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Abstract

Background: Lysine succinylation is a naturally occurring post-translational modification (PTM) that is ubiquitous in
organisms. Lysine succinylation plays important roles in regulating protein structure and function as well as cellular
metabolism. Global lysine succinylation at the proteomic level has been identified in a variety of species; however,
limited information on lysine succinylation in plant species, especially paper mulberry, is available. Paper mulberry is
not only an important plant in traditional Chinese medicine, but it is also a tree species with significant economic
value. Paper mulberry is found in the temperate and tropical zones of China. The present study analyzed the effects
of lysine succinylation on the growth, development, and physiology of paper mulberry.

Results: A total of 2097 lysine succinylation sites were identified in 935 proteins associated with the citric acid cycle
(TCA cycle), glyoxylic acid and dicarboxylic acid metabolism, ribosomes and oxidative phosphorylation; these
pathways play a role in carbon fixation in photosynthetic organisms and may be regulated by lysine succinylation.
The modified proteins were distributed in multiple subcellular compartments and were involved in a wide variety
of biological processes, such as photosynthesis and the Calvin-Benson cycle.

Conclusion: Lysine-succinylated proteins may play key regulatory roles in metabolism, primarily in photosynthesis
and oxidative phosphorylation, as well as in many other cellular processes. In addition to the large number of
succinylated proteins associated with photosynthesis and oxidative phosphorylation, some proteins associated with
the TCA cycle are succinylated. Our study can serve as a reference for further proteomics studies of the
downstream effects of succinylation on the physiology and biochemistry of paper mulberry.
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Background

The posttranslational modification of proteins refers to
the chemical modification of proteins after translation;
these modifications can regulate the activity, localization
and folding of proteins and their interactions with other
biological macromolecules [1]. An increasing number of
studies have shown that posttranslational modifications
(PTMs) are major determinants of the structure of
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chromatin and play key roles in the regulation of func-
tional gene expression profiles to enhance the diversity
of protein species and functions of organisms [2, 3]. Ly-
sine is one of the amino acids in proteins that is the
most frequent site of posttranslational modifications [4],
such as acetylation [5], ubiquitination [6], butyrylation
[7], malonylation [8] and succinylation.

Succinylation is a newly identified protein posttransla-
tional modification (PTM) of lysine residues [9]. The
succinyl group is covalently bound to the lysine residue
via the succinyl donor through an enzymatic or nonen-
zymatic reaction [10]. Lysine succinylation was first
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observed in histone proteins and was found to play a
role in regulating gene transcription [11]. Lysine succi-
nylation has also been observed in proteins in the cyto-
plasm [12], nucleus and mitochondria [13], revealing
that lysine succinylation regulates various important bio-
logical processes, including the cell cycle, growth and
signal transduction pathways [14]. Recent studies have
identified global lysine succinylation sites at the prote-
omic level in microorganisms, animals, humans and
plants [15-18], demonstrating that succinylation is ubi-
quitous in diverse organisms. Subsequent studies verified
histone lysine succinylation in prokaryotes [19] and
eukaryotic cells [20], and more comprehensive lysine
succinylome studies in humans, yeast, mice and bacteria
have confirmed that Ksuc is evolutionarily conserved
and ubiquitous [21, 22]. Hundreds of succinylation sites
and proteins have been identified in a variety of micro-
organisms. Various bacteria [23] and fungi, such as
Escherichia coli, Mycobacterium tuberculosis and Toxo-
plasma gondii, have been shown to undergo succinyla-
tion [24, 25]. A systematic analysis of mammalian
succinylation sites in mouse cells [26] indicated that pro-
tein succinylation sites may affect enzymes involved in
mitochondrial metabolism. Succinylation has also been
studied in the human tissue/cell proteome [27]. Accurate
identification of succinylation sites can facilitate our un-
derstanding of the molecular mechanism and potential
roles of lysine succinylation [28]. Lysine succinylation
has also been identified in plants. A total of 710 Ksu
sites in 346 proteins with diverse biological functions
and subcellular localizations were identified in rice (Or.
sativa, cultivar Nipponbare) samples [4]. Moreover,
studies have shown that other plants also have complete
succinylation systems. For example, a total 605 lysine
succinylation sites in 262 proteins were observed in Bra-
chypodium distachyon L. leaves [29] and 3530 lysine suc-
cinylation sites in 2132 proteins were detected in white
tea (Camellia sinensis (L.) O. Kuntze) [30]. A total of 347
lysine succinylation sites in 202 proteins were identified
in tomato (Solanum lycopersicum) by high-resolution
mass spectrometry [31], 416 lysine succinylation sites in
277 proteins were identified in wheat (7. aestivum L.)
[32], and modified proteins were involved in a variety of
biological processes. However, the understanding of suc-
cinylation in plants remains limited.

