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Abstract

Background: Marine endophytic fungi (MEF) are good sources of structurally unique and biologically active
secondary metabolites. Due to the increase in antimicrobial resistance, the secondary metabolites from MEF ought
to be fully explored to identify candidates which could serve as lead compounds for novel drug development.
These secondary metabolites might also be useful for development of new cancer drugs. In this study, ethyl acetate
extracts from marine endophytic fungal cultures were tested for their antifungal activity and anticancer properties
against C. albicans and the human liver cancer cell line HepG2, respectively. The highly enriched fractions were also
analyzed by high performance liquid chromatography coupled with high resolution mass spectrometry (HPLC-
HRMS) and their effect on the HepG2 cells was assessed via transcriptomics and with a proliferation assay.

Results: We demonstrated that the fractions could reduce proliferation in HepG2 cells. The detailed transcriptome
analysis revealed regulation of several cancer- and metabolism-related pathways and gene ontologies. The down-
regulated pathways included, cell cycle, p53 signaling, DNA replication, sphingolipid metabolism and drug
metabolism by cytochrome P450. The upregulated pathways included HIF-1 signaling, focal adhesion, necroptosis
and transcriptional mis-regulation of cancer. Furthermore, a protein interaction network was constructed based on
the 26 proteins distinguishing the three treatment conditions from the untreated cells. This network was composed
of central functional components associated with metabolism and cancer such as TNF, MAPK, TRIM21 and one
component contained APP.
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Conclusions: The purified fractions from MEF investigated in this study showed antifungal activity against C.
albicans and S. cerevisiae alone or both and reduced proliferation of the human liver cancer cell line HepG2
implicating regulation of several cancer- and metabolism-related pathways. The data from this study could be
instrumental in identifying new pathways associated with liver cancer anti-proliferative processes which can be
used for the development of novel antifungal and anti-cancer drugs.

Keywords: Marine endophytic fungi, Seaweed, Anti-cancer extract, Anti-fungal resistance, HepG2, Proliferation,
Cancer pathways, Protein interaction network

Background
The majority of neglected tropical diseases are caused by
fungal pathogens, as well as helminths and protozoans.
Efforts towards drug discovery that utilizes fungal cells
as the target organism has the potential of identifying
compounds that exclusively target fungal pathogens and
compounds that share cellular targets with other non-
pathogenic fungal eukaryotes. Fungi residing in terres-
trial and marine environments are being explored for
the development of novel antifungal compounds due to
their potential to produce biologically active metabolites
[1]. Metabolites from terrestrial and marine fungi are
interesting because they have been proven to be a good
source of structurally unique and biologically active sec-
ondary metabolites which can serve as starting materials
for development of antifungal drugs [1]. The relevance
of antifungal drugs in clinics is threated by the continual
emergence of drug resistant fungal pathogens, thereby
complicating patient management [2]. Although new
antifungal agents have been introduced to combat this
problem, the development of resistance to anti-fungal
drugs has increased, particularly in patients with severe
immunosuppression undergoing long-term treatment
[2]. Hence, there is a global demand for new antifungal
agents that eliminates fungal pathogens with minimal
toxicity to the host. However, such ideal antifungals are
difficult to develop because fungi are eukaryotes hence
most substances toxic to fungi are also likely to be toxic
to the human host [3]. Therefore, desirable antifungal
agent should differentially target the fungal pathogen.
Metabolites from fungal isolates can also be screened

for anticancer activities using target-oriented ap-
proaches. This has led to the approval of many molecu-
larly targeted anticancer drugs. Development of cancer
chemotherapeutics has focused on identifying com-
pounds which target many cancer pathways while caus-
ing minimal toxicity to non-cancer cells [4]. Humans
and yeast have similar genes including those known to
be involved in cell proliferation and cancer [5]. Saccha-
romyces cerevisiae is used as a model for investigating
many cellular processes in humans. These processes
include cell cycle progression, DNA replication and seg-
regation, maintenance of genomic integrity and stress

responses. In cancer, these processes are affected by
genetic and epigenetic alterations. Hence, yeast can be
used as a suitable model organism for identifying novel
compounds with anti-cancer activity during screening of
chemical libraries [6].
In this project, extracts from marine endophytic fungi

were partially purified to obtain fractions containing
potential novel compounds. The effect of these fractions
on proliferation and transcriptome of the human liver
cancer cell line HepG2 were investigated. The evidence
presented in this study will inform future effort to scale
up the fermentation of this fungal isolate to purify the
potential novel compounds for detailed characterization.

