRNA Huang et al. 2013 [63]

Juvenile hormone esterase (Jhe) cyclic hemolymph activity Zhao and Zera 2004 [64]

Sodium-dependent multivitamin
transporter (Smvt)

modulated by the circadian rhythm
in mice

He et al. 2016 [65]

CG10560, Sgroppino (Sgp), CG15253,
CG15254, CG18493, CG31321, CG33511,
CG34134, CG42329, and sodium/solute
symporter salty dog (salt)

none reported
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We constructed directed GC edges and networks of
putative interactions among a subset of 258 genes (Table
S1). These genes had a |log2FC| > 1 (at least 2 times
higher or lower than baseline) across the time course
and had available functional annotations. We performed
Granger causality analysis on sliding windows of 6 time
points on the normalized counts of both replicates using
bivariate and multivariate methods (see Methods). We
investigated both positive and negative edges, reflecting
positive and negative lagged correlations between genes.
The overall unfiltered GC network has a multitude of re-
lationships worth exploring, but limitations in the ability
to distinguish different types of causality make wide-
spread conclusions from the network challenging. Here,
we discuss several examples of subnetworks which illus-
trate putative functional relationships among genes
whose expression changes in response to Imd
stimulation.
Based on our interest in identifying trade-offs between

biological processes in infected animals, we first con-
structed a high-quality set of consistently significant GC

edges of divergent expression (negative edges). To this
end we first filtered the subnetwork by (a) removing all
edges with a positive weight, (b) removing all nodes cor-
responding to cyclic genes identified earlier through the
JTK_Cycle method, (c) using only pairs of nodes with
significant edges (Benjamini Hochberg FDR < 0.05%) in
at least 3 consecutive windows within the first 24 h of
the time course. After filtering, the resulting high-quality
GC network contained 51 nodes and 35 edges in 16 con-
nected components (Figure S7). This network, by design,
should include the most interesting examples of diver-
gent expression changes from our full dataset.
The largest connected component in this network

(Component #1) is a multifunctional chain of 6 genes,
which connects the down-regulation of four metabolic
genes with the up-regulation of two genes that are in-
volved in regulating proliferation and repair (Fig. 9a).
Two of the metabolic genes, Sorbitol dehydrogenase 1
(Sodh-1) and UGP, both lead the divergent expression of
Claspin (both 4 consecutive windows, 2 to 10 and 4 to
12, respectively) (Fig. 9c and S8A). Claspin plays a role

Fig. 8 Diagram describing the process of constructing directed networks from Granger causality. a Lagged correlated expression between two
genes (Granger causality) leads to the construction of a directed edge between two genes (nodes), which in turn is used to build directed lead-
lag network models of putative interactions among genes. Edges can be positive or negative, based on the sign of lead-lag correlation between
the two genes. b Bivariate associations are calculated between two genes at a time, while multivariate associations adjust for potential indirect
association from all other genes in the gene set
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in DNA replication stress [64]. It is known that there is
an interplay between host immune systems and replica-
tion stress [65]. The immune system can detect and re-
spond to replication stress, which is an important
feedback loop necessary to remove defective cells [66].
Furthermore, the activation of the immune response
generates reactive oxygen species (ROS) and reactive ni-
trogen species (RNS), and can promote chronic inflam-
mation, all of which can trigger DNA damage [67]. UGP
and fbp were identified earlier during Gene Set Analysis
to drive the down-regulation of metabolic pathways (Fig.
4b and d), and in this cluster they are both negatively di-
rected by LpR2 (3 consecutive windows, 6 to 13) (Fig. 9d
and S8B). LpR2 is a lipophorin receptor, known to regu-
late the innate immune response by clearing serpin

protease complexes from the hemolymph through endo-
cytosis [68]. Lipophorin is a known humoral factor that
contributes to clot formation [69, 70]. Finally, LpR2 is
also shown to negatively direct juvenile hormone acid
methyltransferase (jhamt) (4 consecutive windows, 1 to
9) (Fig. 9e). JHAMT is an enzyme that activates juvenile
hormone (JH) precursors at the final step of the JH bio-
synthesis pathway in insects [71]. JH is a known hormo-
nal immunosuppressor in Drosophila [72–74].
Interestingly, Claspin was identified to be part of the

same pathway as Orc1 in our previous Gene Set Ana-
lysis, showing similar patterns and window of up-
regulation (mitotic DNA replication checkpoint pathway,
Figure S9). In our network, Orc1 is part of an isolated
edge with metabolic gene ABGE (Component #2, 4