Paper mulberry (Broussonetia papyrifera) is an effi-
cient traditional Chinese medicine and a tree species im-
portant for urban and rural afforestation. Paper
mulberry is fast growing, strongly adaptable, and widely
distributed. It reproduces easily and has a short rotation
period. The paper mulberry leaves can be used as pro-
tein feed, the bark is a high-quality raw material for
papermaking, and the roots, stems, leaves, fruits, and
seeds can be used as medicines with substantial
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economic value [33]. Previous research has recon-
structed the metabolic pathways of paper mulberry and
analyzed the differentially expressed genes in the leaves
and roots using transcriptomic data [34]. In the analysis,
biosynthesis; photosynthesis; and metabolism were the
top three KEGG enrichment pathways. Proteomics stud-
ies have also shown that energy metabolism is essential
for the paper mulberry’s resistance to external stress.
Previous reports have shown that lysine succinylation is
involved in important processes such as plant biosyn-
thesis and the regulation of metabolic pathways [35].
Therefore, we hypothesized that lysine succinylation
could play an important role in the development and
metabolism of paper mulberry. However, studies of ly-
sine succinylation in paper mulberry have not been con-
ducted at the proteomic level. Lysine succinylation may
play an important role in paper mulberry development
and metabolism. To test this hypothesis, we performed a
proteomic study.

Methods

Plant material and growth conditions

Paper mulberry plants (Zhong Ke 1) were introduced
from the planting base of Hainan Zhongbroussonetia
Agriculture and Animal Husbandry Ecological Science
and Technology Development Co., Ltd. to Zhenfeng
County, Guizhou Province. Paper mulberry seedlings
were transplanted by the authors in pots in a greenhouse
of the College of Animal Science, Guizhou University,
Guizhou Province, China (26°25 39.62 N, 106°40 5.81 E,
1090 m above sea level). The soil type was limestone
with a pH of 7.72. The paper mulberry seedlings were
grown in a greenhouse at 26/18°C (day/night) and a
photoperiod of 16/8 h (light/dark). Three biological rep-
licates of 15 g of leaves were harvested from 7-week-old
seedlings for protein extraction. The samples were im-
mediately frozen in liquid nitrogen and stored at - 80 °C.
The overall technological process is shown in Fig. 1a.

Protein extraction and trypsin digestion

Leaf samples were initially ground with liquid nitrogen
and washed with Trichloroacetic acid (TCA). Then, the
powder was transferred to a 5-mL centrifuge tube and
sonicated three times on ice using a high-intensity ultra-
sonic processor (Scientz, Ningbo, China) in lysis buffer
containing 1% Triton X-100, 10 mM dithiothreitol, 1%
protease inhibitor cocktail (Calbiochem, Darmstadt,
Germany) 50 pM PR-619, 3 uM TSA (Sigma, California,
USA), 50 mM NAM (Sigma, California, USA) and 2 mM
EDTA. An equal volume of Tris-saturated phenol (pH
8.0) was added; then, the mixture was vortexed for 5
min. After centrifugation (at 5000 g at 4 °C for 10 min),
the upper phenol phase was transferred to a new centri-
fuge tube. The Proteins were precipitated by adding four
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— T
7 8 9 10 11 12 18 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 >30
Peptide length