Results
Antifungal activities of the MEF 134 crude extract and the
partially purified dichloromethane fraction
A total of 143 morphologically distinct MEFs were
isolated from mature seaweeds that were obtained from
several beaches in Ghana. These MEF isolates were cul-
tured in broth for 4 months and the secondary metabo-
lites produced in each culture were extracted using ethyl
acetate (Fig. 1). Preliminary screening of the crude
extracts from these 143 MEF isolates revealed that the
extract from the isolate designated MEF 134 showed the
highest antifungal activity against Candida albicans
(Table 1). However, the MEF 134 extract did not exhibit
antifungal activity against the nonpathogenic fungi, Sac-
charomyces cerevisiae (Table 1). From these observa-
tions, a large-scale fermentation (20 L) culture was set
up for the MEF 134 isolate in order to obtain sufficient
crude extract for fractionation and purification of the
constituent bioactive compounds. The detailed proced-
ure for the Kupchan fractionation and the preparative
thin layer chromatography (TLC) of the MEF 134 crude
extract is summarized in Fig. 1. The full sample analysis
by mass spectrometry is provided in Additional Informa-
tion 1. Two rounds of Kupchan fractionation were
conducted; 7.74 g of the MEF 134 crude extract was
used as starting material for the first round and 18.3 g of
the same extract for the second round of Kupchan frac-
tionation (Fig. 1). The dichloromethane (DCM) fractions
(FD) obtained from the first (FD-K1) and second (FD-
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K2) rounds of the Kupchan fractionation were active
against both Candida albicans and Saccharomyces cere-
visiae (Table 1). An amount of 2.58 g of the DCM frac-
tion, obtained from the first round of the Kupchan
fractionation procedure, was run on TLC plates coated
with silica gel (Fig. 1). The FD K1V1 fraction that was
obtained from the first round of TLC was only active
against Saccharomyces cerevisiae while the FD K1V5

fraction was active against Candida albicans (Table 1).
The second round of Kupchan fractionation yielded
2.72 g of the DCM fraction, which was also run on TLC
plates. The FD K2V3 TLC fraction from the second
round of Kupchan fractionation was active against both
organisms recording zones of inhibition of 12.5 and 10
mm against Candida albicans and Saccharomyces cerevi-
siae, respectively (Table 1).

Fig. 1 Schematic representation of the partial purification of crude extracts from MEF 134. MEF 134 was isolated from seaweed and was cultured
in 20 L of broth. The crude extract obtained from the culture was separated by Kuchan fractionation and two rounds of preparative TLC. Samples
marked in red were selected based on their antifungal activities and were further analysed using transcriptomics and mass spectromtery
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The fractions from the first round of preparative TLC,
which exhibited antifungal activity, were re-spotted on
silica gel TLC plates and the TLC procedure was
repeated using the relevant solvent system. The FD
K1V1V1, FD K1V5V3 and FD K2V3V5 fractions
obtained from the second round of TLC analysis of FD
K1V1, FD K1V5 and FD K2V3 did not show antifungal
activity against Candida albicans but showed activity
against Saccharomyces cerevisiae (Table 2; Fig. 2). Two
other fractions from the second round of TLC analysis,
FD V5V7 and FD V5V9, showed activity against
Candida albicans (Table 2; Fig. 2a).
The second round of Kupchan fractionation was

conducted with 18.3 g of extract as new starting material
obtained repeating the extraction of the matured culture.
Here 2.7 g of the dichloromethane fraction obtained was
again separated on the preparative plates made of
aluminum oxide. It turned out to be difficult to elute the
fractions from the aluminum oxide stationary phase.
Hence 12 different solvent systems were employed to
perform the elutions since it takes considerable amount
of time and resources to obtain the extract. The active
fractions obtained (Fig. 2b) were analyzed with an
antifungal bioassay and High-performance liquid chro-
matography (HPLC) together with High resolution mass
spectrometry (HRMS) (Table 2 and Fig. 3).

HPLC- HRMS analysis of MEF 134 DCM fractions
The DCM fraction from the MEF 134 crude extract
(FD) and selected fractions from the second round of
the preparative TLC (FD K1V1V1, FD K1V5V3 and
FD K2V3V5) were analyzed by high performance
liquid chromatography coupled with high resolution
mass spectrometry (HPLC-HRMS). The HPLC-HRMS
analysis of the FD K1V1V1 fraction revealed 11 major
peaks; 5 of these 11 major peaks were important for
this study because of their interesting fragmentation
patterns (Fig. 3a). The fragmentation pattern of the
masses suggest that the compounds have complex
structures (Data not shown). Additionally, the FD
K1V5V3 fraction had 6 major peaks and three of
these major peaks were also interesting because of
the fragmentation pattern (Fig. 3b). The FD K2V3V5
fraction generated 11 major peaks (Fig. 3c) while 17
major peaks were detected for the DCM fraction from
the MEF134 crude extract (FD; Fig. 3d).

Effect of the MEF 134 fractions on proliferation of HepG2
cells
The effect of the FD K1V1V1 (V1), FD K1V5V3 (V3)
and FD K2V3V5 (V5) fractions on proliferation of
HepG2 cells was also investigated. All the three fractions
reduced proliferation of HepG2 cells. The cells were first
observed using light microscopy, comparing control cells
to the treated cells. It could be observed how the
untreated cells grew in the typical cell morphology;
triangular and growing in islands or clumps, whereas the
treated cells were somehow dissociated, were rounder in
shape and could be found in smaller clumps, as well as
single cells. The extent of reduction in cell proliferation
seemed to be dose-dependent for fraction V5 whereas
there were deviations from the dose-dependent effect for
fractions V1 and V3 (Fig. 4). In the case of V1, a concen-
tration of 5% massively reduced the proliferation of
HepG2 cells. Therefore, we decided to reduce the input
concentrations of all compounds for all further experi-
ments in order to maintain cell proliferation.