Fig. 9 High-quality GC network components and their edges. a Components #1 and #2 from GC network (Figure S4). b Diagram summarizes
interplay between main represented pathways on the selected components. c-f Selected edges from the components plotted against time.
Significant windows colored in blue, non-significant colored in grey. Resulting overall consecutive windows are labeled in blue dashed rectangles.
Individual windows represent 6 consecutive time points, but because time points are not at regular intervals, the windows have different time
ranges, but identical numbers of samples
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consecutive windows, 4 to 12) (Fig. 9a and e). These pri-
oritized subnetwork components suggest an interplay
between metabolic pathways and other pathways such as
proliferation and repair (Fig. 9b), motivating follow-up
studies to determine which pathways might be regulat-
ing and trading off with each other in the hours follow-
ing Imd stimulation.
In addition to these purely negative edges, we detected

highly significant positive and negative edges among cir-
cadian rhythm genes. These included cryptochrome and
Smvt (6 consecutive windows, 6 to 16) (Figure S10A),
vrille and takeout (4 consecutive windows, 9 to 17) (Fig-
ure S10B), period and takeout (4 consecutive windows, 9
to 17) (Figure S10C), and Smvt and takeout (4 consecu-
tive windows, 9 to 17) (Figure S10D). Smvt is predicted
to encode a sodium-dependent multivitamin transporter,
and takeout influences feeding behavior [75, 76]. Meta-
bolic processes and feeding are known to be under circa-
dian control [77]. In addition, So et al. [78] reported that
takeout is regulated by the circadian clock, but with a
phase shift relative to period. This pattern is clearly vis-
ible in our dataset and was correctly identified using
Granger causality. This shows that Granger causality can
be used to infer gene dependencies/interactions using
global gene expression behavior.
Finally, among genes connected only by positive edges,

we identified an edge from period, a regulator of the cir-
cadian clock [79, 80], to Rhodopsin 5, which encodes a
G-protein-coupled receptor involved in phototransduc-
tion (Figure S11A). Rh5 mRNA levels are known to
demonstrate a cyclic pattern [81], indicating regulation
by the circadian clock. We further identified positive
edges between genes that are likely co-regulated. These
included edges between up-regulated genes that respond
to NF-κB signaling, such as edges from genes encoding
peptidoglycan recognition receptors PGRP-SD and
PGRP-SB1 (regulated by Imd signaling), to DptB and
AttC (also regulated by Imd signaling) and to BomS1,
Dso1, and BomBc1 (regulated by Toll signaling) (Figure
S11B-F). We also observed edges between down-
regulated genes, such as from Hao (predicted to play a
role in lactate oxidation) to AGBE (a predicted hydrolase
involved in glycogen synthesis) (Figure S11G). While the
expression of these genes likely responds to similar sig-
nals, the observed lags between these genes’ expression
profiles suggest that there are differences in their tran-
scriptional control, such as regulation by cofactors, dif-
ferences in promoter affinity for certain transcription
factors, or other variables that influence the rate of
mRNA accumulation.

Discussion
We have produced a dense and high-quality time-course
profiling of the Drosophila transcriptome response after

Imd stimulation through commercial LPS injection,
using RNA-seq sampling over 20 time points spanning
five days. This profiling provides a high-dimensional
dataset, which is available as a resource for the commu-
nity. We analyzed this dataset using a broad range of
statistical methods, including Granger causality, to inves-
tigate lead-lag relationships between genes. Because of
the high dimensionality, it is not straightforward to
analyze a time series, as illustrated by the partially dis-
tinct results of spline fitting and pairwise comparisons.
However, using a combination of analytical methods
allowed us to identify distinct patterns with high confi-
dence, specifically responses to Imd stimulation with di-
vergent initiation and resolution dynamics, as well as
cyclic patterns of gene expression, and patterns of co-
regulation and trade-offs. Below, we describe and discuss
the main insights from these analyses, as well as limita-
tions and future steps.