volumes of ammonium sulfate-saturated methanol,
followed by incubation at —20°C for at least 6 h. After
centrifugation at 4°C for 10 min, the supernatant was
discarded. The remaining precipitate was washed once
with ice-cold methanol followed by three washes with
ice-cold acetone [36]. One mL of 0.1 M ammonium ester
dissolved in 80% methanol was added to the above cen-
trifuge tube and swirled until thoroughly mixed. After
centrifugation (4°C, 5000g, 10 min), the solution was
washed with 1 mL of 80% TCA and shaken with a vortex
until the sediment at the bottom of the tube was com-
pletely dispersed. After centrifugation (4°C, 16000g, 3
min), the solution was blown in a fume hood for 10 min
to remove the acetone. The sample (0.1 g) was added to
0.8mL 1:1 phenol (pH8.0, Sigma, California, USA),
mixed completely and incubated for 5 min at 4 °C. After
centrifugation, the supernatant of phenol (0.2-0.4 mL)
was transferred to a new 2 mL centrifuge tube, and 0.1
M ammonium acetate methanol solution was added, and
stored overnight at — 20 °C. The protein was redissolved
in 8 M urea, and the protein concentration was deter-
mined using a BCA kit (Beyotime, Shanghai, China) ac-
cording to the manufacturer’s instructions.

For digestion, the protein solution was reduced with 5
mM dithiothreitol for 30 min at 56 °C and alkylated with
11 mM iodoacetamide for 15 min at room temperature
in the dark. The protein sample was then diluted to a
urea concentration of less than 2 M by adding 100 mM
TEAB. Finally, trypsin was added at a trypsin to protein

mass ratio of 1:50 for the first digestion overnight and 1:
100 trypsin for the second 4-h digestion.

After trypsin digestion, the peptides were desalted by
passage through a Strata X C18 SPE column (Phenom-
enex, Tianjin, China) and vacuum-dried. The peptides
were initially separated into 60 fractions using a gradient
from 8 to 32% acetonitrile (pH 9.0) over 60 min. Then,
the peptides were combined into 4 fractions and dried
by vacuum centrifugation.

Pan-antibody-based PTM enrichment

To enrich the succinylated peptides, we dissolved the
tryptic peptides in NETN buffer (pH 8.0) consisting of 1
mM EDTA, 100mM NaCl, 0.5% NP-40 and 50 mM
Tris-HCI, followed by incubation with previously washed
antibody beads (PTM-402, PTM Bio, Hangzhou, China)
overnight at 4°C with mild shaking. The beads were
then rinsed four times with NETN buffer and twice with
H,O. The bound peptides were eluted from the beads
with 0.1% trifluoroacetic acid. Finally, the eluted frac-
tions were combined and vacuum-dried. Prior to LC-
MS/MS, C18 ZipTips (Millipore, Massachusetts, USA)
were utilized to desalt the peptides in accordance with
specific protocols.

LC-MS/MS analysis

The modified peptides were dissolved in 0.1% formic
acid (solvent A) and directly loaded onto a homemade
reversed-phase analytical column (15cm length, 75 um
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i.d.). The gradient included an increase from 6 to 22%
solvent B (0.1% formic acid in 98% acetonitrile) over 20
min, from 22 to 30% over 8 min and to 80% over 2 min;
then, the mobile phase was maintained at 80% for 2 min
at a constant flow rate of 250 nL/min using a NanoElute
1000 UPLC system [37].

The peptides were subjected to an NSI source followed
by tandem mass spectrometry (MS/MS) using TimsTOF
Pro (Bruker, Karlsruhe, Germany) coupled online to the
UPLC system. The electrospray voltage was 1.4kV. The
m/z scan range was 100 to 1700 for the full scan [38]. A
data-dependent procedure alternated between one MS
scan followed by 10 MS/MS scans with 5.0-s dynamic
exclusion.

Database search

We used the MaxQuant search engine (v.1.5.2.8) to
process the obtained MS/MS data. In addition, we
searched the tandem mass spectra from the paper mul-
berry protein database focusing on the reverse decoy
database. We deemed trypsin/P a lyase that allowed for
as many as 4 missing cleavages. The mass tolerance for
precursor ions was set to 20 ppm in the initial search
and 5ppm in the main search, and the mass tolerance
for fragment ions was set to 0.02 Da. In addition, we de-
fined carbamidomethyl on Cys and Met oxidation as
fixed and variable modifications, respectively. Moreover,
we adjusted at < 1% and set the lowest score of modified
peptides at > 40.