Effect of the MEF 134 fractions on viability of HepG2 cells
HepG2 cells were treated with 2% of the partially puri-
fied MEF 134 fractions (FD K1V1V1 (V1), FD K1V5V3
(V3) and FD K2V3V5 (V5)) in order to assess the effect
of these fractions on cell viability. Following treatment,
the mRNA expression profile of 4 key markers (P53,
KI67, Caspase3, and CDKN1B) of cell viability were
analyzed and compared to the expression profile from
the untreated cells (Fig. 5). Expression of all the 4
selected genes was reduced in the treated HepG2 cells
relative to untreated cells.

Table 1 Antifungal activity of MEF 134 Crude extract, DCM
fractions, and fractions from the first round of preparative TLC

MEF 134
Samples

Zone of Inhibition in mm (Disc size 5 mm)

Candida albicans Saccharomyces cerevisiae

Crude extract 9 0

FD-K1 12 10.5

FD-K2 8 6.5

FD K1V1 0 11.5

FD K2V3 12.5 10

FD K1V5 18.5 –

Fluconazole (5 μg) = 23mm
Fluconazole was used as a positive control for the antifungal assay against C.
albicans. – represents not available

Table 2 Antifungal activity of the DCM fractions from the
second round of preparative TLC

MEF 134
Fractions

Zone of Inhibition in mm (Disc size 5 mm)

Candida albicans Saccharomyces Cerevisiae

FD V5V7 8 –

FD V5 V9 13 –

FD K1V1V1 0 10.5

FD K1V5V3 0 8.5

FD K2V3V5 0 11

Fluconazole (5 μg) = 23mm
Fluconazole was used as a positive control for the antifungal assay against C.
albicans. – represents not available
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Transcriptome analysis of HepG2 cells treated with the
MEF 134 fractions
Cluster analysis of RMA-normalized microarray data
showed that duplicates of the treated and untreated
HepG2 cell samples clustered together, as expected
(Fig. 6a). HepG2 cells treated with V1 and V5 were
together in a cluster and thus had the highest similarities
between experiments. The V1-V5 cluster was further
extended by HepG2 untreated cells demonstrating
higher similarity of V1- and V5-treated cells with the
untreated cells compared to the V3-treated HepG2 cells.
HepG2 cells treated with V3 clustered separately
suggesting that V3 treatment had the highest effect at

the transcriptome level. This is reflected by the Pearson
correlation analysis which indicated that the V3 treat-
ment had the lowest correlation to all other samples
(Fig. 6b). Moreover, the V1 treatment had the highest
correlation with V5 treatment although there was intra-
sample variability. Furthermore, one of the V1 samples
had a slightly higher correlation to control compared to
the V5 treated sample. Overall, the Pearson correlation
coefficients ranged between 0.9808–0.9969 and between
0.9939–0.9969 for duplicates.
Analysis of the gene expression at a threshold p

value < 0.05 showed that most of the genes that were
expressed in HepG2 transcriptome were common to

Fig. 2 Representative images showing growth inhibition of C. albicans and S. cerevisiae by the antifungal fractions from MEF 134. a Growth
inhibition of C. albicans by FDV5V7 and FDV5V9 fractions. b Plate cultures showing the antifungal activities of FDK1V1V1, FDK1V5V3 and
FDK2V3V5 against S. cerevisiae and C. albicans
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the treated and untreated conditions. In addition,
fewer genes were expressed in the treated HepG2
cells compared to the untreated cells (Fig. 7, Tables
S1-S4). Pairwise comparison of the HepG2 cells

treated with V1 versus the untreated HepG2 cells
generated the highest number of genes (14453) that
were commonly expressed (Fig. 7a, Additional Table
1) while the comparison of HepG2 cells treated with

Fig. 3 HPLC-HRMS full scan analysis of selected DCM fractions from the second round of preparative TLC analysis. The fractions that were used
for the analysis were FD K1V1V1 (a), FD K1V5V3 (b), FD K2V3V5 (c) and the DCM fraction from the MEF 134 crude extract (d). Spectra from total
ion chromatogram (TIC) and photodiode array (PDA) detectors are shown for each fraction
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V3 versus the untreated HepG2 cells generated the
lowest number of genes (14146) that were commonly
expressed under these conditions (Fig. 7b, Additional
Table 2). These observations might serve as a con-
firmation that treatment of HepG2 cells with V3 had
the highest effect on the transcriptome of HepG2
(Fig. 7b, Additional Table 2). A 4-way comparison of
the genes expressed in the treated conditions and the
untreated cells also confirmed that most of the genes
(13699) were commonly expressed in all the three
treatment conditions and the untreated cells (Fig. 7d,
Additional Table 4). The 4-way comparison also
revealed that 285 genes were exclusively expressed in

the untreated cells while 123 genes (Fig. 7f), 104
genes and 48 genes were exclusively expressed in the
V3, V1 and V5 treatment conditions, respectively.