Immune and stress response genes vary in their initiation
and resolution dynamics after Imd stimulation
Clusters of genes demonstrated distinct activation kinet-
ics after stimulation of the immune response. This
phenomenon has been observed both in fly [11] and
mammalian cells [82], but as a result of the dense sam-
pling, our dataset provides a highly detailed view of these
initiation dynamics. In addition, because we sampled up
to 5 days post-injection, we could also observe long-
term responses to Imd stimulation.
First, a cluster of 13 genes showed the fastest up-

regulation within the first 1–2 h and remained up-
regulated during the entire five-day time course (Fig.
6a). This cluster contained 10 genes known to be regu-
lated by Imd signaling (3 Attacins, 2 Diptericins, Mtk,
Dro, IBIN, PGRP-SB1, and PGRP-SD), as well as
CG43920, CG45045, and Mtk-like. Imd-regulation of
these 3 genes has not been experimentally validated, but
their co-clustering pattern suggests that they are regu-
lated by the Imd pathway.
Second, a cluster containing Toll-regulated Bomanins

and Daisho genes [83] reached its highest point of ex-
pression at 5–8 h and recovered to a baseline state after
2 to 5 days (Fig. 6b). The later initiation of Toll-
responsive genes relative to Imd-responsive genes is
consistent with Tanji et al. [84], who reported earlier
peak expression of an Attacin and Diptericin (Imd-re-
sponsive) versus Drosomycin (mostly Toll-responsive).
The up-regulation of Toll-responsive genes might be a
response to the wounding that occurred during LPS in-
jection, as Irving et al. [85] reported that septic injury
with Gram-negative E. coli induced responses typical of
infection by Gram-negative and/or Gram-positive bac-
teria, and Boutros et al. [11] reported that clean injury
experiments induced a set of genes that overlapped with
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those induced by a septic injury experiment, but with a
lower response magnitude, consistent with our observa-
tions (Fig. 6a-b; Imd-responsive genes reach a maximum
of 6–8 log2FC while Toll-responsive genes reach a max-
imum of 2.5–4.5 log2FC).
Third, stress response genes, among which were mem-

bers of the Turandot family, reached their highest point
of expression at 10–12 h, following a pattern of delayed
response in line with observations by Ekengren et al.
[53]. Similar to the Toll-regulated gene cluster, stress re-
sponse genes returned to a baseline state after 2 to 5
days (Fig. 6c).
It is striking that the expression of Imd-regulated

genes did not recover to pre-injection levels even after 5
days. Since we stimulated the Imd pathway by injecting
Gram-negative peptidoglycan within commercial LPS, it
is possible that the prolonged up-regulation of AMPs
and other Imd-regulated genes was due to remaining
peptidoglycan in the flies. Alternatively, it might be typ-
ical for these genes to be expressed at a higher level for
a certain time even after the peptidoglycan has been
cleared. Troha et al. [47] also observed prolonged AMP
up-regulation after bacterial infection, even when levels
of bacteria were below detection threshold. On the other
hand, Duneau et al. [86] reported that 7 days after an
initial infection with E. coli, none of the surviving flies
were completely free of bacteria - suggesting suppression
rather than clearance of the infection. These observa-
tions raise the question of whether one should expect to
see a return to the baseline gene expression levels. Ra-
ther than returning to a pre-infection state, the pro-
longed up-regulation of Imd-responsive genes and the
transcription factor Rel (Fig. 4a) might be required to
prevent damage from dormant bacteria.

Initiation of the immune response coincides with a down-
regulation of metabolic processes
Our dataset showed distinct global dynamics pointing to a
divergence in expression between immune and metabolic
processes (both carbohydrate and lipid metabolism), with
the most up-regulated pathways related to immune and
stress responses, and the most down-regulated pathways
related to metabolic functions (Fig. 5).
Metabolic genes reached their maximum down-

regulation at 5–8 h (Fig. 4b-d, 5). FASN1, which showed
the strongest down-regulation in both glycogen meta-
bolic process and triglyceride biosynthetic process (Fig.
4c-d), is a lipogenic gene whose down-regulation might
indicate a need to have easily accessible nutrients instead
of storing them. Indeed, infections in mammals are
known to induce adipose tissue lipolysis [87] and bacter-
ial peptidoglycan is a ligand that stimulates lipolysis as
well [88]. The gene with the strongest down-regulation
in the gluconeogenesis pathway was fbp (Figure S6),