Bioinformatics analysis

The motif-x (http://motif-x.med.harvard.edu/) algorithm
was used to analyze the model of sequences composed
of amino acids in specific positions of modify-21-mers
(10 amino acids upstream and downstream of the modi-
fication site; however, phosphorylation used modify-13-
mers with 6 amino acids upstream and downstream of
the modification site) in all protein sequences [39]. Gene
Ontology (GO) annotation proteome was obtained from
the UniProt-GOA database (http://www.ebi.ac.uk/GOA/
). The proteins were classified by GO annotation into
three categories: biological process, cellular compart-
ment and molecular function. For each category, a two-
tailed Fisher’s exact test was used to test the enrichment
of the identified modified proteins versus all the proteins
in the species database. GO with a corrected p-value <
0.05 was considered significant [18]. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
was used to identify enriched pathways by a two-tailed
Fisher’s exact test to analyze the enrichment of the iden-
tified modified proteins versus all the proteins in the
species database [40, 41]. Interproscan, software for
searching the interpro database (http://www.ebi.ac.uk/
interpro/) based on the sequence ratio, was used for
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protein domain annotation. WOLF PSORT was used to
predict the subcellular localization of the succinylated
proteins in paper mulberry. All the differentially
expressed modified protein database accessions or se-
quences were searched against the STRING database
[42] version 10.5 to assess protein-protein interactions.
Only interactions between the proteins included in the
searched dataset were selected, thus excluding external
candidates. STRING calculates a metric called the “con-
fidence score” to define interaction confidence; all the
interactions that had a confidence score > 0.7 (high con-
fidence) were retrieved. The interaction network based
on STRING was visualized by the R package
“networkD3”.

Results and discussion

Motif analysis of lysine succinylation sites in paper
mulberry

PTMs play an important role in regulating cell biology
because PTMs can change the physical or chemical
properties, activity, localization or stability of a protein.
Extensive studies have aimed to identify PTMs and de-
termine their biological functions [43]. Paper mulberry is
a multifunctional tree species widely used in papermak-
ing, feed, medicine and other industries. In this study, a
qualitative analysis of lysine succinylation was performed
to assess its physiological and biological effects in paper
mulberry. A total of 5137 peptides were detected, in-
cluding 2079 succinylated peptides (Additional file 1:
Table S1). A total of 2097 succinylation sites located on
935 proteins were identified (Fig. 1b). As shown in Fig.
1c, most of the peptides contained 7—-20 amino acids, in
agreement with the general features of trypsin-based en-
zymatic hydrolysis and HCD fragmentation.

Only the leaves of the tree were selected for analysis in
this study. Considering that succinylation is tissue-
specific [11], additional tissues and organs should be
considered. The levels of protein succinylation differ sig-
nificantly across various species (Table 1), which may
explain the discrepancies between the results of this
study and previous studies.

Properties of peptide succinylation sites

To evaluate the properties of lysine succinylation sites in
paper mulberry, the sequence motifs in the identified
proteins were analyzed using Motif-x software. All 2097
acetylation sites were included in the following analysis.
The number of modification sites varied from 1 to 14
per protein (Fig. 2a). Four conserved sequences with
amino acids from - 10 to + 10 surrounding the succi-
nylated lysine were extracted (Fig. 2b). The protein
motifs were used for statistical analysis of the se-
quences of amino acids around the succinylation sites
in the samples, and trends in the amino acid
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Table 1 Lysine succinylome identified in paper mulberry and other plants
Lysine succinylation Numbers of identified proteins Numbers of identified sites Reference
Paper mulberry 935 2097 this study
Taxus (Taxusxmedia) 193 325 [39]

Rice (Oryza sativa) 347 854 [18]
Tea 86 142 [30]

sequences around the succinylation sites were calcu-
lated. The motifs included A*Ksuc, A**Ksuc,
Ksuc******K and Ksuc********K (Ksuc represents lysine
succinylation, and * indicates a random amino acid
residue) (Fig. 2c). The identification of two sequences
containing alanine (A) suggested that A may be a
common amino acid downstream of the succinylation

site, while the identification of two sequences contain-
ing lysine (K) indicated that K may be a common
amino acid upstream of the succinylation site.