Transcription factor analysis
Transcription factors motif enrichment analysis employ-
ing the CentriMo tool from the MEME suite identified
several transcription factors. In line with expectations
the TATA-box binding protein (TBP) appears on top of
several compounds’ analysis results were sorted by
significance of the E-value. Transcription factors of the
HOX (e.g. HOXA13, HOXC13), KLF (e.g. KLF5,
KLF16), SP (e.g. SP1, SP2), CDX (e.g. CDX1, CDX2) TF

Fig. 4 Inhibition of proliferation of HepG2 cells by the three partially purified fractions from the MEF 134 crude extracts. a Representative light
microscopy images of HepG2 cells treated with the MEF 134 fractions. The dose of each fraction used for the assay is indicated in percentages
(w/v). b-d Quantification of the anti-proliferative effect of the fractions. The fractions used for the assay were FD K1V1V1 (V1), FD K1V5V3 (V3) and
FD K2V3V5 (V5). All measurements were performed in biological duplicates. All three fractions had antifungal activity against S. cerevisiae only
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families appear as prominent results across the compo-
nents (Additional Tables 13–19). Interestingly, exclu-
sively in the most significant TFs in down-regulation via
the V3 component several TFs of the SOX family (Sox7,
Sox13, Sox15, Sox17, Sox18) and POU3F1 appear (Add-
itional Table 19).

Overrepresented pathways and gene ontologies (GOs)
Overrepresentation analysis for KEGG pathways was
performed to identify genes that were either up-
regulated (ratio < 0.75; p-value < 0.05) or down-
regulated genes (ratio > 1.33; p-value < 0.05) from the
intersection sets of the pairwise Venn diagrams. The
analysis demonstrated that treatment of HepG2 cells
with either V1, V3 or V5 had impact on many
cancer- and metabolism-related pathways (Fig. 8a-c,
Tables S5-S10).

Genes and associated pathways regulated by treatment
with V1
For the V1-treated HepG2 cells, cancer-related path-
ways, such as p53, chemical carcinogenesis and meta-
bolic pathways such as cytochrome P450 metabolism
emerged in the down-regulated genes while metabolic
pathways for arginine, retinol and insulin resistance

emerged in the up-regulated genes (Fig. 8a, Tables S5-
S6). Visual inspection of the pathway charts showed that
most of the steroid biosynthesis pathway (S1 Fig) was
down-regulated. Interestingly, for pathways involved in
drug metabolism such as cytochrome P450 (S2 Fig), the
genes encoding ALDH3B, ADH4 and GSTA1 were
down-regulated.

Genes and associated pathways regulated by treatment
with V3
For the V3-treated HepG2 cells, cancer-related path-
ways such as cell cycle, mismatch repair and viral
carcinogenesis emerged in the down-regulated genes
whereas cancer-related pathways such as MAPK-
signaling and transcriptional misregulation were
detected for the up-regulated genes (Fig. 8b, Tables
S7-S8). The chart of the cell cycle pathway (Fig. S4)
showed down-regulation of most genes involved in
this pathway thus suggesting reduced cell cycle activ-
ity. In all subsystems (Hepatitis B/C, Epstein-Barr
virus, human Papillomavirus, human T Lympho-
trophic virus Type I and Kaposi’s sarcoma-associated
Herpesvirus) of the viral carcinogenesis pathway (Fig.
S5) genes were significantly down-regulated.

Fig. 5 Reduction in the expression of markers of viability in HepG2 cells treated with MEF 134 fractions. HepG2 cells were treated with 2% of
either FD K1V1V1 (V1), FD K1V5V3 (V3) or FD K2V3V5 (V5) and mRNA expression for the indicated genes was determined by qRT-PCR. Experiments
were performed in biological duplicates. Gene expression was normalized to the RPL37A gene and fold change was calculated relative to the
untreated cells
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Genes and associated pathways regulated by treatment
with V5
For the V5-treated HepG2 cells, cancer-related pathways
such as cell cycle and other various cancers emerged in
the up-regulated genes while various metabolic pathways
including cytochrome P450 metabolism emerged in the
down-regulated genes (Fig. 8c). Contrary to the V3-
treated HepG2 cells, the up-regulated genes in the V5-
treated cells were significantly overrepresented in the
cell cycle pathway. Moreover, the TGFB1 and the cyclin-
dependent kinase inhibitors CDKN1A and CDKN2C
were up-regulated (Fig. S6, Tables S9-S10).