which codes for fructose-1,6-bisphosphatase, the rate
limiting enzyme for gluconeogenesis. This gene was sig-
nificantly down-regulated in a study that reported that
Listeria monocytogenes infection in Drosophila causes a
decrease in energy stores, with reduced levels of triglyc-
erides and glycogen [89]. Krejcova et al. [90] reported
that an infection-induced switch to aerobic glycolysis
within macrophages coincides with a systemic depletion
of glycogen stores and increased blood sugar levels. The
divergent dynamics detected in our dataset are thus in
agreement with known individual mechanisms charac-
terized in the immune response.
We also observed that expression of metabolic genes

and pathways recovered quickly to a baseline state
around 12–24 h after Imd stimulation (Fig. 4b-d, 5). The
speedy recovery of metabolic genes, despite sustained
expression of Imd-regulated immune response genes,
suggests that the early stages of infection likely involve
the greatest trade-offs, at least in response to the com-
mercial LPS injections. These dynamics might differ in
flies infected with live bacteria and might also differ de-
pending on the strain of bacteria [47].
We further saw implications of functional interplays

using the Granger Causal (GC) network analysis. Main
subnetwork components showed significant GC direc-
tional edges between down-regulated metabolic genes
(such as Sodh-1, UGP, fbp, and AGBE) and up-regulated
genes with cell proliferation and repair functions (Clas-
pin, LpR2, and Orc1) (Fig. 9). These results further sug-
gest an underlying interplay between metabolic
pathways and proliferation and repair mechanisms such
as regulation of DNA replication stress, endocytosis, and
clot formation. While functional genetics studies have
demonstrated such trade-offs previously [3, 91], our
dataset reveals the extent and dynamics of these trade-
offs on a genome-wide scale.

Predicting function by association
Using clustering analysis, we identified several genes that
lack a well-established function, and that clustered
tightly with well-studied genes. We can use this co-
clustering to suggest shared functions [92].
Temporal clustering analysis identified Mtk-like,

CG43920, IBIN, and CG45045, which shared similar ex-
pression dynamics with Imd-regulated AMPs (Fig. 6a).
Suggesting AMP-like functions to these less character-
ized genes can be supported by observations from litera-
ture: All four genes were previously found to respond to
infection [47, 57], and Mtk-like and CG43920 have been
shown to encode small proteins predicted to be cationic
[93], properties shared by known AMPs [94]. IBIN and
CG45045 were also predicted to physically interact
with antimicrobial peptide transcripts [93]. On the other
hand, Valanne et al. [46] found that IBIN overexpression
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increased levels of hemocytes and hemolymph glucose,
suggesting that IBIN functions as a link between im-
munity and metabolism, instead of acting as an AMP
itself.
The dense sampling nature of this time course allowed

us to discern the clear cycling patterns of differentially
expressed genes such as period, timeless, takeout, vrille,
and cryptochrome, all of which have well-characterized
circadian rhythm functions [38, 39, 78, 95, 96]. Clustered
with these genes, our analysis identified other genes that
showcase cyclic behavior but are not canonically
circadian-associated genes. This includes eight genes
which do not have assigned circadian functions but do
have some evidence of cyclic behavior in previous litera-
ture. It also includes ten genes that had not been re-
ported to exhibit any cyclic expression before this study
(Table 1). The identification of canonical circadian
rhythm patterns both validates our methods of data
normalization and differential expression analysis, and
increases the certainty that we are accurately profiling
novel temporal dynamics. It is important to note, how-
ever, that proper validation of the cycling behavior of
our novel cyclic genes should be performed under nor-
mal Drosophila conditions, as we do not know whether
Imd stimulation affected their expression.
Overall, we were able to implicate these uncharacter-

ized genes as potential members of specific functional
pathways due to the strong similarity of their expression
dynamics. This is impactful both in the functional impli-
cation of these genes, but also in demonstrating the po-
tential of this “guilt-by-association” method to assign
putative function to other uncharacterized genes
through RNA expression time-course experiments.