Based on the motif characteristics of lysine succinyla-
tion in mulberry, the frequencies of A and K are slightly
higher in each position around a succinylated lysine (-
10 to +10): A (alanine) at position -3, A (alanine) at
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position -2, K (lysine) at position + 7, and K (lysine) at
position + 8. The heatmap results also showed that the
frequencies at -3, -2, +7 and + 8 were significantly
higher. Therefore, proteins with specific amino acid resi-
dues are more likely to be modified by succinylation.
Notably, two succinylation motifs, Ksuc******K and
K###*#++x[Csuc, were also detected in tea [44] and tomato
[31], confirming that lysine succinylation is a highly con-
served posttranslational modification in various species.
The PTM modification site located in a representative
protein, succinate-CoA ligase (TRINITY_DN35399 cl1_
gl_m.28667), was also succinylated (Fig. 2d). The level
of cellular Ksu fluctuates with the in vivo level of
succinate-CoA [15]. In this study, succinate-CoA synthe-
sis catalysis in vivo is a biomarker for central metabolic
recovery.

Function annotation and subcellular location analysis

To determine the potential function of succinylation in
mulberry, a structural analysis of all the identified pro-
teins was performed. The GO annotations were classi-
fied into three categories, including biological process,
cellular component and molecular function (Fig. 3; Add-
itional file 2: Table S2); these classifications were used to
explain the biological functions of the proteins from dif-
ferent perspectives. Then, the distribution of the
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proteins with identified modification sites among the
GO secondary annotations was analyzed.

Classification analysis of biological process indicated
that most of the succinylated proteins are involved in
metabolic processes (43%), response to stimulus and
stress (27%), biosynthetic processes (6%), and cellular
component organization (4%) (Fig. 3a). The results in
the cellular component category showed that most suc-
cinylated proteins are distributed in the categories of
cells (21%), organelles (19%), membrane-bound organ-
elles (19%), cell membranes (10%) and other (7%) (Fig.
3b). The molecular function analysis included proteins
related to binding and oxidoreductase activities as the
major succinylated proteins in the paper mulberry
plants, accounting for 55 and 10% of all identified pro-
teins in this category, respectively (Fig. 3c). The subcel-
lular localization of the succinylated proteins was also
investigated. As shown in Fig. 3d, most of the succiny-
lated proteins in paper mulberry are distributed in the
chloroplast (51%), cytoplasm (23%), mitochondria (9%)
and nucleus (6.9%). The results of the GO functional
classification and subcellular location analysis suggested
that succinylated proteins are located in diverse cellular
compartments in mulberry and participate in various
biological processes.

The functional classification and subcellular location
distribution of succinylated proteins were compared in
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Fig. 3 Functional distribution and subcellular localization of lysine-succinylated proteins in paper mulberry. a. Classification of succinylated
proteins based on biological processes. b. Classification based on cellular component. ¢. Classification based on molecular function. d Subcellular
localization of succinylated proteins
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three plants (paper mulberry, patchouli [45] and tea
[30]). The cellular components of the three species are
characterized by considerable enrichment in categories
related to the cell, membrane, macromolecular complex
and organelle membranes. Catalytic activity (various en-
zymatic reactions) and binding activities were the top
two terms at the molecular function level. In the three
plants, succinylated proteins are mainly distributed in
the chloroplast, cytoplasm and nucleus.

Functional enrichment analysis of succinylated proteins

Functional enrichment analyses based on GO, KEGG
pathways and protein domains were performed to deter-
mine the characteristics of succinylated proteins in paper
mulberry in detail. As shown in Fig. 4a, the results of
GO enrichment showed that most succinylated proteins
are involved in energy production, material metabolism
and biosynthesis processes. Tricarboxylic acid metabolic
process, monocarboxylic acid metabolic process, citrate
metabolic process and ribonucleoside monophosphate
metabolic process are the top four biological processes,
suggesting that lysine succinylation influences glucose
metabolism and respiration. Several ribonucleoside
monophosphate metabolic processes, purine nucleoside
monophosphate metabolic process and pyruvate meta-
bolic process terms were also highly enriched. In
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agreement with these observations, the top four GO
terms (plastid stroma, chloroplast part, plastid part and
plastid) are related to chloroplasts, suggesting that
chloroplast metabolism-related enzymes may be targets
and substrates of lysine succinylation. Additionally, the
photosynthetic membrane and thylakoid membrane are
directly related to photosynthesis and were significantly
enriched. In the molecular function category, cobalt ion
binding, copper ion binding, ion binding and oxidore-
ductase activity were the top four enriched terms.