Common gene ontologies over-represented in all
treatments
The set of genes that were expressed in the three treat-
ment conditions, but not in the untreated HepG2 cells,
were used to identify the specific gene expression that
distinguishes the treated cells from the untreated cells.
The set of 26 genes (Fig. 7e) expressed in common in all
treatment conditions (V1, V3 and V5) but not in the
HepG2 control revealed overrepresentation of gene
ontologies annotated with cancer-associated MAPK/
ERK-signaling (Fig. 8d, Additional Table 11). A detailed
listing and description of these 26 genes generated with

Fig. 6 Analysis of variability in transcriptome of untreated and treated HepG2 cells. a Clustering analysis of RMA-normalized microarray data from
untreated and treated HepG2 cells. The clustering analysis was conducted using complete linkage as agglomeration method and Pearson
correlation as similarity measure. b Correlation analysis of the three treatment conditions and the untreated HepG2 cells. The Pearson correlation
coefficient between each treatment or untreated condition was estimated, as indicated in the table. All correlation coefficients were close to the
possible maximum of 1 demonstrating a high overall similarity of the samples
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the DAVID annotation tool [7] is provided in Additional
Table 12. In brief, there are genes which are (i) tran-
scription factors (ZIC4, DMRT1, ZSCAN20, ZNF619,
TRIM21), (ii) cell signaling associated (TREML2, PRR9,
MAPK4, APOBR, EPHA8, GPR137B, NPY4R) and (iii)
tumor necrosis factor (TNF) which is involved in both
inflammation and apoptosis.

Analysis of protein interaction networks activated by the
treatment conditions
The set of 26 genes that were commonly expressed in all
the three treatment conditions (V1, V3 and V5) but not
in the untreated HepG2 cells were further analyzed for
protein interaction networks based on the Biogrid data-
base. Most of these 26 genes (green nodes, Fig. 9a) had
interactions with other proteins, as reported in the

Biogrid database (red nodes, Fig. 9a). Within the
network, communities with similar features via commu-
nity clustering were analyzed (Fig. 9b, Fig. S1). Several
communities including those characterized by tumor
necrosis factor (TNF, red), mitogen-activated protein
kinase 4 (MAPK4, skyblue), tripartite motif containing
21 (TRIM21, yellow) and amyloid beta precursor protein
(APP, green) were identified.

Discussion
In this study, crude extract from the MEF 134 isolate
showed antifungal activity against the pathogenic
Candida albicans but not against Saccharomyces cerevi-
siae. Kupchan fractionation of the crude extract,
followed two rounds of preparative TLC generated
partially purified fractions that showed activity against

Fig. 7 Comparison of the number of HepG2 genes that were commonly expressed or uniquely expressed for each treatment condition and the
untreated cells. a Comparison of V1-treated HepG2 cells and untreated HepG2 cells. b Comparison of V3-treated HepG2 and untreated HepG2
cells. c Comparison of V5-treated HepG2 cells and untreated HepG2 cells. d Four-way comparison of the number of HepG2 genes expressed in all
three treatment conditions and the untreated cells. The segment marked blue represent the common gene expression signature for the treated
and untreated HepG2 cells. Expressed genes were detected using a detection p value threshold of p < 0.05. e 26 genes related to the blue
segment in (d) of expression in all treatments but not in control. f 123 genes expressed exclusively in V3 related to the green segment in (d)
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either one or both of the fungal test organisms. These
observations demonstrate the presence of antifungal
agents and possible antagonists of these agents in the
crude extract obtained from MEF 134.
The partially purified fractions were analyzed via

HPLC-HRMS and complex patterns including multiple
peaks were detected in the mass spectra. These fractions
were also evaluated using the highly sensitive
microarray-based analysis of gene expression which is
capable of identifying prospective compounds that can
serve as new leads for the development of new antican-
cer chemotherapy. The ability to generate milligram
quantities of natural products was extremely resourceful

and intensive and it provides a key evidence for making
future commitments.

Proliferation and viability of HepG2 after treatment with
the fractions
Putative anticancer properties of the fractions were
implicated by the reduction in proliferation of the
human liver cancer cell line HepG2. Specifically, expres-
sion of 4 viability markers; P53, KI67, Caspase3, and
CDKN1B was reduced in the HepG2 cells treated with
the fractions compared to untreated cells. The reduction
of KI67 expression, which is a marker for proliferation
[8], correlated positively with the outcome from the

Fig. 8 KEGG pathways affected by treatment of HepG2 cells with partially purified fractions from MEF 134 extract. a Cellular pathways up-
regulated or down-regulated in V1-treated cells relative to the untreated cells. b Cellular pathways upregulated or down-regulated in V3-treated
cells relative to the untreated cells. c Cellular pathways upregulated or down-regulated in V5-treated cells relative to the untreated cells. In (a-c),
green and red bars indicate overrepresentation of down-regulated and up-regulated genes, respectively. d Gene ontologies for the genes
commonly expressed in all three treatment conditions. In (a-d), the bar charts show the negative logarithm (base 10) of the p-value; higher
values correspond to higher significance. Overrepresentation of KEGG pathways and gene ontologies were analyzed using the
hypergeometric test
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proliferation assay. The concomitant reduction of
Caspase 3 indicated that these observations might not be
related to increased apoptosis [9]. Interestingly, p53 and
CDKN1B, which are both negative regulators of cell
cycle progression [10, 11], were down-regulated. This is
might be due to complex interaction mechanisms and
could reflect stress reactions. Fraction V5 showed the
strongest negative effect on all genes except CDKN1B,
indicating that it had the highest impact on overall cell
survival.