Limitations and future steps
Limitations of our experimental design can be used as a
guide to design future experiments. This time-course de-
sign lacks time-matched controls to account for expres-
sion changes associated with phenomena outside the
Imd stimulation, such as aging. However, it is still highly
valuable to develop and improve methods for analyzing
time-course transcriptional data lacking time-matched
controls, since these methods are needed to analyze pro-
cesses such as development, where such controls are in-
herently not possible.
This study also lacks a control for the wounding injury

caused by the injection itself. As discussed above, spe-
cific expression patterns such as those from the Toll-
response genes could be caused by the injection wound-
ing rather than the Gram-negative peptidoglycan in
commercial LPS. Another important experimental de-
sign aspect for time series is choosing the time frame
within which sampling needs to occur, which can be dif-
ficult to establish in advance. In our study, Imd-

regulated gene expression was sustained until 5 days
after infection, and a more prolonged sampling would
have been necessary to determine the full duration of
these genes’ up-regulation after Imd stimulation.
Further, our experiment sampled only males and fu-

ture experiments would be needed to make direct com-
parisons between male- and female-specific responses to
Imd challenge. In addition, multiple studies have re-
ported a trade-off between immunity and reproduction,
which occurs in singly-mated females [9] and multiply
mated males [97]. Mating activity was outside the scope
of our design but can be included in future designs.
In our dataset, Granger causality analysis excelled at

showcasing the relationships between divergent gene
pairs, but was overly sensitive to the extreme temporal
correlation between large groups of genes when analyz-
ing positive edges. To avoid a prohibitively dense net-
work for analysis, we relied on heuristic network
trimming criteria, which was effective, but is likely not
generalizable to other similar experiments. Developing
co-integration methods that take into account the spe-
cific bias found in high-dimensional RNA-seq datasets
would provide a more robust statistical analysis of the
causal relationships observed in this type of data. The
biological interpretation of relationships identified using
Granger causality also warrants further investigation:
Granger causality was successful at identifying what are
likely the downstream results of divergent regulation,
and it was successful at identifying positive lead-lag rela-
tionships between genes that likely respond to similar
signals, but might differ in their exact (post-)transcrip-
tional control. However, these statistical causal relation-
ships provide only hypotheses that should be tested with
direct experimental disruptions of a system to demon-
strate biological causality.

Conclusions
Our combination of analytical methods provides robust
profiling of the innate immune response in Drosophila
melanogaster after Imd stimulation at the highest tem-
poral resolution to date, and serves as a proof of concept
for high-density time-course RNA-seq analyses in other
systems. Further, it motivates innovation in computa-
tional and statistical methods for longitudinal omics
data, both to account for their inherent high-
dimensionality and the complex underlying architecture
that contains both causal and spurious coordination.
Specifically, the development and application of multi-
variate Granger causality analysis highlights the potential
of time-course data to evaluate coordinated gene expres-
sion changes through lags and trade-offs. While the im-
mune response in D. melanogaster has been well
studied, our research using dense time-course gene ex-
pression data reveals genome-wide dynamic expression
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patterns at higher temporal detail. Specifically, we reveal
responses to Imd stimulation with divergent initiation
and resolution dynamics, cyclic patterns of gene expres-
sion, and patterns of co-regulation and functional trade-
offs, while also assigning putative gene functions to
uncharacterized genes through a temporal guilt-by-
association method.

Methods
Fly lines, injections, and sample collection
Male adult Drosophila of about 4 days old were sampled
from an F1 cross from two Drosophila melanogaster
Genetic Reference Panel (DGRP) lines: line 379, which
was shown to have low bacterial resistance, and line 360,
which has high bacterial resistance [98]. Offspring from
these two DGRP lines were used to allow investigation
of allele-specific expression after Imd stimulation. Ana-
lysis indicated significant allele-specific differential ex-
pression across multiple loci, including loci that contain
immune genes, when aggregating data across all time
points (data not shown). This may reflect differential
rates of transcription initiation, processivity, RNA pro-
cessing, or decay. However, allele-specific expression did
not significantly change over time after infection (data
not shown). Because of the absence of time-dependent
effects, this analysis was not included in the manuscript.
Flies were kept on a 12:12 dark-light cycle, on stand-

ard yeast/glucose food. Flies were injected in the abdo-
men with 9.2 μl of commercial lipopolysaccharide (LPS)
(Escherichia coli 055:B5 Sigma) derived from the outer
membrane of Gram-negative bacteria. Flies were injected
using a Nanoinjector (Nanoject II, catalog #3–000-204,
Drummond), which allows high-throughput fly injec-
tions with a constant injection volume. Injections were
performed in the abdomen, as it has been shown to be
less detrimental to the fly compared to thorax injury
[99].
Flies were sampled for a total of 21 time points