KEGG pathway analysis identified twenty significantly
enriched pathways (Fig. 4b and Additional file 3: Table
S3), including the citric acid cycle (TCA cycle), carbon
fixation in photosynthetic organisms, glyoxylate and
dicarboxylate metabolism, photosynthesis, fatty acid deg-
radation, oxidative phosphorylation and peroxisomes,
suggesting a regulatory role of succinylation in the me-
tabolism of diverse materials. The TCA cycle and oxida-
tive phosphorylation play important roles in organisms
because these pathways are the primary sources of en-
ergy. The TCA cycle also leads to primary metabolism
and secondary metabolic pathways of various substrates
and intermediates [46]. The remaining significantly
enriched pathways were mainly related to the metabol-
ism or biosynthesis of various secondary metabolites,
such as glyoxylate and dicarboxylate metabolism, and
multiple amino acid (pyruvate, valine, leucine, isoleucine,
alpha-linolenic acid, alanine, aspartate and glutamate)
degradation. Notably, these pathways are related to
amino acid metabolism. Protein pathway enrichment
analysis indicated that the top two significantly enriched
domains were thioredoxin and pyridine nucleotide-
disulfide oxidoreductase proteins. The ATP synthase
alpha/beta family and nucleotide-binding domain were
also enriched (Fig. 4c).

Lysine succinylation in the chloroplast and cytoplasm of
paper mulberry

Photosynthesis is one of the most essential metabolic
processes in paper mulberry. Chloroplasts are the spe-
cific energy conversion organelles of plant cells [47, 48]
and convert light energy into chemical energy to support
plant life. Previous studies of lysine succinylation in
wheat [49], patchouli plant leaves [45], Brachypodium
distachyon L. [29] and tomato [31] identified various
succinylation sites and proteins related to photosynthesis
and demonstrated potential functional regulation of
photosynthesis-related proteins by succinylation. Thus,
protein succinylation may be a conserved form of regu-
lation of photosynthesis in various plant species.

The analysis of the subcellular localization of the suc-
cinylated proteins showed that most are located in the
chloroplast (51.02%), cytoplasm (22.89%), nucleus
(9.2%), mitochondria (8.66%) and other compartments
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(5.24%). Previous studies have demonstrated that lysine
succinylation is widespread in chloroplasts [31, 50]. Con-
sidering the enrichment of succinylated proteins in en-
ergy metabolism (Fig. 5), lysine succinylation may play
an important role in photosynthesis. As shown in Fig. 6a,
almost all major complexes of the photosynthetic elec-
tron transport systems participate in light reactions, in-
cluding photosystem II, cytochrome b6/f complex,
carbon fixation in photosynthetic organisms, photo-
system I and ATP synthase; these proteins are succiny-
lated at some subunits or components, such as
chlorophyll a/b binding protein and oxygen-evolving en-
hancer protein 3-2.

We identified 14 succinylated proteins involved in oxi-
dative phosphorylation in the chloroplast (Fig. 6b), in-
cluding ATPase, cytochrome oxidase and reductase and
NADH dehydrogenase. Oxidative phosphorylation plays
a central role in various stress responses of many plant
species by altering gene expression or protein activity.
Lysine succinylation sites in complex I (NADH dehydro-
genase), complex II (succinate dehydrogenase), complex
III (cytochrome bcl), complex IV (cytochrome c oxi-
dase) and complex V (ATP synthase) may regulate

protein interactions between these subunits and influ-
ence the production of ATP.