Transcriptome analysis
Analysis of the genes expressed exclusively in the V1-,
V3- or V5-treated HepG2 cells but not in the untreated
cells revealed many overrepresented cancer-related path-
ways. Moreover, the genes that were expressed in
common for all the treatment conditions, but not in the
untreated HepG2 cells, were used to construct a protein
interaction network.

Pathways regulated by treatment with V1
The down-regulation of ALDH3B in the drug metabol-
ism pathway involving cytochrome P450 (Additional Fig.
2) supports the central effect of cyclophosphamide as a
chemotherapeutic agent, which relies on phosphoramide
mustard produced only in cells that have low levels of
ALDH [12]. Phosphoramide mustard induces apoptosis

by causing DNA crosslinks between and within DNA
strands at guanine N-7 positions. In the p53 signaling
pathway, down-regulated genes were in the cancer-
suppressing sub-paths leading to cell cycle arrest,
prevention of DNA damage and inhibition of angiogen-
esis, metastasis and DNA repair. However, the p53
negative feedback sub-path was also down-regulated
which might eventually lead to up-regulation of the p53
pathway.

Pathways regulated by treatment with V3
The down-regulation of most genes involved in the cell
cycle pathway (Additional Fig. 4) in V3-treated HepG2
cells is in accordance with the down-regulation of prolif-
eration upon V3 treatment. The significant down-
regulation of genes in all subsystems of the viral carcino-
genesis pathway (Additional Fig. 5) indicate the inhibi-
tory effect of the V3 treatment on many viral induced
cancer hallmarks, e.g. down-regulation of proliferation
by SKP2 in the Epstein-Barr virus.

Pathways regulated by treatment with V5
For V5-treated HepG2 cells, the up-regulation of genes
from the cell cycle pathway, particularly TGFB1,
CDKN1A and CDKN2C (Additional Fig. 6, Additional
Tables 9–10), is in agreement with reports that the usual
association of the cyclin-CDK complexes with CDKN1A

Fig. 9 Protein interaction networks activated by treatment of HepG2 cells with partially purified fractions from MEF 134 extract. a
Interconnections of the commonly expressed genes in treated HepG2 cells to a network with interactions in the Biogrid database. Genes from
the original 26 gene set are colored green while the genes added as Biogrid interactions are colored red. b Community clustering of the protein
interaction network. The Biogrid database was used to construct protein interaction networks using the genes expressed in common in all
treatments conditions (V1, V3 and V5) but not in the untreated HepG2 cells
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(alias p21) is absent in most transformed cells [13]. More
general, cyclin-dependent kinase inhibitors are consid-
ered to function often as tumor-suppressors and lead to
cell cycle arrest [14]. Thus, it confirms the reduction of
proliferation upon treatment of HepG2 cells with the V5
fraction.

Analysis of protein interaction networks activated by the
treatments of HepG2 with the fractions
The protein interaction network derived from the set of
26 genes expressed in common in all treatments (V1, V3
and V5) but not in the untreated HepG2 cells revealed
communities (Fig. 9b, Additional Fig. 1) with similar net-
work features including those characterized by tumor
necrosis factor (TNF, red), mitogen-activated protein
kinase 4 (MAPK4, skyblue), tripartite motif containing
21 (TRIM21, yellow) and amyloid beta precursor protein
(APP, green). The protein interactions of brain enriched
guanylate kinase associated (BEGAIN) and lysophospha-
tidic acid receptor 3 (LPAR3) with APP, retrieved from
Biogrid, have been reported as results from high-
throughput in vitro experiments [15]. The role of aber-
rant expression of LPARs in cancer has also been estab-
lished [16]. Although APP is mostly associated with
Alzheimer’s disease, many recent studies have described
its impact on cancer [17–19] . The tumor-suppressing
activity of TRIM21 has been reported although there
may be variability between different cancer types and
treatment conditions. TRIM21 is a tumor-suppressor in
hepatocellular carcinoma [20, 21] and it also down-
regulates PAR4 (a tumor suppressor) in pancreatic
cancer in the presence of cisplatin [22]. Even though the
relevance of TNF in cancer has been proven, there are
therapeutic effects and tumor advancing properties of its
inflammatory response [23]. Moreover, anti- and pro-
ontogenic properties has been reported for MAPK4
(alias ERK4), thus extending established knowledge
about the major role typical MAP kinase pathways
ERK1/2-MEK1/2 play in cancer [24]. Furthermore,
MAPK-signaling is downstream of TNF [23] thus
emphasizing the importance of these components of the
network.