throughout the course of 5 days, which included an un-
infected un-injected baseline sample as control at time
zero, and 20 time points after LPS injection (1, 2, 3, 4, 5,
6, 8, 10, 12, 14, 16, 20, 24, 30, 36, 42, 48, 72, 96, 120 h).
This sampling was performed twice, using flies from the
same stock, on two consecutive days. Therefore, all time
points have two replicates, giving a total of 42 samples.
Since flies were sampled from the same stock for both
replicates, we consider the second replicate to control
for any effects of the injection technique. This sampling
strategy was informed by experimental data and time
series theoretical analysis that show that under reason-
able assumptions, sampling time points at higher reso-
lution is preferred over having more replicates [100], an
important strategy to consider when having a limited ex-
perimental budget.

During collection, a group of ~ 10 pooled flies corre-
sponding to the sampled time point were flash frozen in
dry ice and stored at − 80 C for later RNA extraction.

Experimental validation using qPCR
The Imd inducibility of commercial LPS was confirmed
using qPCR. Adult male Drosophila were injected with
9.2 μl or 40 μl of 1 mg/mL LPS and flash frozen at 8 and
24 h for RNA extraction. Uninfected un-injected flies
were used as control. Each sampled time point consisted
of a group of ~ 10 pooled flies. Each sample had two
replicates. Genes AttA and DptB were measured to con-
firm Imd stimulation. Gene Rp49 was used as a baseline
for expression normalization. Results showed a signifi-
cant up-regulation of AttA and DptB at both volumes
(9.2 μl and 40 μl) for both time points (8 and 24 h). We
decided to use 9.2 μl so as to cause the least amount of
disruption to flies during infections, while still eliciting
an immune response.

RNA extraction, RNA sequencing, and quality control
filtering
RNA extraction was performed using Trizol (Life Tech-
nologies) following the manufacturer’s instructions.
cDNA libraries were prepared using the TruSeq RNA
Sample Preparation Kit (Illumina). RNA purity was
assessed using a Nanodrop instrument. RNA concentra-
tion was determined using a Qubit (Life Technologies)
instrument. Sequencing was performed on an Illumina
Hi-Seq 2500, single-end, and a read length of 75 bp, at
Cornell Biotechnology Resource Center Genomics
Facility.
Samples had an average of 24.8 M raw reads. Samples

went through quality control using FastQC (v0.11.5).
Truseq adapter sequences were removed from any sam-
ple that showed any level of adapter contamination using
cutadapt (v1.14). Low quality bases in the beginning and
end of the reads were trimmed using fastx_trimmer
(v0.0.13, http://hannonlab.cshl.edu/fastx_toolkit/). Reads
were mapped to the Drosophila melanogaster genome
(r6.17) using STAR (v2.5.2b). BAM files were generated
using SAMtools (v1.3.2). Only one sample (4B, at 3 h)
out of the original 42 failed to pass the quality thresh-
olds, and all subsequent analysis used the remaining 41
samples. An average of 92.97% reads per library mapped
uniquely to the Drosophila melanogaster genome. We
ended up with an average of 23.4 million uniquely
mapped reads per library.
Reads mapping to genes were counted using the R

package GenomicAlignments. Genes with zero counts
across all samples were removed (923 genes out of 17,
736). Samples were normalized to library size. A “+ 1”
count number was added to all genes before performing
log2 transformation, to make sure values after
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transformation are finite, and stabilize the variance at
low expression end. After normalization and log2 trans-
formation, only genes with more than 5 counts in at
least 2 samples were kept (removing 4156 genes). We
ended up with 12,657 genes for downstream analysis.
A heatmap of the row Z-scores of normalized counts