The citrate cycle (TCA cycle or Krebs cycle) is an
important aerobic pathway for the final steps of oxi-
dation of carbohydrates and fatty acids. The tricarb-
oxylic acid cycle is a cycle of enzymatic reactions,
and the corresponding enzymes are essential for opti-
mal functioning of primary carbon metabolism in
plants [51]. TCA cycle pathway enzymes, including
succinate-CoA ligase [ADP-forming] subunit (SCOA),
succinate dehydrogenase [ubiquinone] flavoprotein
subunit (SDH1), succinate dehydrogenase [ubiquin-
one] iron-sulfur subunit 2 (SDH2-2), dihydrolipoa-
mide acetyltransferase (LAT2 and LTA3), aconitate
hydratase 3 (ACO3), leghemoglobin reductase (FLBR),
pyruvate dehydrogenase E1 component subunit
(PHD2), 3-isopropylmalate dehydrogenase (IDH1),
violaxanthin de-epoxidase (VDE1) and 2-oxoglutarate
dehydrogenase (ogdh), are succinylated during the
growth of paper mulberry (Additional file 4: Table S4
and Fig. 5). The results of the KEGG pathway enrich-
ment showed that 17 protein components or the sub-
units of the proteins involved in the citrate cycle or
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Fig. 6 Significantly enriched KEGG pathways in the chloroplast and cytoplasm. a. Photosynthesis. b. Oxidative phosphorylation. The acetylated
proteins are marked in red. The images were generated by KEGG Mapper

enzyme complexes are modified by succinylation; the  Protein-protein interaction network of succinylated
modifications were characterized by changes in the proteins in paper mulberry

number of succinylation sites in the conformation The identification of protein-protein interaction net-
trees in paper mulberry, suggesting that lysine succi- works by bioinformatics analysis is a useful tool for for-
nylation may be involved in the regulation of the cit- mulating testable hypotheses about the functions of
rate cycle in this woody plant. uncharacterized proteins. A protein-protein interaction
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(PPI) network is a network of bimolecular relationships
that play important roles in biological activities. There-
fore, the analysis of protein interactions and interaction
networks is important for understanding the
organization, processes and functions of cells [52].

To investigate the interactions of various succinylated
proteins and their involvement in various interaction
pathways, a PPI network of all succinylated proteins was
generated that included a total of 90 succinylation sites
related to interactions in the protein network (Fig. 7,
Additional file 5: Table S5). By defining an algorithm for
highly enriched interaction clusters, four highly inter-
connected succinylated protein clusters were identified.
Proteins containing succinylation sites were aggregated
into four highly interconnected networks, including the
TCA cycle, oxidative phosphorylation, photosynthesis
and ribosomes. The results of the protein interaction
network analysis indicated that succinylation plays a key
role in the regulation of biological processes. Interac-
tions between succinylated proteins and network inter-
actions are complex. Some succinylated proteins are
located at the nodes of the interaction network, indicat-
ing that the four biological processes are crosslinked and
that succinylated proteins coordinate these crosslinks.

A protein interaction network simplifies various com-
plex systems into a set of nodes and edges connecting
the nodes. The node degree is the key parameter used to
assess the importance and correlation of proteins in a
network. Four protein nodes in the network had degrees
>40 (Additional file 4: Table S5). The results of the pro-
tein interaction network analysis showed that lysine suc-
cinylation is involved in four processes, namely the TCA
cycle, oxidative phosphorylation, photosynthesis and ri-
bosomes, and influences active protein interactions that
may play a regulatory role in biological processes in
paper mulberry.

Conclusion

This study identified 2097 succinylation sites in 935 pro-
teins and expanded the scope of lysine succinylation in
plants. Motif analysis of succinylated peptides identified
four conserved sequence motifs. Analysis of the subcel-
lular localization of succinylated proteins indicated that
most succinylated proteins in paper mulberry are distrib-
uted in the chloroplast and cytoplasm. Functional ana-
lysis revealed that succinylated proteins are involved in
diverse metabolic pathways, such as photosynthesis, oxi-
dative phosphorylation and other cellular processes.
Photosynthetic processes, including light reactions and
carbon fixation, may be regulated by lysine succinylation.
Our study confirms the concept that lysine succinylation
plays a key regulatory role in various aspects of plant cell
metabolism, particularly in photosynthesis and the
Calvin-Benson cycle. The dataset can serve as a resource
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for studies of the function of lysine succinylation in this
important woody plant.
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