Conclusions
In this study, crude extract from a marine endophytic
fungal culture was fractionated to obtain partially puri-
fied fractions. These fractions showed antifungal activity
against C. albicans or S. cerevisiae alone or both and re-
duced proliferation of the human liver cancer cell line
HepG2. Detailed transcriptome analysis revealed that
several cancer- and metabolism-related pathways and
gene ontologies were regulated by treatment of HepG2
cells with the fractions. A protein interaction network
distinguishing the fraction-treated HepG2 cells from the

untreated HepG2 cells was also constructed. Major func-
tional components of this network (TNF, MAPK,
TRIM21 and APP) were associated with metabolism and
cancer. It is anticipated that the data from this study
would propel synthesis of the prominent compounds
detected from the partially purified fractions. The
synthesis of these compounds would be instrumental in
identifying new compound(s) exhibiting antifungal or
anti-proliferative activities. Such compounds could be
used as starting material for the development of novel
antifungal and anti-cancer drugs.

Methods
Large-scale fermentation of MEF 134 and extraction of
secondary metabolites
Pure isolates of MEF 134 were inoculated into 20-l
culture vessels containing 10 l of Yeast extract, Peptone,
Malt, Dextrose (5 g/l; 5 g/l; 5 g/l; 30 g/l, respectively)
broth prepared with filtered seawater. The inoculated
broth was incubated at 30 °C for 4 months [25]. The
secondary metabolites that were produced in the
fermentation culture were extracted using equal volume
of ethyl acetate [25]. The extracted secondary metabo-
lites were dried at 45 °C under reduced pressure using a
rotary evaporator (Buchi). The concentrated metabolites
were reconstituted in methanol.

Fractionation of MEF 134 crude extracts
The MEF 134 crude extract was fractionated using a
modified Kupchan fractionation method followed by
preparative Thin Layer Chromatography (TLC). The
modified Kupchan fractionation was performed by parti-
tioning the crude extracts among seven different solvent
systems [26]. These solvents included; water, ethyl acet-
ate, butanol, methanol & ethyl acetate, 50% methanol,
dichloromethane and hexane. The fractions obtained
from these solvents were designated FW (water fraction),
FE (ethyl acetate fraction), FB (butanol fraction), FME
(methanol & ethyl acetate fraction), FM50 (50% metha-
nol fraction), FD (dichloromethane fraction) and FH
(hexane fraction). The 7 fractions from each Kupchan
fractionation was dried and reconstituted in either
methanol (FW, FB, FM50) or ethyl acetate (FE, FME,
FD, FH). The first round of preparative TLC was
performed using 50 ml of mobile phase (35 ml ethyl
acetate, 10 ml acetonitrile and 5ml petroleum ether).
The bands were cut and the compounds were eluted
from the silica gel using methanol. The second round of
preparative TLC was performed using 37.5 ml of petrol-
eum ether and 12.5 ml of ethyl acetate as mobile phase
for bands obtained near the solvent front of the TLC
plate while 10 ml of ethyl acetate, 40 ml of acetonitrile
and 0.3 ml of methanol was used as mobile phase for
bands that showed minimal migration during the first
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round of preparative TLC. Dried and developed plates
were visualized under UV light at high (365 nm) and low
(254 nm) wavelengths.

Determination of the antifungal activity of the MEF 134
crude extract and dichloromethane fractions
Antifungal activity of the crude extract and the dichloro-
methane fractions (FD) were tested by the agar plate
disc-diffusion method. A volume of 30 μl (0.05 g) and
120 μl (0.2 g) from stock solution of crude extract and
FD, respectively, were added on to sterile filter paper
disc which were 5 mm in diameter. All other fractions
were tested by this method at 0.01 g/disc. The discs were
allowed to air-dry prior to the assay. Overnight cultures
of Saccharomyces cerevisiae and Candida albicans,
grown in 50ml nutrient broth, were diluted to an optical
density at 600 nm (OD600) of 0.7. The diluted cultures
were uniformly inoculated on to YPDA (Yeast extract,
10 g/l; Peptone, 20 g/l; Dextrose, 20 g/l; Agar, 20 g/l)
plates and the discs were placed at defined positions on
the agar plate. Zones of inhibition were measured in
mm, 12 h after incubation of inoculated plates at 30 °C.

Determination of cytotoxicity of the MEF 134 fractions
against HepG2 cells
Hepato-carcinoma (HepG2) cells (ATCC®HB-8065TM)
were cultured in DMEM low glucose, 10% FCS, 1% Peni-
cillin/Streptomycin (P/S) (all Gibco) at 37 °C and 5%
CO2 in a humidified atmosphere. Cells were split with
trypsin (Gibco) when they reached confluency. Mono-
layers were treated with the FD K1V1V1, FD K1V5V3
and FD K2V3V5 fractions at the indicated concentra-
tions (5, 7.5, 10, 12 and 15%; w/v). Cell proliferation was
determined by the resazurin metabolic assay [27]. After
treatment for 2 or 3 days with the indicated concentra-
tions of the three fractions, cells were incubated for 4 h
with fresh medium containing 10% of resazurin solution
consisting of 0.1 mg/mL resazurin (Sigma-Aldrich) in
phosphate buffer saline (PBS) (Gibco). Resazurin reduc-
tion was measured with a spectrophotometer (Bio-tek
instruments) at 570 and 600 nm. A final resazurin value
(F.O.D.) was calculated as the difference between the
O.D. 570/O.D. 600 nm of the treated sample and that of
the negative control (resazurin media incubated for 4 h
in the absence of cells). The procedure was carried out
for 3 days at the same time, in duplicate.