for all 12,657 genes indicated that sample 6A (5 h after
commercial LPS injection) was an outlier for a subset of
the 12,657 genes (Figure S12A), even though sample 6A
did not appear as an outlier using Principal Component
Analysis (see below and Fig. 1b). We identified outlier
genes in sample 6A by subtracting replicate A row Z-
scores of normalized counts from replicate B. While for
most time points the difference between samples A and
B varied between − 4 and 4, samples 6A and 6B demon-
strated larger differences for 1439 genes (Figure S12B).
These genes were enriched for GO terms related to
neuron signaling and development (based on PANTHER
GO statistical overrepresentation test with FDR 0.05).
Only 40 of the 1439 genes were annotated as immune
genes by Early et al. [31], and none of the 1439 genes
were among the DE genes detected as differentially
expressed using pairwise comparisons or spline fitting.
Library sizes for samples 6A and 6B were similar (26,
256,507 for replicate A and 22,980,006 for replicate B).
We think the difference between the replicates at 5 h
post-injection could be caused by unknown variation in
the flies’ environment. It did not influence our data ana-
lysis and conclusions, but it is necessary to be aware of
when using this dataset for other analyses.

Principal component analysis
Principal components analysis (PCA) was performed
using function plotPCA from the R package DESeq2 [15]
after regularized-logarithm transformation of raw
counts, using the design ~time + time:time to create the
DEseqDataSet. Genes with zero counts across all sam-
ples were first removed. The default number of 500 top
genes with highest row variance was used to calculate
the principal components.

Differential expression analysis
In order to identify genes that had differential expression
over the time course, we adopted the linear model-based
methodology proposed in Law et al. [18] and available in
the R package limma. We first transformed the normal-
ized RNA-seq read counts (before log2 transformation)
using the voom transformation, which estimates the het-
eroscedastic mean variance relationships of log-counts
and adds a precision weight to each observation to make
them amenable to the usual linear modeling pipelines
that rely on normality. We used gene-wise linear models
to fit cubic splines (with 3 degrees of freedom) with
time, TMM normalization method [101], and standard

empirical Bayes F-tests to select genes whose expression
levels were significantly altered across the time course in
both replicates.
We also fit 3 degree polynomials across the first 48 h

using the R package maSigPro [19, 20]. We used default
parameters, including counts = F to model the data
based on a normal distribution, since we ran maSigPro
on counts that were normalized using Limma-Voom.
We selected 169 genes as significantly time dependent if
they had alfa (Benjamini-Hochberg corrected) < 0.05 and
a goodness of fit R2 value of at least 0.6.
Next, we checked for differential expression of every

gene between time point 0 (control) and time point t,
for t = 1, 2, …, 48 h. For each test, a multiple testing cor-
rection at 5% False Discovery Rate (FDR) using the
Benjamini-Hochberg method [30] was adopted. Venn di-
agrams to compare results were adapted from those gen-
erated using web tool Venny (http://bioinfogp.cnb.csic.
es/tools/venny/).

Functional annotation
Gene Ontology (GO) enrichment analysis was per-
formed using PANTHER Statistical Overrepresentation
Test (http://pantherdb.org/, v14.1, released 2019/04/29)
[102] using default settings (“GO biological process
complete” as annotation dataset, Fisher’s Exact test,
FDR < 0.05). Transcription factors were identified among
differentially expressed genes based on a list of 753 puta-
tive site-specific transcription factors available via the
FlyTF database (v1) [32]. Gene set analysis was done
using the R package GSA, which uses a Gene Set Ana-
lysis algorithm [103] that improves the GSEA algorithm
[104] by allowing testing for associations between gene
sets and time-dependent variables [103, 105]. Gene set
membership was assigned from GO data downloaded
from FlyBase.org in January 2019 (version FB2019_01).
Normalized counts for both replicates at each time point
from 1 to 120 h were compared against both control
replicates (0 h), using a two-class paired vector (− 1, 1, −
2, 2) which corresponds to (control_replicateA, time-
pointX_replicateA, control_replicateB, timepointX_repli-
cateB). We used 100,000 permutations to estimate false
discovery rates. Only pathways with P-values below 0.05
and with 5 or more genes from our full dataset were
kept. A subset of most relevant pathways was compiled
by selecting pathways that had more than one gene from
the subset of 551 most predominant time-dependent
genes, and had a score of 2.5 or more in at least one
time point from 1 to 48 h. This gave us 41 unique path-
ways as shown in Fig. 9.