RNA isolation and quantitative real time PCR (qRT-PCR)
HepG2 cells were lysed in 300–500 μl Trizol and total
RNA was isolated with the Direct-zol™ RNA Isolation Kit
(Zymo Research) according to the user’s manual including
the optional on-column DNase digestion. The TaqMan
Reverse Transcription (RT) Kit (Applied Biosystems) was
used for cDNA synthesis. Real time PCR was performed

in technical triplicates of biological duplicates using Power
SYBR Green Master Mix (life technologies) on a VIIA7
(life technologies). Mean Ct values were calculated and
normalized to RPL37A as a housekeeping gene. Fold
change was calculated relative to the untreated control.
The data were shown as mean values (log2).

Transcriptome analysis
Untreated HepG2 cells and cells treated with FD
K1V1V1 (V1), FD K1V5V3 (V3) and FD K2V3V5 (V5)
were hybridized in duplicates on the Affymetrix Human
Clariom S Array (Affymetrix, Thermo Fisher Scientific)
at the BMFZ (Biomedizinisches Forschungszentrum)
core facility of the Heinrich-Heine Universität, Düssel-
dorf. Data analysis of the Affymetrix raw data was
performed in the R/Bioconductor [28] environment
using the package oligo [29]. The obtained data were
background-corrected and normalized by employing the
Robust Multi-array Average (RMA) method from the
package oligo. The heatmap.2 function from the gplots
package was employed to generate hierarchical cluster-
ing and heatmaps using Pearson correlation as similarity
measure and color scaling per rows containing genes
[30]. Besides the dendrogram (Fig. 6a) and table of Pear-
son correlations (Fig. 6b) quality was controlled by pair-
wise scatter plots of logarithmic (base 2) expression
values (Additional Fig. 8) assessing the variance between
duplicates. Venn diagrams were drawn based on gene
expression employing package VennDiagram [31]. A
gene was considered to be expressed when its detection
p value was less than 0.05. The detection p value was
calculated as described in the supplementary methods in
Graffmann et al. [32]. Up-regulated genes were detected
via the criteria detection-p-value in compound-
treatment and control less than 0.05, limma-p-value for
differential expression less than 0.05 and ratio greater
than 1.33. Down-regulated genes were detected via the
criteria detection-p-value in compound-treatment and
control less than 0.05, limma-p-value for differential
expression less than 0.05 and ratio less than 0.75.

Gene ontology and pathway analysis
Based on the transcriptome analysis, over-represented
gene ontology terms and KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathways [33] were deter-
mined. The GOstats package [34] was used for over-
representation analysis of GO terms and the hyper-
geometric test provided by the R base package was
used for over-representation analysis of KEGG path-
ways. KEGG pathway annotation had been down-
loaded from the KEGG database in March 2018. P-
values were adjusted by the q-value method by Storey
et al. [35]. Visualization of significant genes in KEGG

Blessie et al. BMC Genomics          (2020) 21:265 Page 14 of 17



pathway charts was achieved with the R/Bioconductor
pathView package [36].

Transcription factor analysis
We identified transcription factors (TFs) via motif
enrichment analysis in the differentially expressed genes
employing the CentriMo (version 5.1.0) tool from the
MEME suite [37]. Briefly, we downloaded upstream
DNA sequences (2000 bases) of all genes from UCSC
GRCh38/hg38 in fasta format. We extracted the first 300
bases upstream of the transcription start site as recom-
mended in the CentriMo manual. Sequences of up- and
down regulated genes in the treatments V1, V3 and V5
compared to control were submitted to the tool
CentriMO from the MEME suite, using default parame-
ters except for using “anywhere” as kind of local motif
enrichment to search for (command: centrimo --oc cen-
trimo_out --verbosity 2 --dfile description --local --score
5.0 --ethresh 10.0 down_hepg2v1_up300_fasta.txt motif_
databases/EUKARYOTE/jolma2013.meme motif_data-
bases/JASPAR/JASPAR2018_CORE_vertebrates_non-
redundant.meme motif_databases/MOUSE/uniprobe_
mouse.meme).

Construction of protein interaction networks
Based on the Venn diagram analysis, a protein inter-
action network was constructed using the set of 26 genes
that were expressed in common in all treatments (V1,
V3 and V5) but not in the untreated HepG2 cells. Inter-
actions annotated with the taxonomy id 9606 (Homo
sapiens) were filtered from the Biogrid database version
3.4.161 [38]. From this dataset, all protein interactions
containing at least one protein coded by the above-
mentioned set of 26 genes were extracted. As this net-
work was already too complex, it was reduced by adding
only the n = 30 interacting proteins with the most inter-
actions to proteins coded by genes from the original set.
These interactions were plotted employing the R pack-
age network [39], marking proteins from the original set
in green. An in-betweenness clustering analysis was
performed via the method cluster_edge_betweenness()
from the R package igraph [40] in order to identify
communities of related proteins within the network.
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