Cluster analyses
Hierarchical clustering of 91 core genes was performed
using R package hclust, using Euclidean correlation as a

Schlamp et al. BMC Genomics          (2021) 22:304 Page 18 of 22

http://bioinfogp.cnb.csic.es/tools/venny/
http://bioinfogp.cnb.csic.es/tools/venny/
http://pantherdb.org/
http://flybase.org


distance metric. Hierarchical clustering of 551 predom-
inant time-dependent genes was done using the default
Pearson correlation with R package pheatmap. Cluster
membership assignment and mean patterns of expres-
sion across time for genes within each cluster was per-
formed as done in White et al. [26]. Temporal clustering
was performed using the R package TSclust [106]. Nor-
malized counts of both replicates were clustered using
dissimilarity measures from Autocorrelation-based
method (ACF), which computes the dissimilarity be-
tween two time series as the distance between their esti-
mated simple autocorrelation coefficients [107]. This
method was used with a P-value cutoff of 0.05, and only
top 1% correlation edges were further explored.
Cyclic gene patterns were identified using the JTK_

Cycle algorithm [43] available in R package JTK_Cycle.
Nine regularly distributed time points were subset from
both replicates every 6 h (0, 6, 12, 18, 24, 30, 36, 42, 48
h). The time point corresponding to 18 h was approxi-
mated by averaging normalized gene counts between
time points 16 and 20 h. We looked for rhythms be-
tween 18 and 30 h (4 to 6 time points) with a cutoff of
BH Q-value < 0.05 and amplitude > 0.5.

Network inference
Granger causality-based methods [22] were used to con-
struct putative interaction networks among genes in the
form of directed graphs with individual genes as nodes.
A directed edge from gene A to gene B is added if the
time course of gene A Granger-causes the time course
of gene B. The notion of ‘Granger causality’ is popular in
learning lead-lag relationships among two or more time
series. Formally, if the time series of gene A, given by xt,
has some power in predicting the expression of gene B
at time t + 1, called yt + 1, over and above yt and condi-
tioned on an information set It, then gene A is said to
exert a Granger causal effect on gene B. Bivariate
Granger causality uses a small information set It = {x1 : t,
y1 : t} and captures Granger causal relationship from gene
A to gene B by testing whether the regression coefficient
β in the following bivariate regression is different from
zero:

ytþ1 ¼ α yt þ β xt þ errortþ1

A master set of 258 genes was constructed from the
551 predominant time-dependent genes by picking those
that had available functional annotation and that had
differential expression of at least 2 log2 fold change.
Using linear regression (function lm() in R), we con-
ducted bivariate (pairwise) Granger causality tests for
every pair of genes among this set of 258 genes using
data on sliding windows of t = 6 consecutive time points
and the two replicates (sample size = 12), and ranked

them in order of increasing P-values (BH method used
for calculating FDR), keeping the top resulting edges
(BHFDR < 5%).
A well-known critique of bivariate Granger causality is

its use of a small information set that does not contain
any other factors except genes A and B [108]. This fail-
ure to account for other potential confounding variables
can give rise to many spurious edges in our network
[108], where Granger causal effects from gene A to gene
B is an artefact of gene C, which is causal for one or
both genes. To address this, we adopted multivariate (or
network) Granger causality [109], allowing us to avoid
such spurious inferences through multiple linear regres-
sion. In this framework, we start with p genes, and
Granger causal relationship of Gene A on Gene B is
tested by regressing yt + 1 on yt, xt and the time courses
of the other p - 2 genes z1t, z2t, …, zpt.

ytþ1 ¼ α yt þ β xt þ γ1z1t þ γ2z2t þ…þ γp−2zp−2;tt
þ errortþ1

For small sample size and large p, the above regression
is not possible to run using ordinary least squares (OLS),
so we use LASSO [61] regression. To test if the regres-
sion coefficient β in the above regression is different
from zero, we used two different variants of de-biased
LASSO [62, 63], each of which corrects the bias of lasso
and allows quantifying uncertainty of regression coeffi-
cients one at a time. A non-zero coefficient in the above
multivariate regression suggests that gene A is Granger
causal for gene B, even after accounting for the effects of
the other p-2 genes. Using this method on the master
set of 258 genes, we reconstructed putative directed net-
works of multivariate Granger causality and ranked the
edges in increasing order of P-values, following the same
parameters used in the bivariate (pairwise) Granger
causality method (sliding window of 6 consecutive time
points in both replicates, keeping the top resulting edges
(BHFDR < 5%)).
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